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Abstract

In this paper, we propose a tracking mechanism to fol-
low time-variations in the dynamics of a linear sys-
tem with a recursive identification of the PI-MOESP
scheme. The proposed mechanism consists of change
detection scheme followed by a re-initialization of the
recursive calculations, The change detection is based
on the least-squares interpretation of the calculation
in the subspace scheme and detects whether the esti-
mates of the recursive solution without exponential for-
getting lies in the confidence interval of the estimates
obtained with a second finite-window length solution
to the least-squares problem. When a change has been
detected, the estimate by the recursive implementa-
tion is re-initialized via the solution of a constrained
least-squares problem. One numerical example is pre-
sented to illustrate that our change detection and re-
initialization scheme can detect incipient changes in the
system dynamics without detecting changes in input
dynamics.

1 Introduction

There is a vast amount of literature related to
change detection and related to forgetting mecha-
nism in (recursive) system identification schemes. The
autoregressive-type model structure has often been
used as models of systems under surveillance because
there exist many kind of on-line parameter estimation
algorithms, for example, RLS, RLMS and so on, which
estimate parameters of such models recursively. More-
over, since it has a close connection with the probability
theory, it is not difficult to introduce hypothesis tests
using the statistics, e.g., mean and covariance values of
estimates.

Suppose that we consider segmentation of data sam-

pled from a practical plant at work as preprocessing
for system identification. One possibility is to apply a
change detection method to do data segmentation that
searches for segments in the data batches during which
the system dynamics are linear time-invariant (LTT) ir-
respective of whether the input properties change.

An interesting candidate for system identification is one
of the existing subspace state-space system identifica-
tion (4SID) methods. Recently, recursive algorithms
of 4SID identification have been proposed {2, 9, 8, 12].
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It is expected that parameters estimated by recursive
451D algorithms allow us to observe changes in the sys-
tem dynamics without being disturbed by changes in
the input signals. This is because the parameters are
obtained based on the projection onto the orthogonal
complement of a subspace defined by a given input se-
quence.

Our contribusion is twofold. The first is to introduce a
change detection mechanism in a recursive implementa-
tion of the PI-MOESP [11] scheme. In order to detect
incipient changes as well as abrupt ones, our change
detection scheme estimates a relevant system quantity
by two 48ID algorithms in parallel and compares them
using a statistical measure. One 4SID algorithm is to
provide an accurate estimate recursively. The other
can track a varying parameter; however it has low ac-
curacy. The second contribution is to develop how to
re-initialize the recursive accurate 4SID scheme once a
change is detected. We apply an idea of a constrained
least-squares problem proposed by Kulhavy and Zarrop
[6] to our re-initialization procedure. The procedure is
invoked only when a change is detected. Note that, po-
tentially, our idea of the re-initialization can be applied
to adaptive filters based on parallel parameter estima-
tion.

In section 2, we introduce the notation used throughout
the paper. Also an output -error model is presented here
as well as several assumptions related to the feasibility
of PI-MOESP. In section 3, we outline the relationship
between 4SID and a linear least squares problem in [4].
Section 4 describes the two contributions of this paper.
A numerical example illustrates that our scheme can
detect changes of a system properly without detecting
input changes in section 5.

2 Notation
We consider the following output error model:

- Thgl1 = Azy + Buy, (la)
Yk = Cxp + Dug + vp, (1b)

where yr, vy € R, up € R™ and 2, € R®. The system
matrix A is asymptotically stable and the pair (C, A) is
observable. The output error vy is a zero mean white
noise sequence that is uncorrelated with up and has
covariance matrix

R>0 1=3
P A 3 B
E viv; { 0, otherwise. (2)

Choose an integer s such that N > s > n + 1,
where n is the dimension of the state vector. Let a
sequence of input and output data {(u;, y;)}, j =
—s+41,---,0,1,--- /N,..- be given. define the vec-

tor us(i) € R™* as follows:

Uy (i) 1= [ u;-T_S_H uiT ]T. (3)



The input Hankel matrix is defined as

Un = [ A" “us(s) vy ], (4
where v is a forgetting factor satisfying v € R and
~v < 1. Similarly, the vector ys(:) € R!s and the output
Hankel matrix Yy are defined as u4(i) and Uy from the
sequence {y;}, respectively. A “shifted” version of the

input Hankel matrix is defined as
(5)

where the extra subscript “P” indicates the past with
respect to the data in Uy. For the noise, v,(s), Vy and
Ve n are defined similar to (3), (4) and (5), respec-
tively. The matrix which consists of the state vectors
at succeeding time instants is defined as

