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LINEAR PARAMETRICALLY VARYING SYSTEMS WITH BRIEF INSTABILITIES: 
AN APPLICATION TO INTEGRATED VISION / IMU NAVIGATION‘ 

J o b  Hespanha’, Oleg Yakimenko’, Isaac Kamine?, and A n t h i o  Pascoa14 

Abstract. 

This paper studies hear parametrically varying systems (LPVS) 
with brief instabilities. LPVs are ubiquitous because they provide an 
el- albeit c o m a t i v e  6amewok for the study of nonlinar sys- 
tems. This is done by analyzing a related family of hear time- 
invariant systems parameterized by a pamneterp that lives in some 
compact set In the conventional set-up of LPV themy, it is usually 

systans be &&le for all  & ofp. However, & are inem@ pmk- 
lems for which this nquknmt does not hold true, that is, the linear 
system ma!rices are unstable for some of values of the parametep, 
instability occurring for brief instants of time only. This paper intm 
duces the concept of LPVs with brief instabilities and derives tools 
for stability and performance analysis of these systems, where per- 
formance is evaluated in tenns of Lz induced norms. The main 
results show that stability and performance can be assessed by ex- 
amining the feasibility of parameterized sets of Linear Mabix Ins  
qualities (LMIs). An application to the problem of designing a 
nodinear vision/inertial navigation flter for an a h a t ?  approaching 
an aimai? carrier is included. The d t s  developed provide the 
proper mework to deal with Out-of-liatm events tha! arise w l m  the 
vision system loses its met tempady. Field tests with a prototype 
unmanned air vehicle illusttate the perform;mce of the filter and 
illustrate the scope of applicatim of the new theory developed 

required that the system matrices in the h u l y  of- ‘ l i n e a r  

1 Introduction 
It is often possible to express the dynamics of a nonlinear system as 

(1) 
where the function p takes values in some “parameter” set P and 

{ A(p)  : p E P } can be viewed as a family of matrices parameter- 
ized by the elements of the set P. This motivates the study of hear 
paramebically varying systems (LPVs) that are simply defined as 

(2) 
where p is an arbitrary signal taking values in the parameter set P. 
Since every solution to the nonlinear system (I )  is a solution to the 
linear time-varying system (2) (for an appropriately defined signal 
p(t)), LPVs allow one to prove stability-like properties of a nonlinear 
system by analyzing a family of time-vruying linear systems. The price 
paid for this simplification is the conservativeness that arises from 
the fact that the set of solutions to (2) is generally much larger than 
the set of solutions to (1). This paper attempts to reduce the conserva- 
tiveness of this type of design by considering restricted classes of sig- 
nalsp. 

If one assumes that any piecewise-continuous signal p is al- 

x = A(p(x))x , x E !)In, 

x = A ( p ( t ) ) x ,  x E 9In, 
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required to guarantee boundedness of any solution to (2). However, this 
is no longer the case when A ( p )  is temporarily unstable. This pa- 
per shows how, with an appropriate notion of “brief instability”, it 
is possible that an LPV remain uniformly exponentially stable even 
when some of the matrices A(p)  are unstable for brief periods of 
time. Necessary conditions for this to occur are cast in terms of a pa- 
rameterized family of Linear Matrix Inequalities (LMIs). Further- 
more, the paper analyzes the impact of brief instabilities on the per- 
formance of an LPV system, as measured in terms of its L2- 
induced norm. In particular, a parameterized set of LMIs is derived 
that, when feasible, provides an upper bound on the L2-induced norm 
of an LPV system with brief instabilities. 

Often, it is not possible to satisfy the parameterized LMIs for all 
values of the parameter p. To deal with this situation, “local” ver- 
sions of the results above are provided in which it is assumed that 
the state of (1) starts inside an ellipsoid, thus restricting the values 
that 

can take. These results explore directly the fact that the LPV sys- 
tem (2) is an abstraction of the more complex nonlinear system (1). 

The analysis of LPV systems with brief instabilitis is inspiired by 
previous work of the fvst author on switched systems [22,23], as well as 
by the work reported in [24,25]. Switched systems can be viewed as 
a form of LPV systems where the signal p(t) in (2) is restricted to be 
constant between two consecutive discontinuities. The idea of brief 
instabilities was introduced in [24] for switched systems’, where the 
authors provide conditions for exponential stability of switched system 
with brief instabilities. These results were extended in [25] for L2 dis- 
turbance attenuation. 

The work reported in this paper is also closely related to that de- 
scribed in [26], where the authors pmvide conditions for the stability of 
Asynchronous Dynamical Systems (ADSs). The latter that can also 
be viewed as a particular form of switched systems for which the 
system dynamics change in response to external asynchronous events. 
These events may make the system become unstable for certain periods 
of time, In [26] the authors provide LMIs that guarantee exponential 
convergence of the state of ADS. Feasibility of the LMIs requires 
that the periods of instability occur for a small fraction of the time. 
Because the authors of [26] only consider asymptotic rates for the 
occurrence of the events that trigger changes in the dynamics, their 
results are only asymptotic and do not provide uniform bounds on the 
state. 

