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Abstract

In multi-modal control paradigm, a set of controllers
of satisfactory performance have already been designed
and must be used. Each controller may be designed
for a different set of outputs in order to meet the given
performance objectives and system constraints. When
such a collection of control modes is available, an im-
portant problem is to be able to accomplish a vari-
ety of high level tasks by appropriately switching be-
tween the low-level control modes. In this paper, we
propose a framework for determining the sequence of
control modes that will satisfy reachability tasks. Our
framework exploits the structure of output tracking
controllers in order to extract a finite graph where the
mode switching problem can be efficiently solved, and
then implement it using the continuous controllers. Our
approach is illustrated on a robot manipulator exam-
ple, where we determine the mode switching logic that
achieves the given reachability task.

1 Introduction

The multi-objective nature of complex control systems
such as automated highway systems, air traffic manage-
ment systems[15], and unmanned aerial vehicles[9] re-
quires the use of a suite of controllers instead of using a
single controller. In this multi-modal control paradigm,
a set of controllers of satisfactory performance have al-
ready been designed and must be used. Each controller
may be designed for a different set of outputs in order
to meet the given performance objectives and system
constraints. When such a collection of control modes
is available, an important problem is to be able to ac-
complish a variety of high level tasks by appropriately
switching between the low-level control modes.

Multi-modal control has been studied especially in the
context of stability and safety; see [4] for stability re-
sults of switching between stable linear time-invariant
(LTT) controllers, [7] for safe switching conditions for
systems with pointwise-in-time constraints on state and
control, and {12, 2] for controller designs and switch-
ing conditions for satisfying multiple objectives such as
safety property and optimal performance.
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In [8], we have proposed a framework for the synthe-
sis of mode switching for reachability specifications. As
opposed to [4], we are interested in reachability spec-
ifications rather than preserving stability of a global
equilibrium point. The stability of each control mode
is assumed to be preserved with respect to the state
variables of interest and taken care of by the control
design. Switching condition between modes defined in -
[8] is a generalization of the the result presented in [7]
which requires the controllers to be designed in a total
order with respect to safety specifications. The out-
come of applying our algorithm results in a partial or-
dering of the given control modes, and not only can
captures the outcome generated as shown in [7] but
also is more expressive since it captures more possible
switching combinations.

In this paper, a control mode is defined as the operation
of the system under a controller that is guaranteed to
track a certain class of output trajectories while simul-
taneously avoiding violation of specified (state or input)
constraints. Given a set of control modes, the mode
switching problem attempts to find a finite sequence of
the control modes as well as switching conditions in or-
der to satisfy the given reachability tasks. Hence, the
mode switching problem can be posed as:

Problem 1.1 Given a control system and a finite set
of control modes for the system, determine whether
there erists a finite sequence of modes that will steer the
system from an initial control mode to a desired final
control mode. If such a sequence ezists, then determine
the switching conditions.

In order to reduce the complexity of the mode switch-
ing problem, we start by assuming that output track-
ing control laws have been designed for each control
mode. Feedback greatly simplifies the continuous mod-
els in each discrete location since the complexity of the
continuous behavior is now reduced to the complexity
of the trajectories we design. Therefore, many reacha-
bility computations that are required in our approach
can be greatly simplified by properly designing the de-
sired trajectories. Even though feedback control sim-
plifies the continuous complexity, the problem of hav-
ing nested reachability computations is still present. In



order to avoid such expensive computations, as shown
in [8], we place a consistency condition in our mode
switching logic which is reminiscent of the notion of
bisimulation [13]. We propose an algorithm which given
an initial set of control modes, constructs a control
mode graph which refines the initial control modes but is
consistent. Construction of the mode graph can be done
off-line or every time a new control mode is designed,
allowing the mode switching problem to be efficiently
solved on-line, in real time.

2 Problem Formulation

In this section, we introduce a concept of control mode,
and precisely define Problem 1.1 as a mode switching
problem. First, consider a nonlinear system modeled
by differential equations of the form

(t) fx(®)) + g(z(t))u(t)

.'L'(to) Zo, t Z to (1)

where z € R", u € R?, f(z) : R® —» R and g(z) :
R™ — R”™ x RP. The system is assumed to be as smooth
as needed. Each control mode corresponds to a output
tracking controller applying to the nonlinear system (1).
“We now define a concept of control mode.