Upn = [ /7" “us(0) Us(N-3) |

(6)

We define the following matrix which consists of the
state vectors:

Xy_at1i=| \/’TN_SHH TN_s4l |-

(M)

We introduce the following projection matrices with
respect to the input Hankel matrix Uy:

XpNost1:=] \/'YN_SE—SH TN-2s41 | -

-1
Iy = Uﬁ (UNU]TV) Uy, H_L%N =TI —1y,. (8)

Following the reference [5], the input is assumed to be
persistently exciting, such that:

: 1 [ Xn—sit
rank (“}gnmﬁ { U;+ } [ UIT;,N Ux ]) = n+sm.
©)
We assume that there exists an integer N such that
1 Upn-
N-s [ Ut } [Uln-r Ul ]>0.0 (10)

For the case of y < 1, we assume

|

3 4SID as a linear least squares problem

1—x
1_,YN-—5

Upn-1

Ui ] [Ufn_y Uf_y]>0. (11)

3.1 The least squares problem

Jansson and Wahlberg [4] have introduced a cost func-
tion with a matrix linear regression model to in-
terpret 4SID schemes. Consider the output error
model (1). With the definition of the matrix £ =
[ A5-1pB, AB, B ], we can denote the state
vector Ty, as

Tk = Lus(k-1) + ATi_s, (12)
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On the other hand, let the extended observability ma-
trix ¢ and the lower triangular Toeplitz matrix H be
defined, respectively, as

o=[CT (CAT (cas-1yr |7,
D 0
CB D

H = )

CAs—2B CA*-%B
then,
Yalkrs—1) = Oz + Hug(kts—1) + vg(k+s-1), (13)

Substituting the expression for z; given by (12) in the
last equation yields:

Ys(hts—1) = OLug(k=1)+Hus(k+s—1)tvs(kts—-1)+OA @y,

(14)
and therefore:

Yy=[OL|H] ['UUP—NN‘] + VN +O0A’XpN_st1,
(15)

Note that, since A is assumed to be asymptotically sta-
ble, the covariance matrix of the state sequence, i.e.,
limy 00 = ﬁXP,N—s+1XjLI)‘,N_E+1 is bounded. Note
also that, since the pair (C, A) is observable, the oper-
ator @ (for s — oo) remains bounded. Therefore, let
Oy = Up y, the last term in the right hand side of (15)
vanishes as s tends to infinity.

Now, we introduce the following matrix regression
model:

Yn=[0Q H][gx]+e1\;. (16)
The parameter s is selected sufficiently large such that
the error matrix ¢ approximates the properties of the
matrix Vi arbitrarily close. The parameter £ then
can be thought of as the product of the extended
observability matrix © and a kind of the controlla-
bility matrix £. Let us denote that the k-th col-
umn vector of the modeling error ey by es(k+s-1) =
[ €1 o1 et ]T, and the k-th column vector of
&y by ds(k-~1). Then, the k-th column vector of (16)
can be described as

Ps (k1)

Yalers-y =[O H ] [ Us(k+s—1)

:| + Eglkts—~1).
(17)

In [4] the following cost function has been defined:

I (9, H) = Trace e€”, (18a)
and the related least squares problem:
On, Hy = argmin J4 (0, H). (18b)



Using (16), the solution to (18b) is given by
On = YwIlg, @R Ty, (19)
iy = Yn (I - I, BL Uy UF (UNUE) ™, (20)

where Wy (@NHJL;N@%)_I. The existence of the
inverse is guaranteed by the persistency of excitation
condition.

3.2 A recursive solution

The least-squares estimate £ to (18b) can be updated
recursively by making use of the recursive 4SID algo-
rithm proposed in [8, 9]. Define Py = (UyUZ)7?,
and let at time instant N the pair of input and out-
put data (uxn,yn) be given. Then, an update of the
least-squares estimate ﬁN_l is given by the following
recursive equations:

On =On-1 - Bn(en + Onv_tan)an T (21)
1
Uy = (Uy_1 - Bn¥n-1avgn¥n-1), (22)
1 T
Py =; (Pn—1 — anPrn_1us(N)us(N) Pn-1), (23)
YUY = 7Yn-1UE 1 + vaWyus(T, (24)
BNUE = 1ON_1UF_; + deN-aus(m)”, (25)
an = (v +us(MT Py_1ue) (26)
1 -1
By = (“ +(1§‘I’N—1QN) , (27)
ay
en =Ys(N) — Yo 1Uj_1 Py_1ua(N), (28)
an =N 1UF 1 Py1us(V) — s(N-s), (29)

where v < 1 is a forgetting factor Note that the deriva-
tion of the above equations except for {21) can be found
in the references. Therefore, it is sufficient to prove
(21). From the references, the product YyIIf;, &% in
(19) can be updated by the following equation:

YnIIG, 8% = 1Yn-1llg, %1 — vanends. (30)

Hence, substitution of (22) and (30) into {19) gives the
equation (21}, using the fact that 1 — OnanTn_198 =
%. This equation can be easily derived from the def-
inition of By -

Instead of starting the above recursion with the quanti-
ties On_1, Un_1, Yn_1UFG_, and ®y_1U%_,, (which
could have been determined off-line) the recursion
could start with properly chosen initial values of the
latter quantities. In section 4, a particular initializa-
tion mechanism to re-initialize the recursion when a
change is detected will be proposed.

3.3 An alternative cost function
When we are only interested in the quantity Q (= OL),
we introduce the following alternative to (18a):

Jn(€2) = Trace eH‘(ﬁN el (31)
= Trace (Yy — Q&x) 11§, (Y — Q0n)7 .
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Note that €y in (19) also minimizes of the cost function
(31) since

aJn

=0 ~2YyIIg, F + 208N 11, ®F,
and again we have (19) by solving %"& =0,

Using (19), the equation (31) can be recast into the
following quadratic form:

~ ~ AT
Jn(Q) = Trace (Q . QN) Ty (Q - QN) (32)
+Trace YnIIf, Y — Trace YyIlf, R ¥ n®nIIE, Yy -
The last two terms in the right hand side of (32) are
independent of the parameter Q. Therefore, we notice

that the first term of the right hand side of (32) has
the property

0 =0y,

otherwise.

T
B 1{0_8 =0,
Tra.ce(ﬂ QN) Ty (Q QN) { >0
The recursive update of the cost function, see ap-
pendix A, is

JN(Q)=JN_1(Q)+aN||eN+QqN||2. (33)
3.4 Covariance estimate

Let the additive perturbation e; € R! defining the ma-
trix ey be Gaussian and have the following property,

R>0
0,

{ i=j,
i g

Assume that there exist true parameters £2¢ and Ho
such that

Ee; =0, Ecie) = (34)

Yn=[0 Ho) [ 3{’;’ }+€N- (35)

Suppose we are allowed to define the covariance of the
matrix quantity Qu as
COV(ﬁN) = E(ﬁN - QO)T(ﬁN — Qo)
= (BnI1g, %) 7 e nIlH, E [T
G B (D TTH, 9%)

=0a2s (@NﬂﬁN‘I}E)_I .

(36)
(37)

Taking account of the properties of the trace operator
and the Gaussian properties of ¢;, the equation (37)
shows that,

- - 1 ~
D(§w, Q) := Trace ({2 ~£0) —- (@nT15, ) (On—Q0)T

(38)
has the x?-distribution with s degrees of freedom, de-
noted by x?(ls) when Qx — Qg is of rank Is. The prob-
ability that

DN, ) > a (39)



is x2(Is), the a-level of the x?(ls)-distribution.

Since the variance of modeling error 62 is usually un-

known, our concern shifts to how to estimate it by the
off-line least squares. Similarly to lemma I1.1 of the
book [7], we have the following lemma:

Lemma 1 Let the criterion be given by (81) and sup-
pose that (34) holds. Then,

FeN = SN s+11) —5g /W) (40)

is an unbiased estimate of 2.
(The proof is omitted here.)

4 Change detection and re-initialization of
recursive subspace identification

4.1 Change detection

Based on the covariance estimate derived in section 3.4,
we can develop a hypothesis test for detecting a change
in the parameter 2 in the least-squares problem (31).

Suppose that we have two pair of estimates (ﬁN, T N)
and (Qx,¥n) at the sampling instant N. The first
pair is obtained with a recursive solution given by the
equations (21-29) for v = 1 and the second by solving
a fixed windowed least squares problem
— . — _ — = \T
Qn = argmin Trace (Y5 — Q®y) H%J'-N (Yn - Q2n)
with

Uy := [ us(N-L+25) us(N) |, (41)
Upy = [ ts(N—L+s) ug(N-s) |, (42)

By = [ ds(N-L+s) ¢s(N-s) | and the output
Hankel matrix Y is defined similarly to (41). For
brevity, we will indicate the scheme producing the es-
timates QN, \IIN by the accurate 45ID and the one
producing the estimates (O, Uy.