In this paper, the results on LPV systems with brief instabili- 
ties are shown to provide a new framework for the design of navi- 
gation filters that rely on vision and inertial sensors. See [lo] for an 
inhduction to this problem and its application to the design of a naviga- 
tion system for an aircraft approaching an aircraft carrier under the 
constraint that only passive sensors be used. The basic nonlinear filter 
structure adopted is described in [IO], where the authors have derived 
sufficient conditions for the existence of nonlinear integrated vi- 
siodinertial filters with guaranteed regional stability and pertorm- 

p ( t )  = p(x(t ) )  I t 2 0 

Although in [24] the authors consider a slightly more conserva- 
tive definition of brief instabilities, their results seem to be easily 
extendable to the definition given in Section 2. 



ance. However, they did not address the fact that instabilities do occur 
when the vision system that is used to compensate for the drift that is 
introduced by inertial sensors cannot be used temporarily because of 
out-of-frame events, i.e., periods of time when the vision system is 
unable to see the target due to occlusions or the limited field of view. 
The results in [IO] are extended in this paper to accommodate out-of- 
frame events. 

The paper is organized as follows. In section 2 the stability and 
performance results on the LPV systems with brief instabilities are 
introduced. Section 3 applies the theory developed in Section 2 to the 
design of an integrated visiodinertial filter. This section also includes 
description of the experimental setup used to test the filter perform- 
ance. The paper ends with conclusions. 

2. LPVs with Brief Instabilities 
Consider the homogeneous Linear Parameter Varying (LPV) system 

where p denotes a piecewise-continuous' time-varying parameter 
taking values in the set P c and A: P + 9Inxn and C 
P + %"'""' are functions that map the parameter set to the system 
dynamics. In what follows denoted the subset of P for which 
A@) is a stability matrix, that is, A@) is stable if and only if 
p E Pstoblr . The remaining elements of P fonn the set Punrtoble . We 
assume that P is a compact subset of a finite dimensiod space and 
that A and Care continuous functions. Because of these assumptions, it 
is straightforward to show that Puns,ohle is also compact. In the sequel 
we derive conditions on p that are sufficient to guarantee that x con- 
verge to zero exponentially fast. We will also compute an upper 
bound on the transient response of the output y. 

For a given time-varying parameter p and t >e 0, let 
T, (r,  t )  denote the amount of time in the interval (7, t )  that p re- 

G:= x = A(p)x , y = C(p)x , (3) 

mains in etmtob/e . Formally, 

(4) 

where x:  P+{O,l} denotes the characteristic function of Punsable , i.e., 

The integral in (4) is well defined because the piecewise- 
continuity of p and the compactness of Pumtobie guarantee that 

~ ( p )  is also piecewise-continuous. We will say that 4 has brief 
instabilities if 

for some To 2 0 ,  a E [0.1]. The scalar To is called the instabil- 
i ty  bound and a the asymptotic instability mtio. 

T,(z,t) 5 To + a(t - r ) ,  vt 2 r 2 0, 

2.1 Stability 
We now provide conditions under which system (3) is stable in the . ,  
presencebf brief instabilities. 
Lemma 2.1 Consider the LPV system 4 defined by (3) and as- 
sume there exist positive definite matrices R E %"'"" and 

X E VInxn and positive scalars A. , p such that 

' We say that a signal v; [0, m)+ 91k is piecewise continuous if v 
has a finite number of discontinuities on any finite interval. 

A(p)' + x4(P) ' 3 'P  E Psrohle 3 (5) 

A(p)' + ' > 'P E Punstable ? (6) 

(7) 

and 

Further assume that 4 'has brief instabilities with instabili!~ 

bound To and asymptotic instability ratio a < a = - . 
Then, x and y converge to zero exponentially and 
y ( t ) ' ~ y ( t )  I e(& ")rox(~)' &(O) ; ~t 2 0, along soIutions of 

(3). 
Note. When (5) holds, (6) will always hold for sufficiently large . 
Moreover, we can always scale P so that ( 7 )  also holds. 
Proof: For a particular solution x of (3), let 

X 2 C(p) 'RC(p) ,  Vp E P .  

' 1 0  

A n + P  

V ( t )  := x(t) 'Xw(t) . 
From (5)-(6) it follows that f l S  -aoV while p E Pstahk and 

3dI  pV while p E PunFroble . Therefore, 
V( t )  I -rpc . O ) + P T ~ (  , I )  V ( r ) ,  V t 2 7 2 0 .  (8) 

By assumption, 4 has brief instabilities with instability bound 
To and asymptotic instability tatio . Let 1 := A. - a(& + p) . 
Then, 

Vt 2 z 2 0 . Using (8) and (9) yields 

Furthermore, (7) implies that 

y ( t ) ' ~ y ( t )  2 x ( ~ ) ~ x x ( ~ )  I e(& " ) ' o - ' ~ ( ~ ) ' ~ ~ ( ~ )  (10) 
for every t 2 0, thus completing the proof. 

The results above shows that x'Xx and y'Ry decay expo- 
nentially along solutions of (3) provided that /z > 0 . 