Definition 2.1 (Control Modes) A control mode,
labeled by q; where i € {1,...,N}, is the operation of
the nonlinear system (1) under a closed-loop feedback
controller of the form

u(t) = ki(2(), 7:(t)) )

associated with an output y;(t) = hy(x(t)) such that
yi(t) shall track r;(t) where y;(t),mi(t) € R™, h; :
R™ — R™¢, k; : R*xR™ — RP? for eachi € {1,...,N}.
"~ We assume that r; € R;, the class of output trajecto-
ries associated with the control mode q;, when the initial
condition of the system (1) starts in the set S;(r;) C X,
output tracking is quaranteed and the state satisfies a
set of state constraints X; C R™.

The trajectory r;(t) is the desired output trajectory,
and y;(t) is the output vector which shall track r;(¢).
Notice that in general the initial set may be a function
of the trajectory r;, thus we denote it as S;(r;). This
is because even though trajectory tracking controllers
are guaranteed to converge for any initial condition,
trajectory tracking in the presence of state constraints
or input constraints can be guaranteed only if the initial
tracking error is sufficiently small.

State constraints are specified by X; for 2 =1,...,N.
The state constraints are introduced due to the physical
limits of the system and the control design. Since the
controller is static, input constraints can be incorpo-
rated as state constraints for the the nonlinear system
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(1). For example, a control constraint ||u(t)||. < @ im-
plies X; = {z € R*| Vr; € Ry ki(z,r;) < @}. For dy-
namic controller with fixed structure, it has been shown
in [7] that the input constraints can be similarly con-
sidered as state constraints in which both system and
control states are considered.

Clearly, more general definitions of control mode can
be defined. For example, one can define a mode as the
operation of the system under an open loop control, or
one can consider more general classes of trajectories, or
one can incorporate system disturbance under modes
of operation. Such generalizations will be considered
in future research. In this paper we are interested in
switching between controllers, rather than the design
of output tracking controllers. We therefore make the
following assumption.

Assumption 1 For each control mode ¢, i €
{1,...,N}, we assume that a controller of the form
(2) has been designed which achieves output tracking
such that y;(t) shall track r;(t) where r, € R; # 0,
while the state satisfies the set of state constraints
z(t) € X; C R", when the initial condition of the sys-
tem (1) starts in the set S;(r;) C X; CR™.

The above assumption is justified given the maturity
of output tracking controllers for large classes of linear
and nonlinear systems [5, 16]. Based on different design
methodologies, the notion of output tracking could be
different (uniform, asymptotic, exponential, etc.)

Example 2.2 Point Mass. Consider the dynamics of
a point mass that can be modeled as a double chain of
integrators,

b T

®3)

where z1,z2,u € R represent the position, velocity and
acceleration of the point mass, respectively. Define the
state as T = [z1 z2|T € R2. Assume that there are
two controllers designed for (3) and the corresponding
control modes are specified as:

1',‘2 U

Mode | Output | Reference | Constraint
n n=z T Xy
@2 |yp=xu T2 Xo

where Xo C X1 = R x (v,7) withv < 0 < ¥. The
given controllers are linear controllers and the design is
simply based on pole-placement. In order to satisfy As-
sumption 1, the controller in control mode q, is designed
such that Ry C R™ and Si(r1) = B(jr1 0]F,6;) with
0 < Q—‘%ﬁ-—ﬁl where M, is the overshoot constant which
can easily be obtained by Lyapunov theorems. Simi-
larly, control mode qq are similarly defined but the poles



are placed differently. It results in faster response but
larger overshoot, i.e. My > M;. Hence, Ry C R" and
Sa(re) = B([rz 0]7,682) with 5 < m—"}%—@ Therefore,
we have Sa(re) C Si(m) if r1 = 7.

Given two control modes as shown in Example 2.2, one
cannot simply switch from one control mode to another
due to incompatible constraints and trajectories. One
can easily complicate the situation by introducing many
more control modes to serve different performance ob-
jectives. A natural question is then whether this mode
reachability task as defined Problem 1.1 can be achieved
by a finite sequence of modes. Based on the discussion,
we can now define the mode switching problem that we
will address in this paper.

Problem 2.3 (Mode Switching Problem) Given

an initial control mode qo with desired reference ro,
does there exist a sequence of control modes such
that the system can reach a desired mode qp with
reference rr? If so, then determine a mode sequence
go — -+ ¢ — gj--- — qF along with trajectories r;
for each control mode q;, as well as conditions for
switching between the control modes.

