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Abstract

We consider a two-player partial-information game on a
Markov chain, where each player attempts to minimize its
own cost over a finite time horizon. We show that this
game has always a Nash equilibrium in stochastic behav-
ioral policies. The technique used to prove this result is
constructive but has severe limitations because it involves
solving an extremely large bi-matrix game. To alleviate this
problem, we derive a dynamic-programming-like condition
that is necessary and sufficient for a pair of policies to be a
Nash equilibrium. This condition automatically gives Nash
equilibria when a pair of “cost-to-go” functions can be found
that satisfy certain inequalities.

1 Introduction

Competitive games are usually classified as either hav-
ing full or partial-information. In full-information
games both players know the whole state of the game
when they have to make decisions. By state, we mean
all information that is needed to completely describe
the future evolution of the game, when the decision
rules used by both players are known. Examples of full-
information games include Chess, Checkers, and Go.
Partial-information games differ from these in that at
least one of the players does not know the whole state
of the game. Poker, Bridge, and Hearts are examples
of such games. In full-information games, as a player
is planning its next move, it only needs to hypothe-
size over its and the opponent’s future moves to predict
the possible outcomes of the game. Partial-information
games are especially challenging because this reason-
ing may fail. In many partial-information games, a
player must hypothesize not only on the future moves
of both players, but also on the past moves of the op-
ponent to predict the possible outcomes of the game.
This often leads to a tremendous increase in the com-
plexity of the games. In general, partial-information
stochastic games are poorly understood and the lit-
erature is relatively sparse. Notable exceptions are
games with lack of information for one of the play-
ers [1, 2], games with private information where each
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player can estimate the opponent’s state based only on
its current private state [3], single-stage games [4, 5],
or games with particular structures such as the Duel
game [6], the Rabbit and Hunter game [7], and the
Searchlight game [8]. Linear, quadratic, Gaussian dif-
ferential games have also been studied but the results
available are mostly restricted to cases where the in-
formation available to one of the players is a subset
of the information available to the other player [9, 10]
or when both players share the same observations (al-
though they may not know the controls used by the
other player) [11]. Another relevant class of games that
have been analyzed to some extent are the so-called
repeated games with incomplete information [12, 13].
These correspond to iterated plays of the same static
game, in which the payoff matrix is randomly chosen by
“nature” and not known to the players (who can try to
estimate it based on the information collected at each
play).

In this paper, we address fairly general partial-
information games on Markov chains. These are games
in which two players are able to influence the state tran-
sitions in a Markov chain by taking appropriate actions
[14]. Each player attempts to minimize its own cost
that is additive over time with the incremental costs
depending on the state of the Markov chain and the ac-
tions taken by the players. We deviate from most of the
literature on Markov games in that we do not assume
full-information. In fact, each player only has available
stochastic measurements that, in general, do not allow
it to determine the current state of the Markov chain.
We consider here finite games played over a finite time
horizon and with possibly nonzero-sum costs.
This paper contains two main contributions. We first
show that there always exists a Nash equilibrium in
the set of stochastic behavioral policies, thus extend-
ing Kuhn’s result for extensive games with perfect re-
call [15] to the setting of partial-information Markov
games. The second contribution consists in deriving a
dynamic programming-like condition that, when satis-
fied by a pair of “cost-to-go” functions, provides a Nash
equilibrium in stochastic behavioral policies. We show
that this condition is non-conservative because it is also
necessary for the existence of a Nash equilibrium. This
paper falls short of actually providing an efficient algo-
rithm to determine the cost-to-go functions for a generic



partial information game. This is an important topic
for future research.

Notation: Let (Ω,F) be the relevant measurable space.
Bold face symbols are used to denote random variables.
Consider a probability measure P : F → [0, 1] and a ran-
dom variable ξ : Ω → C. Given two events A,B ∈ F with
P(B) �= 0, we write P(A|B) for the conditional probability
of A given B, i.e., P(A|B) = P(A∩B)/P(B). Given c ∈ C,
P(ξ = c) is the probability of ξ to take the value c. A simi-
lar notation is used for conditional probabilities. Moreover,
we write E[ξ] for the expected value of ξ and E[ξ|A] for the
expected value of ξ conditioned to the event A ∈ F . Given
a finite set G, we denote its cardinality by |G| and by [0, 1]G ,
the set of all probability distributions over G. Finally, given
a distribution p ∈ [0, 1]G , pg denotes the probability of g ∈ G
in p.