LPV models such as (3) are often used to model nonlinear sys- 
tems where the time-varying parameter p is a function of the state, 

-an ( t  - z - T, ( r ,  t ) )  + PT, (5 ,  t )  5 (a, + 

V ( r ) ,  V ' t 2 r 2 0 .  v( t )  < ! 4 ) T o - 4 - 4  

- a(t - Z) , (9) 

e.g., 
P(t )  := f ( x ( t ) ,  t )  3 

where j VIn x[O,m) + P .  When this happens (5)-(7) often do 
not hold globally and a local version of Lemma 2.1 is needed. Take 
a positive definite matrix R E !RmX'" and consider the set of states 
for which the output y is guaranteed to be in the ellipsoid defined by 
y ' ~ y  s 1, i.e., 

n := (2  E 9I" : z'C(p)TRC(p)z 51, v p  E P }  . 
We now consider a version of Len-ma 2.1 that is local to the set 

CL To this effect, suppose that there exists a symmetric positive defi- 
nite mahk P E W"'" and positive scalars A. , for which 

A ( p ) T X  + xA(p) ' , vt ' x( t )  E p ( r )  E 9 (11) 

dt) E <zn$tahle 7 (12) A ( p ) T X  + x4(P) fl 2 V i  : x( t )  E 

X > C ( p ) ' R C ( p ) ,  v t : x ( t ) E n .  (13) 
By requiring that the initialization of (3) satisfy 

e(' " '~x(O) 'XX(O)  < 1 ,  it is straightforward to prove by contra- 
diction (cf. equation (1  0)) that x(t) will always remain inside R along 
solutions to (3). The following corollary of Lemma 2.1 is thus proved. 
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Corollary 2.2 Assume that (11)-(13) hold. Suppose that ZD has 
brief instabilities with instability bound Tn and asymptotic insta- 

bility a < a', and assume that ~ ( 0 ) ~  &(O) I e-('*rM . Then, x 
converges to zero exponentially fast along solutions of (3). without 
leaving R 
2.2 Performance 
Suppose now that an input and an extra output are added to the LPV 
system considered in Section 2.1 to obtain the new system 

J , : = i = A ( p ) x + B ( p ) u ,  y = C ( p ) x ,  z = D ( p ) x .  (14) 
The analysis that follows shows how to compute the Lrinduced 

norm from u to z whenp has brief instabilities. 
Lemma 2.3 Consider the LPV system & dejined by (14) and as- 
sume there exist positive definite matrices R E %"'x"' and 

X E !)Inx" andpositive scalars A, ~ iu, and y such that 

3 I -a,x , . P E e l a b l e  9 (15) 

3 I M ,  ' P E <mrob/e 9 (16) 
and 

x > C ( p ) T R C ( p ) ,  ' P E P .  
where 

Suppose &, has brief instabilities with instability bound and 

asymptotic instability ratio a < a* and that u is bounded. Then x 
and y remain bounded along solutions of (Id), with 

y(t)'Ry(t) < e(&+"'To(x(0)TXx(O) + dlu(s)IIzds), Vf 2 0 
Moreover. the L,-induced norm from U to z is no larger than 

" and both x andy converge to zero if U E L2 . 

Proof: For a particular solution x of (M), let Y ( t )  := x(t)'XX(f) . 
Consider now an interval (t, , f z )  on which p E . From (15) 
it follows that 

Y I -aov + llullz - 11z112 -2 

on this interval and therefore 

Similarly, on an interval ( t 2 , f 3 )  on which p E <,mlable , it fol- 
lows from (16) that 

Iterating (1 8) and (1 9) over consecutive intervals yields 

Vt  t 7 2 0. Using the above relationship, the two follow- 
ing inequalities are also obtained for Vf t 7 t 0 : 

Suppose now that has brief instabilities with instability 
bound Tn and asymptotic instability ratio , that is, (9) holds with 

A := 4 -a-(& p)  . From (9) and (20) it can be concluded that 

Using (9) in (21) and the fact that (Ao p)T,(s,f)  2 0 yields 

, 
gives 

Exchanging the order of integration, it is easy to show that 

thus completing the proof. 
A local version of Lemma 2.3 is derived next. To this effect take a 

positive defGte matrix R E %'""" and consider the set of states for 
which the output y is guaranteed to be in the ellipsoid defined by 
yTRy < 1 ,i.e., 

n := { z  E !)In : zTC(p)TRC(p)z I 1, Vp E P }  . 
Suppose now that there exists a symmetric positive definite 

matrix P E !)Inxn and positive scalars A,, and ysuchthat 

3 5 -anx , vr : x ( t )  E n, p ( t )  E elable , 
f l  , V t  : x ( t )  E p ( f )  E %nsrab/e 9 

X C ( P ) ~  RC(p)  , Vt : x ( t )  E n , 

(23) 

(24) 

(25) 
where 3 is defined as (17). The following corollary of Lemma 2.3 
is then straightforward to derive. 
Corollary 2.4 Assume that (23)-(2.5) hold. Suppose that --p has 
brief instabilities with instability bound To and asymptotic insta- 

bility ratio aicr ' ,  that U is bounded, and that 

x(O)~XX(O) + &+)l12ds I e (4tp)TD. Then, x converges to zero 

along solutions of (3)  without leaving the set R Furthermore, the 

Lz-induced norm from U to z is no larger than y 

and 
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3 Application: Design of integrated visiodinertial fdters 
In this section we apply the ideas formulated above to the design 
of integrated visindinertial filters. A basic filtering structure has 
been introduced in [lo], where the authors obtained sufficient con- 
ditions for the existence of nonlinear integrated visiodinertial 
filters with guaranteed regional stability and performance. These 
results are extended in this paper to include so-called out-of-frame 
events. 