For the control modes defined in Example 2.2, one can
define a task of having mode ¢; as an initial mode and
ask for a finite control mode sequence to reach mode
g2. Note that Problem 2.3 is a reachability problem. In
this simple example, the problem can be solved by ex-
amining the mode switching condition between modes.

In the above mode switching problem, there is enough
structure to take advantage of in order to simplify the
complexity of the synthesis task. First of all, the con-
tinuous controllers are assumed to have been designed,
and therefore we do not have to design the continu-
ous part of the system, but simply determine the mode
switching conditions. Furthermore, by imposing certain
conditions on the allowable mode switches, we reduce
the complexity of the synthesis problem, by mazimally
decoupling the discrete and continuous aspects of the
synthesis.

3 A Mode Switching Condition

Consider a mode switch from mode ¢; to mode ¢;. A
mode switch from mode ¢; to g; could be allowed if
during the operation of the system under mode ¢; for
some 7; € R;, the state reaches the allowable set of
initial conditions S;(r;) for some r; € R, i.e. there
exist r; € R; and r; € R; such that

dzo € Si(r;) It > 03z € S;(r;) st. = ¢(t,ri,%0)
| (4)
where ¢;(t,7;,20) denotes the flow of system (1) oper-
ating in mode ¢; with the controller defined by (2) for
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initial condition z, and desired output trajectory r;. If
one allows this type of mode switching, then reachabil-
ity critically depends on the particular choice of initial
conditions since some initial conditions in S;(r;) may
reach the set S;(r;) of mode g; while others may not.

In general, nested reachability computations are re-
quired for solving such a reachability problem. Fur-
thermore, since loops can be considered in feasible se-
quences, the number of possible mode sequences could
be infinite. Therefore, for this type of mode switch-
ing, decidability becomes a central issue [1]. We now
characterize the reachable set within each mode.

Definition 3.1 (Predecessor set) Given a set P C
X, a trajectory r; € R;, the reach set Pre;(P,r;) in
mode g; is defined by

PTe,;(P,’I‘i) = {.’Eo € X,tl F>0dzeP
s.t.x= ¢,~(t,ri,m0)}

(5)
Pre;(P,r;) consists of all states that can reach the set
P in mode g; for a given output trajectory r;, at some
future time. Furthermore, because of Assumption 1, we
have a guarantee that throughout the whole trajectory,
the state constraints are satisfied, that is ¢;(¢,7;,20) €
X; for all £ > 0. Hence, using (5), condition (4) can be
rewritten as

S,'(Tz') n Pre,'(Sj(rj),r,-) # 0. (6)

In order to avoid the nested computations mentioned
above, as well as break free of restricted decidability
results, we constrain our allowable mode switches.

Definition 3.2 (Consistent mode switching)
Assume that control mode g¢; satisfies Assumption
1, that is ¢;(t,ri,z0) € X for all t > 0 with initial
conditions starting from S;(r;) where v, € R;. A
transition from mode q; to mode q; is allowed only if
there exist r; € R; and r; € R; such that

Si(rs) € Prei(S;(r;),mi) ™
Therefore, if there exist trajectories r; (in mode ¢;) and
r; (in mode g;) such that, if the system starts at any
zo € S;(r;), then switching from mode g; to ¢; can oc-
cur at some time ¢ such that ¢;(t,7;,z0) € S;(r;). The
consistent mode switching condition is shown in Figure
1. The condition expressed in Definition 3.2 is a consis-
tency condition that guarantees that our ability to get
from mode ¢; to mode g; for the particular trajectory
pair (r;,r;) is independent of the choice of initial con-
dition in S;(r;). Hence, a mode switching from mode
¢; to mode g; is possible, if there exists a trajectory
r; € R; that will steer the system state to an initial set
S;(r;) with r; € R; independently of where we start in
Si(r;). The collection of the trajectory pair (r;,r;) is
specified by the following definition

'R,ij = {(Ti,Tj) S R,‘ X Rj I Cond. (7) is satisﬁed} (8)



Figure 1: Consistent mode switching condition

Therefore, every trajectory pair (r;, ;) € R¥ will steer
the system from mode g; to mode g;. For each (r;,7;) €
R, the only thing that depends on the initial condition
is when the state will reach S;(r;), but not if the state
will reach 8;(r;).