Note that the following inequality
Ballp By =Ty < T3 = onIlf, 0%, (43)
is obained from the following lemma:

Lemma 2 Suppose that wide matrices with the same
row size Uy € R*™, U, € R™, &y € R™*™ and
&, € RI*™2 gre row full rank, where | < ny and ! < ny.

Define U = [Uy Us) and fori=1,2
Héi =In = U1T(U1U2T)_1UIT’ (44)
I = Ly ym, — UT(OUTYUT, (45)

where the subscript of I denotes the size of the identity
matriz. Assume that ®;11 # 0 and [® $I15 # 0.
Then, the following inegquality holds:

[ & Qz]ﬂl[q)‘} Dollf;, &7 > 0.  (46)
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(The proof of the lemma is omitted.)

Following the results of section 3.4 and [6], it is pro-
posed to use (38) to measure the distance from the
estimated parameters to the true parameter. For the
estimate O, this becomes

Ty (O — Q)7

D(Q—N,ﬂo) = Trace (QN Qo)
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However, the true value £ is unknown. Therefore,
instead of the true one, we use the estimate Qn given
by the accurate 4SID as the reference value, and the
proposed distance becomes

D(ﬁ}v,ﬁ]v) = Trace (_

(47)
Now, let a be a threshold designed according to the

y2-distribution with Is degrees of freedom. Then, we
perform the following test to detect a change:

if D(ﬁN,ﬁN) < a: no change has occurred,
. — (48)
if D(Qp,y) > a: a change has occurred.
4.2 Re-initialization of the accurate 4SID
Once a change at time instant N is detected by the
method proposed in the previous section, The recursive
update equations are re-initialized at time instant N,
The method is inspired by [6].

According to the minimum distance principle described
in the reference, the following constrained minimization
problem is proposed:

min DN, Q) (49)
subject to,
D({n, Q) - DOy, Q) < a, (50)

where a is the threshold used in the hypothesis test
(48), and

D(ﬁN,Q) := Trace (ly — e

M@y -7,

D(81n, Q) := Trace (0

w;, ©@n - )T.

By using a Lagrange multiplier p, the constrained min-
imization problem can be solved by minimizing the fol-
lowing cost function:

Q1) =D@, ) + 1 (DO, Q) - D@y, 2) ~ )

2 ‘/I}J-VI(ﬁN - Q)T

=(1-p

+ Oy -7 -

N



Then, we have the following partial derivative of Q@ by
A
Q i N
0 = 21-p) (- 0x) Ty + 2 (Q - QN) I
(51)

Solving g—g = 0 for Q yields the following re-

initialization for the accurate 4SID:
* .51 8. 5
() 1= ((1 - WANTR +pln b7

(0-wTF +u87) . @

The weighting factor i is designed by solving the equa-
tion f(u) = 0 for u, where the function f of u is defined
as

1) =573 (D@, Uy (1)) ~ D@y, U (1)) — o)
(53)

Note the fact that the function f{u} is a decreasing
function on (0,1) and satisfies f(0)f(1) < 0. (The
proof of the fact is omitted here.) This means that on
the interval (0,1} there exists one and only solution,
denoted by p%;, to the equation f(u) = 0.

Using the weighting factor p§, € (0,1), the re-
initialization of the accurate 4SID can be performed
according to the following procedure:

Re-initialization of the accurate 45ID Suppose a
change is detected at the sampling time N then, the
quantities of the accurate 4SID are re-initialized ac-
cording to the following replacement with the weighting
factor p3y € (0,1):

T o1 o 51\t
¥y — ((1 —uy)¥y +MN‘1’N) , (54)

—~ - -1
v — Qx(uf), Py — (- vR)Py +viPi')

YnUL —— (1~ w8V Ty + 13 YNUT,
dNUT — (1 — v BTy + v50NUT,

where the left arrow “— " denote the replacement of
the left hand side by the right hand side, and 1}, is de-
termined by solving the following minimization problem
derived from (52):

Vi = arg mig “ ((1 - V)YNU:;:, + VYNUE)
— -1 _ T
: ((1 — WP+ VPJ;I) ((1 )BT+ mNU,T;)

- +T— — =T
(1= oY NI N PNT N By — uNYNU}GPNUN(I)}’VH ‘

Remark 1 Note that, since u$ €
initialized (54) satisfies

(0,1), the re-

R JRR—' —1 =1
(1= p3) T +pUy > (1 - p) Ty +uf ¥y =Ty .