2 Two-player Markov Game

We consider a game between two players U and D.
The game takes place on a controlled Markov chain
with finite state space S. We denote by st the ran-
dom variable representing the state of the chain at time
t ∈ T := {0, 1, 2, . . . , T}, T ≤ +∞.

Transition probability. Players U and D can affect
the evolution of the game by applying control actions
ut and dt, respectively. We assume that ut and dt,
t ∈ T , take values in finite action spaces U and D,
respectively. The probability of transition from a given
state s ∈ S at time t to another state s′ ∈ S at time
t + 1 when actions u ∈ U and d ∈ D are applied is
supposed to be stationary, i.e.,

P(st+1 = s′ | st = s,ut = u,dt = d) = p(s, s′, u, d),

for all s, s′ ∈ S, u ∈ Y, d ∈ Z, t ∈ T , where p : S ×
S×U ×D → [0, 1] is the transition probability function.
st+1 is assumed to be conditionally independent of all
other random variables at times smaller or equal to t,
given st, ut and dt. Moreover, the initial state s(0)
is supposed to be independent of all the other random
variables at time t = 0. Its probability distribution is
denoted by p̄ ∈ [0, 1]S .

Observation probability. To choose their actions,
measurements yt and zt are available to players U and
D, respectively, at time t ∈ T . Here, the random vari-
ables yt and zt, t ∈ T , take values in finite measurement
spaces Y and Z, respectively. yt is assumed to be con-
ditionally independent of all the other random variables
at times smaller or equal to t, given st. Similarly for
zt. Moreover, the conditional distributions of yt and
zt, given the current value of the state st, are assumed
to be stationary, i.e., P(yt = y|st = s) = pY (y, s) and
P(zt = z|st = s) = pZ(z, s), for all s ∈ S, y ∈ Y, z ∈ Z,
t ∈ T , where pY : Y×S → [0, 1] and pZ : Z×S → [0, 1]
are the observation probability functions for players U
and D, respectively. The information available to play-
ers U and D to decide which action to take at time t ∈ T

is respectively given by the sequence of measurements
and past controls

Yt := {y0,u0,y1,u1, . . . ,yt−1,ut−1,yt},
Zt := {z0,d0, z1,d1, . . . , zt−1,dt−1, zt}.

These sequences are said to be of length t. The sets of all
possible outcomes for Yt and Zt, t ∈ T , are denoted by
Y∗ and Z∗, respectively. In the sequel, �(Y ) and �(Z)
denote the lengths of Y ∈ Y∗ and Z ∈ Z∗, respectively.
When the measurements available to the players are
sufficient to let them both know at each time instant
t ∈ T which is the current value realized by the state
st with probability one, the game is said to be of full-
information. Games for which this does not happen are
said to be of partial-information.

Stochastic Policies. Informally, a “policy” for one
of the players is a rule the player uses to select which
actions to take over the time horizon T . We consider
here policies that are stochastic in that, at every time
t ∈ T , each player selects an action over the action set
according to some probability distribution. The policies
considered are also behavioral in that the specific proba-
bility distribution depends on the information collected
up to time t. Specifically, a stochastic behavioral policy
µ of player U is a function µ : Y∗ → [0, 1]U . We denote
by ΠU the set of all such policies. For each Y ∈ Y∗,
µ(Y ) is called a stochastic action of player U. We say
that µ ∈ ΠU is a pure behavioral policy for player U if,
for every Y ∈ Y∗, the entries of the vector µ(Y ) are
in the set {0, 1}. The set of all pure policies for player
U is denoted by Π̄U . Similarly, a stochastic behavioral
policy δ of player D is a function δ : Z∗ → [0, 1]D. For
every Z ∈ Z∗, δ(Z) is a stochastic action of player D.
The sets of stochastic and pure behavioral policies for
player D are respectively denoted by ΠD and Π̄D.
Stochastic behavioral policies are a generalization to
partial-information Markov games of the behavioral
policies for multi-act extensive games [16]. The fact
that the stochastic actions of the players are allowed
to depend on their past actions is key to guaranteeing
that a Nash equilibrium always exists for the game pre-
sented here, and is the analogous to the “perfect recall”
property in the extensive games setting [15].
Opting for specific stochastic policies corresponds to
selecting a particular probability measure that is con-
sistent with the distributions chosen for the control ac-
tions. In the following we use the subscript µδ in the
probability measure P to denote the probability mea-
sure associated with µ ∈ ΠU and δ ∈ ΠD. When an
assertion holds true with respect to Pµδ independently
of µ ∈ ΠU , or of δ ∈ ΠD, or of both µ ∈ ΠU and δ ∈ ΠD,
we use the notation Pδ, Pµ, or P, respectively. Simi-
larly for the expected value operator E. According to
this notation, the transition and observation probabili-
ties, and the initial state distribution introduced earlier
are independent of µ and δ.