3.1 Problem formulation 
This section introduces the navigation problem that is the main focus 
of the paper and describes its mathematical formulation in terms of an 
equivalent filter design problem. For the sake of clarity, we first intro- 
duce some required notation and review the kinematic relationships of 
an aircraft / ship camer ensemble, where the former is equipped with a 
vision based system. 

Consider Figure 1, which depicts an aircraft equipped with a vi- 
sion camera operating in the vicinity of a ship. Let {I} denote an iner- 
tial reference {E/ a body-fixed frame that moves with the aircraft, 
and {C/ a camera-fixed frame. The symbol {S} denotes a ship-fixed 
body frame. The following symbols will be u d  (seeFip 1): 

pn = [xn yn zslT - position of the origin of {E} measured in 
{I/ (i.e., inertial position of the aircraft); 

ps = [xs y, zS]' - inertial position of the ship; 

psB (abbv. p = [ x  y zIT) - relative position of the ship with 
respect to the aircraft, resolved in {I/;  

'pSs (abbv. p, = [x, y, z C ] ' )  - relative position of the ship 
with respect to the aircraft, resolved in {cl: 
v n  - linear velocity of the origin of {E/ measured in {I/ (i.e., 

inertial velocity of the aircraft); 
vs - inertial velocity of the ship; 

'a - linear acceleration of {E) with respect to {I), resolved in 

ri~ - angular velocity of {C} with respect to {I}, resolved in 10 
{E}; 

( u = [ m , u y w ; l ~ ) ;  

A = [( 0 v/]' - vector of roll, pitch, and yaw angles that pa- 
rameterize locally the orientation of frame {C/ with respect to 

Given two frames {A/ and {E/, BAR denotes the rotation matrix 
{I/ .  

from {E} to {A}. In particular, d R  (abbreviated R) is the rotation 
matrix from {C/ to {I}, parameterized locally by A ,  that is, 
R = R(A) . 

3.2 Kinematic relations 
The rotation matrix R satisfies the orthonormality condition 
R'R = 1 .Furthermore, [12]: 

where 
R = RS(o) ,  (26) 

0 -w;  my 

S(w):= w; 0 (27) 

is a skew symmetric matrix, that is, S r  = -S . The matrix S satisfies 
the relationship S(a)b = a x  b , where a, b are arbitrary vectors and 

x denotes the cross product operation. Furthermore, llS(w)ll= llwll. 

Figure 1: Coordinate systems 

A1 ~ the ship 's inertial velocity vs is constant and d@,Terent from 
We introduce the following assumption: 

zero. 
From the above definitions, it follows that 

d 2  
and since x p s  = 0 (assumption Al) we obtain 

d 2  d 2  
dt dtz p n  -&Pc)= -- 

Equation (29) shows that aside from a change in sign, the relative 
acceleration of the ship with respect to the aircraft resolved in {I/ is 
equal to the aircraft's inertial acceleration resolved in {I}. However, in 
the case of strapdown inertial navigation systems widely in use today 
[I31 the aircraft's inertial acceleration is given in {E). Therefore, since 

d 2  7 p n  = i R  E a 
dt 

it follows that 

The nonlinear filters developed in this paper provide estimates of 
the relative position and velocity of an aircraft with respect to a point 
on the ship. This information, together with the aircraft's inertial veloc- 
ity, is sufficient to estimate the ship's inertial velocity and, therefore, 
its heading. As argued in [14], in the unstructured environment of sea 
operations the best way to find a ship is by using an IR (infrared) cam- 
era. As shown in Figure 2, simple thresholding of an IR image will 
easily provide information on the coordinates of the centroid of the 
ship's hottest region (usually its smokestack or boiler room). There- 
fore, it is only natural that the origin of the ship's coordinate system 
{S/ be attached to that point. It is with respect to this same point that 
the proposed nonlinear filters obtain relative position and velocity. In 
the immediate vicinity of the ship, where the relative orientation be- 
comes critical, standard structure from motion solutions can be used 

We assume that the image of the origin of {S} acquired by a cam- 
era installed on-board the aircraft is obtained using a simple pinhole 
camera model of the form [ 161 (see Figure 3) 

1151. 

wherefis the focal length of the camera and [u v]' are the image 
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coordinates of pc = [xc y, z,]' in the camera's image plane. The 

natural choice for [U vIT is the centroid of the image points associ- 
ated with the ship's smokestack. These points can be easily obtained 
by thresholding from the E+ image of a ship, as can be seen in Figure 
2. 

A2 - x, > 0 , that is, the ship is always located infront of the cam- 
era's imageplane; 

A3 - the rotation matrices and / R are available from the on- 

This assumption is quite reasonable, considering the sophistication 

We also make the following assumptions: 

board attitude measurement system. 

achieved hy such systems today. 
-/----\ 

1 
" ' 

_____,------ 
&e?- 

Figure 2: IR imago of a ship 

Figure 3: GeomctlyofthevisiodaI/altimetrrprrrcss model for 4 = 0 

Suppose the aircraft is equipped with a barometric-based sensor 
that provides a measurement of the altitude of the aircrafi with respect 
to the mean sea level. Assuming the aircraft is sufficiently away from 
the ship (so as to neglect the height h, of the ship's deck above the 
mean sea surface), we may assume that 

A4 - hs = . 
Then, using the relation 

z =g@,,(p,)= -s inox,  -cososinb, + c 0 s ~ c 0 ~ ~ , .  