This means that the condition (43) holds even after
re-initialization.
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5 Numerical example

Let us consider the following 3rd-order time-varying
SISO system

_ B(q)

=% B(g) =024 +0.08¢2,
%= T (@ q q

Ug + Vg,

A(g) =1— (V3r1 +72)g7  + (r} + V3rira)g ™2 = r¥rag 3,

where ¢~1 is the backward shift operator and the time-
varying parameters, r1(k) and ra(k), displayed in fig-
ure 1, satisfying,

(0.95,0.75),
(0.7,0.9),
(0.95,0.75),

0 < k < 2000,
3000 < k < 5000,
6250 < k < 9000,

(r1(k),r2(K)) =

where, on the interval [2000,3000) (or [5000,6250)),
these parameters change linearly from the values at
2000 (or 5000) to 3000 (or 6250), respectively. Dur-
ing the whole time interval there are several changes
of the dynamics of the input signal. For the time in-
tervals, [0,1500] and {3501, 7000], a zero-mean white
sequence with unit variance is used as the input signal.
For the intervals [1501, 3500} and [7001,9000], the in-
put equals the sum of a zero-mean white sequence with
unit variance filtered with a 10th-order Butterworth fil-
ter (cutoff 0.6 times the Nyquist frequency) and a zero-
mean white sequence with variance 0.01. The measured
output is contaminated by a zero-mean white noise vy,
which is uncorrelated with the input signal. The SNR
is approximately 23.6dB. We adopt s = 15. Since the
dimension of the output is [ = 1, the degree of freedom
of the y2-distribution should be taken as ls = 15. We
use the recursive 4SID algorithm with the exponential
forgetting factor v, = 0.99 as the tracking 4SID. This
corresponds approximately to window size of 113.

Fig. 3 shows the result of the x2-test by (48). This
figure clearly shows that only around the intervals
[2000, 3000) and [5000, 6250) the estimate from the ac-
curate 4SID is re-initialized. Our method can detect
these system changes. Moreover, our hypothesis test
does not detect a change when the input dynamics
changes abruptly. This shows that our method is not
sensitive to {(known) changes of the input dynamics.
It is reasonable because our decision rule takes account
of the orthogonal subspace to the input Hankel matrix.
This may be inferred by comparing figures 3 and 4. Al-
though around the interval (8000, 9000}, the maximum
singular value of the estimate by the tracking 4SID in
the lower graph of figure 4 seems to be perturbed seri-
ously, the perturbation does not influence the x2-test.

Figure 5 illustrates the weighting factor for the accu-
rate 4SID which is designed by the procedure in subsec-
tion 4.2. Only after changes are detected, the weight-
ing factor is activated, namely, it takes the number less
than 1.



6 Conclusion

‘We have proposed a parameter tracking method using
two PI-MOESP scheme subspace identification in par-
allel. The method can detect not only abrupt changes
but also incipient changes in the dynamics of a linear
system. The method consists of a change detection
scheme and a re-initialization of the recursive identifi-
cation algorithm which is invoked only when a change
has been detected. A change is detected by checking
whether the estimate given by the accurate algorithm
lies in the confidence interval of the estimate obtained
by the tracking algorithm. Once a change has been de-
tected, the former algorithm is re-initialized via solving
a constrained least squares problem. The extension of
this scheme to PO-MOESP will be addressed in future
research,

Due to space limitations, we have omitted the proofs
from the paper. For the interested readers, please con-
tact the first author at oku@tn.utwente.nl to get copies
of the proofs.
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Figure 2: Input data, contaminated output data and mea-
surement noise. The dynamics in the input
data has changed at N = 1500, 3500 and 7000.
The system has changed incipiently during the
intervals [2000, 3000] and [5000, 6250].
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Figure 3: y2-test {48). Only the changes of the system
have been detected.
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Figure 4: Singular values of the estimates by the accurate
4SID (upper) and the tracking 45ID (lower).

PFigure 5: Weighting factor p% for the accurate 481D. This
weighting factor is activated only if a change is
detected.