In our problem we apply the existing results in com-
puting the reachable sets [2, 3, 10, 11, 12] to test the
mode switching condition (7) and compute the sets R*.
Since most of these reachability computations are ap-
proximate, one must consider an over-approximation of
S;(r;) and an under-approximation of Pre;(S;(r;),7:),
in order to satisfy condition (7), that is

Si(ri) C Pre;(S;(rj),7:) ©)
where P and P denote the over-approximation and
under-approximation of a set. P, respectively.

4 Mode Sequence Synthesis

By focusing on the trajectory sets R rather than the
initial sets, the mode switching condition (7) makes the
mode switching problem much more tractable. Further-
more, the construction presented in this section will ab-
. stract the mode switching logic into a purely discrete
graph. Therefore one can first determine the sequence
of modes using standard algorithms for discrete graph
reachability, and then determine the continuous param-
eters r; for each mode. This will decouple the discrete
from the continuous aspects of the problem, and allow
continuous techniques for continuous problems, and dis-
crete techniques for discrete problems.

Consider a collection of control modes Q
{g1,-..,qn}. If there exist trajectory pairs (r;,7;) €
R that can transfer the system from mode ¢; to g;,
there would be a transition g¢; — g¢;. However, given
g — ¢; and g; — gi, if R¥ NR7* = @ there does not
exist a trajectory r;, which will take a point = € S;(r;)
to Sk(rk) via 9;(r;). In order to construct a consis-
tent control mode graph such that the high level mode
switching logic is implementable at the lower level by
the continuous controllers, transitivity should be pre-
served.

As shown in [8], each control mode g; gets refined to
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2N submodes, where N submodes stand for entering
mode g; from any other mode ¢;, and N more copies
for exiting mode g; towards any other mode g;. There-
fore, this control mode graph has some discrete mem-
ory, in the sense that each state represents not only
which mode the system is in, but also which mode will
either precede it or has preceded it. If the set RY
can be expressed as a decoupled product of the form
RY =RY x RY where R = {r; € R; | (ri,r;) € R¥}
and ’R;J = {r; € Rj | (ri,7;) € R}, then the choice
of trajectory r; € 72? in mode ¢; would work for any
trajectory 7; € ’Rj? in mode g;, t.e.

Vr; € RY Vr; € 'R;’ condition (7) is satisfied. (10)
This decoupling allows us to consider switching via
submodes. Within each mode, we can check for sub-
mode consistency by simply performing set intersec-
tions. Since there are maximally 2N submodes of N
modes, a total of N2 pairwise reachability computations
and N(N)? = N3 intersections must be computed.

Algorithm 1:(Consistent Control Mode Graph)

Input Control Modes Q = {q1,...,gn}

Output Control Mode Graph (Q., —.)

Initialize Q. :=0, —.=0

Determine Mode Interconnections

for i=1:N;forj=1:N

(8)

using and

(7)

Compute sets RY
if RY = RY x RY;
¢’ =a, ¢ =gy,
Qc = Qc U {q::]', q_;'].}1

—ei=—e U{(g,4)}
end if
end for; end for
Determine Submode Interconnections
for j=1: N
Q= {q;.’j € Q.|3n s.t. (q;‘j,q?j) €—c}
Q:= {q;:m € Q¢|Im s.t. (q;:m,qim) €—¢}
for all qj-j € Q; for all q;:k €
if RY NRI* £ 0;

e = U{(‘I;'j’ Q;k)}
end if

end for; end for

end for




We now summarize the ideas and present an algorithm
for constructing the consistent control mode graph.
The algorithm starts with the pairwise reachability
computations (7,8), and performs the submode inter-
connections. After applying the algorithm, we obtain
a finite control mode graph (Q.,—.) which has been
shown in [8] to be consistent. Without loss of gener-
ality, in the following discussion, we assume that the
given initial and final control mode in @ can be repre-
sented by g0 € Q. and gr € Q. respectively. Given an
initial control mode ¢p € Q., the problem of whether
we can reach control mode gr € Q., can be efficiently
solved using standard reachability algorithms.

Furthermore, one can determine the shortest path (min-
imum number of mode switches) between mode gs and
gr, in the control mode graph. The structure that we
have imposed on our control mode graph, immediately
results in the following solution to the mode switching
problem.

Theorem 4.1 (Mode Switching Solution) Given
a collection of control modes Q, consider the mode
switching Problem 2.8. Construct the consistent control
mode graph (Qc,—.) as described in Algorithm 1. If
there exists a path in the consistent control mode graph
between qs and qp with feasible trajectories vo and ro,
then Problem 2.3 is solvable.