Rp, the altitude measurement 

where 4 and 

d R (see Figure 3). 
We now introduce the underlying design model that plays a 

fundamental role in this paper. Let y = [U v z]' . Then, the model 
that we consider can be written as 

are the roll and pitch angles in the rotation matrix 

G =  
p =v,  
V = - iR(Bam +w.), 

Y,  =gbc)+w,, 

(31) 

and am and y, denote the measured values of a and y, respec- 

tively, the measurements being corrupted by the process noises w, 
and w, . In what follows, the deterministic set-up of H ,  filtering [ 171 
will be adopted. 

3.3 Problem definition 
The problem that we consider in this paper consists of deter- 
mining the relative position and relative velocity of an aircraft 
with respect to a landing site using vision and other on-board 
passive sensors. For the sake of clarity, we first tackle the sim- 
plified problem of designing a filter with no measurement noise 
in the model. This exercise is simple, yet it captures some of 
the key ideas used in the development that follows. 

The additional notation that is required is introduced next. 
We let p and i denote estimates of p and v, respectively. In 

the camera frame, they are denoted by p, , i ,  . We assume 
that the orientation of the camera frame IC) with respect to {I} 
is restricted through the set 

Notice, for example, that vma, should be set to R. We further 

assume that the vectors p ,  lie in the compact set 

A6 - 

where xmin ,. . ., z,, are determined from the geometry of the 
problem at hand. The set Pc can be determined as follows. First, 
compute Pc for a nominal orientation of the camera (usually 
inertial orientation). Determine the maximum range of camera 
orientation angles with respect to the nominal orientation. Then 
compute Pc by allowing the angles to vary within these prede- 
termined bounds. 

In a realistic scenario the image of the ship smokestack will 
be lost by the onboard camera due, for example, to aircraft rota- 
tional motions. This phenomenon is known as an out-of-frame 
event. Formally, we defme a b m q  signals: [ O p )  -+ {O,l}: 

A5 - A C  = {A $1 5 4m.%x>pls omax .Ivls v,J . 

pc ={Pc :xmin 5% ~X,,,,Y,i" S Y ,  5Yrn,,, 
Zmtn zc 5 zmax 1 

0 -out - of - frame event at timet, 
1 -camera tracks the smokestack at time f. 

Furthermore, for a given binary signal s and t> r> 0, let us 
denote by T,  (r,t) the amount of time in the interval (?,t) that 

s = 0 .  Formally, T, (I, t) := l(1- s( l ) )d  . 
The following assumption plays a crucial role in the 

development that follows. 
AI  - s has brief out-o$frame event, i.e.. 
T,( , t )<T,+a(t-  ), V t 2  20 ,  for some T o 2 0 ,  
a E [0,1]. 

Navigation filter design will aim at ensuring that the esti- 
mates j jc of p c  lie in a compact set 

i s( t )  := 
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ic = {pc =[ic j c  & I T  :pc -Xc I<Xmax -x,,, +dx, 

pC-Ycl<Ym.,-Y,," + d Y , l i c - z , ~ ~ Z , , , - ~ , , + d z } .  
where dx, dy and dz are positive numbers, and dx < x,,, . 
F1: Reeional Stability. Consider the process model (31) and 
assume that W, = wY = 0. For a given Pc. find a number 

a. > 0, and a dynamical system filter) F that operates on y,,, 
and a,,, to produce estimates 6 of p. and i of v in the presence 
of out-o$frame events, such that: 

pc ( t )  E Fc f i r  any t 0, 
Ili,-pll+llG-vll+~ as t + m ,  

provided that 

~ / G ; c ~ o ~ - P c ~ ~ ~ , i . ~ o ~ - ~ ~ o ~ ) r / ~ ~ ~ o .  (33) 

Notice that the problem described aims at finding a filter that 
complements the information available from the vision system / 
barometric pressure sensor with that available from the inertial 
sensors. 

The problem F1 focuses on the stability of the filter. The sec- 
ond filtering problem addresses the scenario where the perform- 
ance of the filter in the presence of disturbances is considered. 
F2: Reeional Stability and Performance. Consider the process 
model (31) where' w = [w, wyIr EL, ,  llwll, 275 and let the 

sets Pc and Pc of allowable position vectors and allowable 
estimation vectors be defined as above. For given numbers y Z 0 
and a. > 0 .find a stable filter F that operates on y,,, and a,,, to 

obtain estimates p of p, ? of v in the presence of out-o$@ame 
events, such that if (33) holds, the filter satisfies the following 
conditions for all w E L, that llwll, S Z : 

~~T,~~z,i < y , where e := p - p  is the estimation error and 

T, : w + e .  
Notice the technical requirement that an allowable set of position 
estimates Pc be specified. As is shown later, this requirement is 
essential to establishing the bonndedness of a certain operator for 
all possible values of the estimates p . In practice, the "size" of the 

allowable region P plays the role of a design parameter. 

3.4 Proposed solution 
This section describes the solutions to problems F1 and F2. First, 
however, we need the following basic results. Let H denote the 
Jacobian of g(pc )  with respect to pc . From the definition of 
g(pc), it follows that 

' Given a signal z we denote by 1 1 ~ 1 1 ,  the Lz-norm of z, Le., 

As long as w E L, we always get convergence to zero. 