When player U selects a stochastic behavioral policy
µ ∈ ΠU and player D a policy δ ∈ ΠD, the two play-
ers are jointly selecting a probability measure in the
family {Pµδ : µ ∈ ΠU , δ ∈ ΠD}. This family of proba-
bility measures has the property that Pµ(ut = u | Yt =
Y ) = µu(Y ), Pδ(dτ = d | Zτ = Z) = δd(Z), t := �(Y ),
u ∈ U , Y ∈ Y∗, τ := �(Z), d ∈ D, Z ∈ Z∗. Moreover,
ut (dt) is conditionally independent of all other random
variables for times smaller or equal to t, given Yt (Zt).

Cost Structure. In this paper we consider non-
cooperative games over a finite horizon T < ∞, in
which each player K∈ {U, D} chooses the actions so
as to minimize its own cost

JK

µδ := Eµδ

[ T∑
τ=0

lK(sτ ,uτ ,dτ , τ)
]
,

Typically, lK : S × U ×D × T → R takes the form

lK(s, u, d, τ) =

{
cK(s, u, d), τ < T

rK(s), τ = T
,

where rK : S → R assigns to each state s the cost
for player K of finishing the game at s, whereas cK :
S × U × D → R assigns to each state s and pair of
actions u, d the marginal cost for player K for continu-
ing the game at state s when the applied actions are u
and d, respectively. We say that the game is zero-sum
if lD = −lU , since under this condition JU

µδ + JD

µδ = 0.
The coupling between the players’ costs models situ-
ations where they are sharing a common environment
and competing for the same resources.
We suppose that each player tries to best counteract
the other player’s action so as to achieve a certain
performance level irrespectively of the other player’s
choice. In the game of interest, this translates into the
players selecting a pair of stochastic behavioral policies
(µ∗, δ∗) ∈ ΠU × ΠD for which

JU

µ∗δ∗ ≤ JU

µδ∗ , ∀µ ∈ ΠU , JD

µ∗δ∗ ≤ JD

µ∗δ, ∀δ ∈ ΠD. (1)

The policies (µ∗, δ∗) satisfying (1) are said to constitute
a Nash equilibrium (in stochastic behavioral policies).

3 Existence of Nash equilibria

It turns out that, if we restrict our attention to pure
policies, a Nash equilibrium in the sense of (1) may not
exist. This is actually the reason why we consider the
stochastic behavioral policies. In order to prove that
Nash equilibria always exist in stochastic behavioral
policies, we introduce another type of policies, called
mixed policies, for which one can use standard argu-
ments to show that an equilibrium exists. Mixed poli-
cies can be thought of as another method to enlarge the
set of pure policies which is well suited for games that
are played repeatedly.

Suppose that both players do restrict their attention to
pure behavioral policies but they independently extract
at random which policy to use according to some prob-
ability distribution over the sets of pure policies. This
extraction is done before the game starts and the re-
sulting game is therefore known as a prior commitment
game. Denoting by ρ := {ρµ : µ ∈ Π̄U} ∈ [0, 1]Π̄U and
σ := {σδ : δ ∈ Π̄D} ∈ [0, 1]Π̄D the distributions used by
players U and D, respectively, to choose among their
pure policies, the expected cost for player K∈ {U, D}
is given by

J̄K

ρσ :=
∑

µ∈Π̄U , δ∈Π̄D

ρµσδJ
K

µδ.