Having determined the sequence of modes that can
steer our system from qo to gr, we are left with the
problem of determining the parameters r; for each mode
of the sequence. By construction, such parameters exist
and may be selected from the computed sets. Further-
more, it is reasonable to pose the problem of choosing r;
within mode g; as an optimization or an optimal control
problem.

5 Multi-Modal Control of Robot Manipulator

The design framework presented in previous sections
has been applied to the control of a robot manipulator.
The manipulator is a two revolute jointed robot moving
on a horizontal plane. The dynamics of the two-link
robot can be written as:

M(0)6 +C(0,0)6 = u (11)
where 6 = [6; 02]T € R? is the set of configuration
variables for the robot and u = [u; ua]T € R? denotes
the torques applied at the joints. Furthermore, we are
given a joint trajectory 64(t) which we wish to track.
For the given robot, the entries of the matrices M(6)
and C(8, 6) can be found in [6].

It has been shown that in [16], a proportional plus
derivative (PD) control law gives global asymptotic set-
point stabilization, i.e. 63 = 0. In its simplest form, a
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PD control law has the from

u=-—Kyé—Kpe (12)
where K, and K, are positive definite matrices and e =
6 — 84. For tracking a given trajectory 6,4(t), computed
torque control law which has the form

u=M(8)(0s — K,é — Kpe)+C(6,0)6  (13)
is widely used. It can be shown that the control law
results in global exponential trajectory tracking. How-
ever, in the presence of state constraints, in order to
satisfy Assumption 1 trajectory tracking can be guar-
anteed only if the initial tracking error is sufficiently
small.

Consider the robot is requested to move from one set-
point, 87, to another setpoint #7. There exists velocity
constraint for each joint. Define z = [6; 65 6; 65]T € R*
For each setpoint, three PD controllers are designed for
different design specifications. Define ¢, qs,q3 as the
associated control modes for setpoint 4 and gs, g7,gs
as the associated control modes for setpoint 5.

For moving from 05‘ to 9(’13, two different controllers,
which are based on computed torque control law, along
with the trajectories are designed. Control mode g4
can perform the task with minimum energy while con-
trol mode g5 is designed for minimum time criterion.
Therefore, we have |Q] = 8. To simplify the discus-
sion, we further assume that each R; is a singleton, for
i=1,...,8. By applying condition (9), the switching
conditions between control modes can be easily checked
by examining the stability properties of the closed loop
systems. In general, controller with faster response will
have smaller region of attraction while robust controller
has wider region of attraction but worse tracking capa-
bility. Since each trajectory contains only one element,
it makes the checking of submode connection extremely
simply. After applying Algorithm 1, we obtain the con-
sistent control'mode graph as shown in Figure 2.

o)
@' qf

35 56
\‘45' a5 A
-/

Figure 2: Consistent control mode graph for the multi-
modal control of robot manipulator

Assume that the task to be performed by the set of
controllers is specified as a reachability task for moving



from 67 to 05. It is also desirable to perform the task
with wide region of attraction and small tracking er-
ror. This task specification can be translated into the
mode switching problem with ¢; as the staring mode
and gg as the ending one. To check if the reachabil-
ity task can be achieved with the given set of control
modes, we can perform reachability algorithm on the
control mode graph. There exists more than one path
to achieve the given task specifications. Based on ad-
ditional performance criterion, a specific path can be

chosen to execute the task. For example, to achieve the’

task in minimum time, the resulting switching sequence
would be ¢19293959697s-

6 Conclusion

In this paper, we have considered the mode switch-
ing problem among a collection of output tracking con-
trollers for constrained systems. Our approach consists
of extracting a finite graph which refines the original
collections of modes, but is consistent with the physi-
cal system, in the sense that high level design has feasi-
ble implementation. Extracting a finite graph critically
depends on the fact the closed loop, output tracking
controllers reduce the complexity of the model to the
complexity of the output trajectories. Given an initial
mode and a final mode, if there exist any path con-
necting the two modes, it shows that the given task
is feasible to be solved. Furthermore, each pat on the
graph basically encodes a specific set of performance
criteria. By choosing different paths, different perfor-
mance can be achieved for executing the same task.
We have used the robot manipulator example how the
multiple objectives can be achieved.
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