0 fi: O ] (2). 
- s in@ -cos@sinb  cos@cosb 

It is easy to check that det(H) = ~ ' x ~ ~ z ,  . Therefore, H is not 

invertible if and only if z = 0 .  This implies that H ( p c )  is in- 

vertible for all admissible values of pc , 4, and @ .  
The next result is adopted from [5] and plays a key role in the 

development that follows. In particular, identity (35) makes it 
possible to show that the proposed nonlinear filter error dynamics 
represent an LPV system. This leads to the utilization of the LPV 
framework to reduce the estimation problem to that of determining 
the feasibility of a set of LMI's (see proofs of Theorems 3.3 and 

Lemma 3.1 Let g ( p c )  begiven by equation (32). Then 
3.4). 

d i b - g ( P c ) =  ~ ( P c , P c ) ~ ( P c ) ( i b  -Pc1 9 (35) 

where H isgiven in equation (34), p, = [& j c  &IT and 

L(Pc,pc)=[ icxC1 ; ic2 0 0 ;I. 
Lemma 3.2 Let p:%' -) %3x3,  and qI :iR3 + %3x3 be the 

operators defined by p(PC,pc) = ~ T ( ~ c ) L ( P c , ~ c ) H ( P c )  
a d  P , ( ~ ~ ) = H ~ ( P ~ ) H ( ~ ~ ) .  Then P ( ~ ~ . P ~ ) > O .  
p,(Lic) > 0. vpc E Pc and Pc €kc .  
Proof: The proof follows directly from assumptions Al-A3 and 
the definitions of H and L. 

Theorem 3.3 Let Fe be given and assume that AI-A7 hold and 

< 1. Suppose there exists a matrix r, = 

x = X T  E %6x6 andpositive constants a, a~, &, .U, T, such that 

a < a' and 

The following result provides a solution to problem Fl .  

x,,, - X,i" + dx 
%in 

x > o ,  (36) 

F ' X +  XF I @ ,  (38) 

(39) 

(40) 

F ~ X + X F - ~ ( ~ - ~ , ) ~ E C ~ C I - ~ ~ X ,  (37) 

x - 6-*cTc 2 0, 
-2 -(,b+r)Ta I - x > 0 a0 e - 

where F :=[: i] , C := [I 01, and 

6 := - xmin + dx, Y,,, - ymi, + dy, z,,, - zmin + dz )  , 

6 :  min m i n ( ~ T ( P c ) ~ ( P c ) ) .  (41) 
Pc pc 

Define afilter (see Figure 4) 

'P =? + 4 d R "  (Pc)(g(Pc 1 - Y A 
F, := { a  = - iRBa,, ,  +sK,~RHT(pc)(g(pc)-y,,,), (42) 

(6, =?RP, 

where 
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Proof: Define the error state e,  := p - p and e2 := 3 - v . Let 

e = [e: e: . Then, using Lemma 3.1 and simple algebra it can be 
shown that the error dynamics can be Written as - -  

where K := [K: K: r. Notice that the error dynamics given by 
(44) represent an LPV system that depends on (pc,e,,s) . Now, 

to show that pc E j,, it is sufficient to show that ))e,\I 5 6,  or 

equivalently that [e: e;r remains in := {elllcell I 4 . From 
Corollary 2.2 and A7, we conclude that this is true provided that 
there exists a matrix X > 0 and constants 4, ,U, such that (38) 
and (39) hold, 

, (45) 
( F + K ~ R ~ , ( P , , P ~ ) ~ R ' C ) ~ X +  

X ( F  + K ; R ~ ( ~ , , ~ , ) : R ~ c )  I -A,X 

for all times for which [e: e:r E Q, and s = 1 , and 

[e(o)r e(o);'j&o): e(o):]T s e-(h+')TO. (46) 

Inequality (46) follows from l][e(O)T e(0):)IS a, and (40). In 

the following, we focus on the solvability of (45). Prom (43), we 
conclude that (45) is eauivalent to 

0 

0 
L : = I +  

Therefore, 

< - 2 ( 1 - ~ ~ ) ' , ' ~ ~ ( p C ) ~ ( p c ) ~ ~ '  < -2(1-r,)2d 

-2(1 -r,)~RH'(pc)LH(pc)~RT 
' (49) 

Because of this and the fact that C'C = [ :] , we conclude 

that (37) implies (47) in the set . Now, from Corollary 2.2 it 
follows that Ile(t),II S 6 ,  Vt  2 0 and e, (t),e,(t) 4 0 as 
t + m .  

The solvability of the inequality (37) is addressed in [lo]. 
There, it is shown that the inequality has a solution if and only if 
rx <1. The next theorem provides a solution to the filtering 
problem F2. 
Theorem 3.4 Let Pc be given and assume that AI-A7 hold and 

rx = + dx < 1 , For a given gain y > 0 , suppose there 

exists a matrix X = X T  E X6"6 andpositive constants , 0 /2a .U, 

T, such that a < a* and 
X > 0 ,  (50) 

- 
&in 

e(&+rlTa 

AY 
F T X + X F + X F T F X + -  CTC S ,LA' ,(52) 

where F := [ i], C := I 01, E := min Amin (pl (p,)) , and 
PC'PC 

Then thejilter Fz solver the$lmngpmblem F2 f(33) hob. 
Proof: Define the error state e,  := p - p  and e,  := G - v , 

Then. the error dvnamics admit the state-soace realization 

where w : w: w $ r  and K : [K: K : r .  We now show that 

if the inequalities (50)-(54) are satisfied, then 6, E ?, for all 

w E L, , llwll, -< Z , when (33) holds. 
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To prove thatp, E hc, it is sufficient to show that liel 11 I 6 ,  
or equivalently that [er e: r remains in R := {el llCellI 6) . 