The distributions ρ and σ are called mixed behavioral
policies for player U and D, respectively ([17]). The
cost J̄K

ρσ can also be expressed in matrix form as

J̄K

ρσ = ρ′AKσ,

where AK is a |Π̄U | × |Π̄D| matrix defined by

[AK ](µ,δ)∈Π̄U×Π̄D
:= JK

µδ,

with one row for each pure policy for player U and one
column for each pure policy for player D, and ρ and µ
are interpreted as column vectors.
It is well known that at least one Nash equilibrium al-
ways exists in mixed policies [17], i.e., that there exists
(ρ∗, σ∗) ∈ [0, 1]Π̄U × [0, 1]Π̄D for which

ρ∗′AUσ∗ ≤ ρ′AUσ∗, ∀ρ ∈ [0, 1]Π̄U , (2)

ρ∗′ADσ∗ ≤ ρ∗′ADσ, ∀σ ∈ [0, 1]Π̄D . (3)

We proceed now to prove the existence of Nash equi-
libria in stochastic behavioral policies. To achieve this,
we need the following result:

Lemma 1 There exist surjective functions LU :
[0, 1]Π̄U → ΠU and LD : [0, 1]Π̄D → ΠD such that, for
every pair of mixed policies (ρ, σ) ∈ [0, 1]Π̄U × [0, 1]Π̄D ,

J̄U

ρσ = JU

µδ, J̄D

ρσ = JD

µδ, (4)

where (µ, δ) ∈ ΠU × ΠD are stochastic policies given by
µ := LU(ρ), δ := LD(σ).

Lemma 1 extends Kuhn’s equivalence result between
mixed and stochastic behavioral policies in extensive
games with perfect recall to the Markov games setting.
To prove it we need to introduce the following nota-
tion: Fix Y ∈ Y∗ and u ∈ U . For any τ < �(Y ), Yτ and
uτ respectively denote the truncation of Y to length τ
and the action at time τ in the sequence Y . Moreover,
Π̄U|{Y,u} denotes the set of pure policies that are com-
patible with Y and u, i.e., the set of polices µ for which
µu

(
Y

)
= 1, and µuτ

(
Yτ

)
= 1, ∀τ < �(Y ). Given Z ∈ Z

and d ∈ D, the notations Zτ and dτ , τ < �(Z), and
Π̄D|{Z,d} are defined similarly. The following Lemma
(see [18] for a proof) is also needed to prove Lemma 1.



Lemma 2 Given any t ∈ T , s0, s1 . . . , st ∈ S, ut ∈ U ,
dt ∈ D, and Yt ∈ Y∗, Zt ∈ Z∗, with �(Yt) = �(Zt) = t,
for every pair of stochastic policies (µ, δ) ∈ ΠU × ΠD,

Pµδ(s0 = s0, s1 = s1, . . . , st = st,ut = ut,dt = dt,

Yt = Yt,Zt = Zt) = kt(s0, s1, . . . , st, ut, dt, Yt, Zt)
t∏

τ=0

µuτ (Yτ )δdτ (Zτ ),

where kt is a function that does not depends on (µ, δ).

For ease of notation, in the sequel we shall use kt(·) for
kt(s0, s1, . . . , st, ut, dt, Yt, Zt), t ∈ T .

Proof of Lemma 1. LU can be defined as follows: for
a given ρ ∈ [0, 1]Π̄U , LU(ρ) = µ, with

µu(Y ) :=

∑
µ̄∈Π̄U|{Y,u} ρµ̄∑

û∈U
∑

µ̄∈Π̄U|{Y,û} ρµ̄
, u ∈ U , Y ∈ Y∗. (5)

To verify that this function is surjective, we show next
that L̄U : ΠU → [0, 1]Π̄U , defined by L̄U(µ) := ρ, with

ρµ̄ :=
∏

Y ∈Y∗

∑
u∈U

µ̄u(Y )µu(Y ), µ̄ ∈ Π̄U ,

is right-inverse of LU . To verify that this is true, let
µ̃ := LU

(
L̄U(µ)

)
for some µ ∈ ΠU . Fix an arbitrary

Y ∈ Y∗. From the definitions of LU and L̄U ,

µ̃u(Y ) =

∑
µ̄∈Π̄U|{Y,u}

∏
Ȳ

∑
ū µ̄ū(Ȳ )µū(Ȳ )∑

û∈U
∑

µ̂∈Π̄U|{Y,û}

∏
Ȳ

∑
ū µ̂ū(Ȳ )µū(Ȳ )

=

∑
µ̄∈Π̄U|{Y,u} µu(Y )

∏
Ȳ �=Y

∑
ū µ̄ū(Ȳ )µū(Ȳ )∑

û∈U
∑

µ̂∈Π̄U|{Y,û} µû∈U(Y )
∏

Ȳ �=Y

∑
ū µ̂ū(Ȳ )µū(Ȳ )

=
µu(Y )∑

û∈U µû∈U(Y )
= µu(Y ) (6)

Here, we used the fact that∑
µ̄∈Π̄U|{Y,u}

∏
Ȳ �=Y

∑
ū

µ̄ū(Ȳ )µū(Ȳ )

=
∑

µ̂∈Π̄U|{Y,û}

∏
Ȳ �=Y

∑
ū

µ̂ū(Ȳ )µū(Ȳ ), ∀û ∈ U . (7)

This equality holds because for each µ̄ ∈ Π̄U|{Y,u} there
is exactly one µ̂ ∈ Π̄U|{Y,û} such that µ̂(Ȳ ) = µ̄(Ȳ ),
Ȳ �= Y . This means that each term in the summation
on the right-hand side of (7) equals exactly one term in
the summation in the left-hand side of the same equa-
tion (and vice-versa). Equation (6) proves that L̄U is a
right-inverse of LU , and hence that LU is surjective.
LD can be defined similarly to LU in (5) and can be
proven to be surjective.
We are now ready to prove that (4) holds. To accom-
plish this let µ := LU(ρ), ρ ∈ [0, 1]Π̄U , and δ := LD(σ),

σ ∈ [0, 1]Π̄D . By definition of JU

µδ and Lemma 2,

JU

µδ =
∑

s0,s1,...,sT ,
uT ,dT ,YT ,ZT

T∑
t=0

lU(st, ut, dt, t)kT (· · · )

T∏
τ=0

µuτ (Yτ )δdτ (Zτ ). (8)

By induction on t, it is straightforward to show that
t∏

τ=0

µuτ (Yτ )δdτ (Zτ ) =
∑

µ̄∈Π̄U|{Yt,ut}

ρµ̄

∑
δ̄∈Π̄D|{Zt,dt}

σδ̄,

t ∈ T (cf. [18]). Using this equation in (8), we get

JU

µδ =
∑

s0,s1,...,sT ,
uT ,dT ,YT ,ZT

T∑
t=0

lU(st, ut, dt, t)kT (· · · )

∑
µ̄∈Π̄U|{YT ,uT }

ρµ̄

∑
δ̄∈Π̄D|{ZT ,dT }

σδ̄. (9)

On the other hand,

J̄U

ρσ :=
∑

µ̄∈Π̄U

∑
δ̄∈Π̄D

JU

µ̄δ̄ρµ̄σδ̄. (10)

By specializing (8) to pure policies, we have

JU

µ̄δ̄ =




∑
s0,s1,...,sT ,

uT ,dT ,YT ,ZT

T∑
t=0

lU(st, ut, dt, t)kT (· · · ),

if µ̄ ∈ Π̄U|{YT ,uT }, δ̄ ∈ Π̄D|{ZT ,dT },

0, otherwise.

This, together with (10), show that both J̄U
ρσ and JU

µδ

are equal to the right-hand side of (9). The proof that
J̄D

ρσ = JD

µδ is analogous.