From Corollary 2.4 (with p := y e(&+’)4 ) and A7, we con- 

clude that this is h u e  provided that there exists a matrix x > 0 
and constants I,,, ,u such that (52) and (53) hold, 

K 
(58) 

(F  + K i R p ( p , , p c ) i R T C ) ’ X  + 
x ( F + K ; R ~ ( ~ , , , ~ , ) , ‘ R * c )  I -aox 

for all times for which [e; e r r  E R ,  and s = 1 , and 
2 

[e(O); e(O):b[e(O)r e(0):p + rllw(s)ll ds 5 e-(Lt’)Ta. (59) 

In (52) and to use (58) we used the fact that 

Inequality (59) follows from Il[e(o)f e(o)~]I s a. , llwllz I w , 
and (54). In the following, we focus on the solvability of (58). Because 

+ 

F’X + XF + XF’FX 

0 OI 

1 0  I +(I  - rX)’  l R p l  iR’  -2(1 - r x ) i R p i R T  
e(4+$)Tn 

0 
AY ’ 

5 -nox 

Because of the first inequality in (49), this inequality holds 
F’X + XF + XF’FX 

I -(1 -rx)’ i R p ,  i R T  1 no 
+ 
1 0 

and then, using the second inequality in (49), we further conclude 

Here we used the fact that C’C = . From Schur comple- 

ments [7] and the definition (41), (60) holds because of (51). The theo- 
rem then follows from Corollary 2.4. 

The next theorem derives necessary and sufficient conditions un- 
der which (51) is satisfied. 
Theorem 3.5 Let F, and &and be defined in Theorem 3.4. Then 
3X = X‘ > 0 such that 

I - ( I - rx ) ’  CrC XF‘ I F ’ x t X F + A J + (  1 1  
1 FX -11 

Proof Follows by rescaling in the proof of Theorem 4.5 in [IO]. 
Remark 3.1 Theorem 3.5 shows that the LMI (5 1) is feasible if and 

only if 

Recall that 

Therefore, we obtain 

This inquality imposes a lower bound on the achievable values of 
y . F ~ ~ t h m o r e ,  since II := lo -a(& + p )  , it follows that 

e(4 Y o / z  1 
0 = _ _  lim 

Tn+O,o+o n(i - r,)‘ (1 -I,)’ ’ 

The above expmion shows that the lower bound on the achiev- 
able y in the absence of out of fmme events converges to the lower 
boundderived in [IO]. 

The bound detived in (61) is similar to the classical Positional Dilu- 
tion of Precision (PDOP) metric that is commonly used in navigation 
systems to determine a lower bound on the achievable m r  covari- 
ance as a function of geometry of the underlying navigation problem 
[20,21,13]. Using OUT notation, the classical PDOP can be written as 

PDOP = , / t r (HT(p , )H(p , ) )  . 
We therefore see that the new bound derived in this paper cap- 

tures a worst case performance scenario and the estimate of xc in- 
creases the lower bound on the achievable y ,  since 

l > ( i - r x ) ’  > O  
Remark 3.2 The filters used in this paper borrowed from the struc- 
ture of the nonlinear observer proposed in [5]. Both filters are de- 
signed for a process model that exhibits linear dynamics and nonlinear 
measurement equations. In view of this fact, one is naturally driven 
to ask the following question: why not simply solve the measure- 
ment equation to obtain estimate of p ,  that can in tum drive a linear 
filter with a much simpler structure? This technique was, in fact, ap- 
plied in an earlier version of the work reported in [5]. However, as 
pointed out by the authors the latency inherent to this approach led 
to unacceptable results. This stemmed from the fact that the estimate 
of p ,  obtained by the nonlinear solver from the measurement equa- 
tion and used by the linear filter represented a “delayed version” of 
the true position. 

Furthermore, the algorithm used by the nonlinear solver re- 
quires inverting the Jacobian. In a noisy environment this may lead 
to excessive noise amplification. This problem is entirely avoided by 
the filters proposed in this paper as well as by the nonlinear observer 
in [5]. Finally, the gains used by every filter in this paper are of the 
form similar to the gains of optimal filters obtained for the linear time 
invariant (LTI) case. This is important, since in the LTI case even if 
the output matrix is invertible the optimal gain does not require in- 
version of this matrix. 

3.5 Numerical implementation and performance studies 
In the absence of out-of-frame events ( a  = 0, To = 0 ) the matrix 
inqualities developed in Theorem 3.4 can be reduced to the following 
form: 
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x > 0, 
1 

Y 
F T X  + XF + (7 - (1 - r, E )  CT C XFT 

FX - I  

1 

a0 

,(l-Z2)-X > o ,  

x - P C T C  > 0,  
where E is inversely proportional to the size of Pc , y deter- 

mines the filter's performance and a, - the bound on the initial 
error in position and velocity estimates. Clearly from the design 
standpoint, one would like to minimize E ,  y and maximize a,. 