We next state and prove the main result of this section:

Theorem 1 Let (ρ∗, σ∗) ∈ [0, 1]Π̄U ×[0, 1]Π̄D be a Nash
equilibrium in mixed policies. Then (µ∗, δ∗) ∈ ΠU ×ΠD,
with µ∗ := LU(ρ∗), δ∗ := LD(σ∗), is a Nash equilibrium
in stochastic policies.

Proof of Theorem 1. We start by proving the first
inequality in (1). By contradiction assume that there is
a policy µ ∈ ΠU for which JU

µ∗δ∗ > JU

µδ∗ . Since the map
LU is surjective, there must exist some ρ ∈ [0, 1]Π̄U such
that µ = LU(ρ). From JU

µ∗δ∗ > JU

µδ∗ and Lemma 1, one
then concludes that J̄U

ρ∗σ∗ > J̄U
ρσ∗ , which violates (2).

The second inequality in (1) is proved similarly.

Since there always exists one Nash equilibrium in mixed
policies, from Theorem 1 it follows that there always
exists at least one Nash equilibrium in stochastic poli-
cies. Moreover, Theorem 1 gives a procedure to actually
compute the corresponding stochastic policies, though
the bi-matrix game to be solved can be extremely large.



4 Dynamic Programming Approach

In this section we look for a necessary and sufficient
condition for a pair of stochastic behavioral policies
(µ∗, δ∗) ∈ ΠU ×ΠD to be Nash equilibrium, based on a
dynamic programming approach. With this in mind we
first treat the case where one player computes its op-
timal policy assuming that its opponent is following a
known policy. In particular, in Section 4.1 we deal with
the following optimization problem: Given δ ∈ ΠD, de-
termine µ∗ ∈ ΠU such that

JU

µ∗δ = inf
µ∈ΠU

JU

µδ. (11)

This can be viewed as the problem of determining a
Stackelberg equilibrium with player D being the leader
and player U the follower ([16]). Analogous results are
valid for the case when the players’ roles are inverted.
The interested reader is referred to [18] for a proof of
the results stated in Section 4.1.

4.1 Solution to the optimization problem
For given policies µ ∈ ΠU , δ ∈ ΠD, we define V U

µδ(Y ),
Y ∈ Y∗, to be player U’s cost-to-go from Y associ-
ated with the policies µ and δ, after having collected a
sequence Y of length t := �(Y ) ∈ T of observations
and controls, i.e., Eµδ[

∑T
τ=t lU(sτ ,uτ ,dτ , τ) | Yt =

Y ]. The expected value above is only well defined
when Pµδ(Yt = Y ) �= 0 but it is actually con-
venient to define cost-to-go for any Y ∈ Y∗ such
that there is some policy µ̂Y for which Pµ̂Y δ(Yt =
Y ) �= 0. To do this we formally define V U

µδ(Y ) :=

Eµ̃Y δ

[∑T
τ=t lU(sτ ,uτ ,dτ , τ)

∣∣∣ Yt = Y
]
, where the pol-

icy µ̃Y is given by

µ̃Y (Ȳ ) :=

{
µ(Ȳ ), �(Ȳ ) ≥ �(Y )
µ̂Y (Ȳ ), �(Ȳ ) < �(Y )

. (12)

The cost V U

µδ is always well defined because, for all
Y ∈ Y∗, 1) Pµ̃Y δ(Yt = Y ) = Pµ̂Y δ(Yt = Y ) �= 0,
and 2) the value of V U

µδ(Y ) is independent of the policy
µ̂Y chosen to define µ̃Y . The intuition behind this is
that once Yt = Y , it does not really matter what was
the value of the policy before time t.
The cost JU

µδ associated with a pair of policies µ ∈
ΠU , δ ∈ ΠD can be easily computed from V U

µδ. Indeed,
from the fact that the probability distribution of y0 is
independent of the policies µ and δ, we conclude that

JU

µδ = Eµδ

[
V U

µδ

(
{y0}

)]
= E

[
V U

µδ

(
{y0}

)]
. (13)

We shall see next that it is possible to compute V U

µδ

using the operator T U

µδ from the set of functionals VU :=
{V : Y∗ → R} into itself, defined for each Y ∈ Y∗ by

T U

µδV (Y ) := Eµ̃Y δ

[
lU

(
st,ut,dt, t

)
+ V (Yt+1)

∣∣Yt = Y
]
,

where t := �(Y ), V (YT+1) := 0 and µ̃Y is defined in
(12). The following theorem summarizes the relation

between V U

µδ and T U

µδ. To state this theorem we need to
introduce the following notation: Given policies µ ∈ ΠU

and δ ∈ ΠD, we use Y∗
µδ to denote the set of values

Y ∈ Y∗ for which Pµδ(Yτ = Y ) > 0, τ := �(Y ).

Theorem 2 Given µ ∈ ΠU and δ ∈ ΠD,

i) V U

µδ = T U

µδV
U

µδ.

ii) Any function V ∈ VU satisfying V = T U

µδV on Y∗
µδ

is equal to V U

µδ on Y∗
µδ.

We next show how to actually compute the function
in VU that results from applying T U

µδ to some function
V ∈ VU . To this effect let P := [0, 1]U . For each
p := {pu : u ∈ U} ∈ P , and δ ∈ ΠD define an operator
HU

pδ from VU into itself by setting

HU

pδV (Y ) :=
∑

u,s,s′
y,d,Z

pu

(
lU(s, u, d, τ) + V

(
{Y, u, y}

))
pY (y, s′)p(s, s′, u, d)δd(Z)Iδ(s, Z, Y ),

for every Y ∈ Y∗, where τ := �(Y ) and V
(
{Y, u, y}

)
= 0

for τ = T . The function Iδ : S × Z∗ × Y∗ → R is
defined as follows: For given Y ∈ Y∗ and Z ∈ Z∗,
Iδ(s, Z, Y ) = 0, s ∈ S when �(Y ) �= �(Z). Otherwise,
Iδ is defined recursively by

Iδ(s′, {Z, d, z}, {Y, u, y}) = (14)∑
s pY (y, s′)pZ(z, s′)p(s, s′, u, d)δd(Z)Iδ(s, Z, Y )∑

s̄,z̄,d̄
s̄′,Z̄

pY (y, s̄′)pZ(z̄, s̄′)p(s̄, s̄′, u, d̄)δd̄(Z̄)Iδ(s̄, Z̄, Y )
,

s′ ∈ S, u ∈ U , d ∈ D, y ∈ Y, z ∈ Z, and initialized with

Iδ(s′, {z}, {y}) =
pY (y, s′)pZ(z, s′)p̄s′∑

s̄ pY (y, s̄)p̄s̄
.

It can be shown that, for each µ ∈ ΠU and δ ∈ ΠD

such that Pµδ(Y τ = Y ) > 0, Iδ(s, Z, Y ) = Pµδ(s(τ) =
s, Zτ = Z

∣∣ Y τ = Y ), s ∈ S, Z ∈ Z∗, i.e., Iδ is the
so-called information state. Moreover,

T U

µδV (Y ) = HU

µ̃Y (Y )δV (Y ), Y ∈ Y∗. (15)

This is actually the key equation for showing that the
multi-step optimization problem (11) can be reduced to
multiple single-step optimization problems. This is the
subject of the developments that follow.

Optimal Cost-to-Go. For a given policy δ ∈ ΠD we
define player U’s optimal cost-to-go function V U

δ
∗ asso-

ciated with the policy δ as V U

δ
∗(Y ) := infµ∈ΠU V U

µδ(Y ),
Y ∈ Y∗. The optimal cost JU

δ
∗ := infµ∈ΠU JU

µδ∗ can be
easily computed from V U

δ
∗. Indeed,

JU

δ
∗ = E

[
V U

δ
∗({y0}

)]
. (16)

It turns out that one can compute V U

δ
∗ using the oper-

ator T U

δ : VU → VU defined by

T U

δ V (Y ) = inf
p∈P

HU

pδV (Y ), Y ∈ Y∗. (17)



Due to the linearity of the map p 	−→ HU

pδV (Y ) and
the particular structure of P , the infimum is actually
a minimum and can be achieved at some vector in P
with all entries in the set {0, 1}. The following Theorem
summarizes the relation between V U

δ
∗ and T U

δ :

Theorem 3 Given an arbitrary policy δ ∈ ΠD,

i) V U

δ
∗ = T U

δ V U

δ
∗.

ii) For any policy µ ∈ ΠU satisfying V U

µδ = T U

δ V U

µδ on
Y∗

µδ, we have that V U

µδ = V U

δ
∗ on Y∗

µδ .

iii) If µ∗ ∈ ΠU is an optimal policy, then T U

µ∗δV
U

δ
∗ =

T U

δ V U

δ
∗ on Y∗

µ∗δ.

4.2 Characterization of Nash equilibria
Using the results in Section 4.1, we finally derive a nec-
essary and sufficient condition for (µ∗, δ∗) ∈ ΠU × ΠD

to be a Nash equilibrium. In the sequel, we shall use
VD, V D

µδ, HD
µq, V D

µ
∗, T D

µ , and Q to denote the duals of
VU , V U

µδ, HU

pδ, V U

δ
∗, T U

δ , and P , respectively.

Theorem 4 (µ∗, δ∗) ∈ ΠU × ΠD constitute a Nash
equilibrium if and only if there exists two functionals
V U ∈ VU and V D ∈ VD satisfying

HU

pδ∗V U(Y ) ≥ HU

µ∗(Y )δ∗V U(Y ) = V U(Y ), (18)

HD

µ∗qV
D(Z) ≥ HD

µ∗δ∗(Z)V
D(Z) = V D(Z), (19)

p ∈ P, Y ∈ Y∗
µ∗δ∗ , q ∈ Q, Z ∈ Z∗

µ∗δ∗ .

Before proving Theorem 4, note that we actually know
from Theorem 1 that there always exists at least one
Nash equilibrium in stochastic policies. This mean
that there must always exist functionals V U ∈ VU and
V D ∈ VD satisfying (18)–(19).
Proof of Theorem 4. Suppose that there exist func-
tionals V U ∈ VU , V D ∈ VD satisfying (18)–(19). We
prove next that (µ∗, δ∗) is a Nash equilibrium because
these policies satisfy (1). Because of (15) and the defi-
nition of T U

δ , (18) can be rewritten as

V U(Y ) = T U

δ∗V U(Y ) = T U

µ∗δ∗V U(Y ), Y ∈ Y∗
µ∗δ∗ . (20)

Then, by ii) in Theorem 2, V U(Y ) = V U

µ∗δ∗(Y ) on Y∗
µ∗δ∗ .

Based on this, (20) becomes V U

µ∗δ∗(Y ) = T U

δ∗V U

µ∗δ∗(Y ) =
T U

µ∗δ∗V U

µ∗δ∗(Y ), Y ∈ Y∗
µ∗δ∗ , which, by ii) in Theorem 3,

leads to V U(Y ) = V U

µ∗δ∗(Y ) = V U

δ∗
∗(Y ), Y ∈ Y∗

µ∗δ∗ .
This equation specializes to V U

δ∗
∗({y}) = V U

µ∗δ∗({y}),
y ∈ Y, Pµ∗δ∗

(
y0 = y) > 0, for sequences of length 0,

from which JU

δ∗
∗ = JU

µ∗δ∗ follows because of (16) and
(13). This concludes the proof of the first inequality
in (1). The second inequality can be proved similarly
using (19) and reversing the roles of the players.
To prove the converse statement, suppose that (µ∗, δ∗)
is a Nash equilibrium. This means, in particu-
lar, that µ∗ minimizes the cost JU

µδ∗ . From i) and

iii) in Theorem 3, it then follows that V U

δ∗
∗(Y ) =

T U

δ∗V U

δ∗
∗(Y ) = T U

µ∗δ∗V U

δ∗
∗(Y ), Y ∈ Y∗

µ∗δ∗ . Similarly,
V D

µ∗
∗(Z) = T D

µ∗V D
µ∗

∗(Z) = T D

µ∗δ∗V D
µ∗

∗(Z), Z ∈ Z∗
µ∗δ∗ .

Equations (18)–(19) are then satisfied by V U = V U

δ∗
∗

and V D = V D
µ∗

∗.
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