Let w, = y 2 ,  w2 =a,", w, = E .  Define the cost func- 

tional J = cI w, + c2 w2 + cj w, , where CI, c2, c j  are positive 
weights to be selected by the designer. Now the design problem 
discussed above can be reduced to the following convex opti- 
mization problem: 

find min J subject to 

x > 0, 

F T X + X F - ( l - r , ) 2 w ,  C T C  CT XFT 

XF 0 - I  
C - w ,  o ] < o ,  

w 2 ( 1 - Z 2 ) - X  >o, 
x - P C T C >  0. 

This optimization problem was solved numerically using MAT- 
LAB'S LMI toolbox [9]. The resulting values of X,a,, andy where 
then used to study the impact of the out-of-frame events on the 
filter performance. For example, in the absence of out-of-frame 
events the value of the perfomnce bound y achieved by the filter 
was 35. However, in the presence of out-of-frame events, as dis- 
cussed above, the value of y increases as a function of To as illus- 
trated in Figure 5. (Recall that we assumed that on any finite interval t- 
t, t>t the duration of an out-of-fiame event is bounded above by 
To + a(t - z) , a E [OJ] .) Since the numerical values of a obtained 
were on the order of 105-104 their impact on the levels of achievable 
y was negligible. Furthermore, as the graph in Figure 5 suggests To 
exhibits logarithmic dependence on y . This implies that for values of 

To > 2.5 sec, small increases in To result in large increases in achiev- 

able y , i.e. the filter performance deteriorates rapidly once To passes 
this threshold 

Another interesting trade-off is shown in Figure 6,  where 
for two value pairs of (T,,y) = (0.52,55), (T,,y) = (2.5,250) 
the graphs of Z V.S. @ are plotted. Recall, in this paper 
defines the bound on the norm of the initial estimation error 
(33), while i5 defines the bound on the norm of the sensor 
noise. Figure 6 shows the trade-off between the size of the 
initial estimation error tolerated by the filter and the bound on 
the sensor noise. Clearly, as To increases the achievable val- 
ues of 7;r and a, decrease. 

3.0 I 

7 

Figure 5: Achievable y versus T0 

00 0 2  04 0 6  08 
m 

Figure 6: Achievable versus 5 

3.6 Experimental setuD and flight-test results 
This section describes the experimental setup and the flight 

test experiments that were performed to test the performance 
of the nonlinear filter obtained in the previous section. The 
Frog UAV operated by the controls lab at NPS was equipped 
with an Infrared video camera. The camera included a Boeing 
U3000A uncooled 8-12 microns (micrometers). The pixel reso- 
lution of the camera was 320x240. The UAV was also 
equipped with a Trimble AgGPS 132 Differential Global Posi- 
tioning System (DGPS). An illustration of the flight test setup 
is provided in Figure 7. 
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Flight tests were conducted at Camp Roberts air field oper- 
ated by NFS. Charcoal grills were used to model the hot spots 
on the ship (see Figure 8). Samples of UAV trajectories re- 
corded by onboard DGPS are shown in Figure 9. Similarly, 
samples of IR images collected by the onboard IR camera are 

analysis of such systems, where performance is evaluated in terms 
of LZ induced norms. The main results show that stability and per- 
formance can be assessed by examining the feasibility of param- 
eterized sets of LMIs. These results were applied to the design of 
an integrated visiodinertial navigation filter with guaranteed stabil- 

~ ~ ~ 

Figure 8: Flight test setup: charcoal Figure 9: 2D representation of 
grills DGPS-recorded trajectories 

The image processing problem, i.e. that of finding the hot 
spots in the image on the runway, turned out to be nontrivial 
due to the presence of multiple hot spots in the surrounding 
area. This is In contrast to finding hot spots on a ship, where - 
they 

Figure IO: Examnles of IR imanes: a) at the ranee of 450m. b) 80m 

Figure 11: Comparisons of IR images: a) of a ship and b) of the hot spots 
As a result an image-processing algorithm was developed 

to find and track the hot spots observed by the IR camera on- 
board the UAV Frog. The algorithm consisted of two steps. 
The first step included finding the hot spots in the initial image 
and involved a search over the complete image plane (see Fig- 
ure 12). Once the hot spots were found in the initial image, they 
were tracked for the remainder of the approach (see Figure 12). 
The critical element of this second step was reliance on the inertial 
data to predict the approximate location of the hot spots in the next 
image and to recover from the out-of-frame events. 

The image plane coordinates and GPS altitude were used by 
the integrated IFUInertial filter to compute relative position and 
velocity with respect to the nearest hot spot. Figure 13 shows the 
results of applying the integrated IWInertial filter to the flight test 
data. In particular, the upper graph shows the DGPS landing ap- 
proach trajectory. The bottom left graph shows the estimation er- 
rors computed by comparing the DGPS position with the position 
estimates produced by the filter. Finally, the bottom right graph 
shows the response of the filter to an out of frame event. Clearly, 
the filter performed well. 

4 Conclusions 
This paper introduced the concept of LPV systems with brief in- 
stabilities and derived new results for stability and performance 

ity andperformance id the presence of out-of-frame events. Numeri- 
cal trade-off studies were conducted to determine filter’s achievable 
performance versus the duration of the out-of-frame events. Finally, 
the filter was tested using flight test data collected by a UAV 
equipped with inertial sensors and IR camera. The results of the 
test showed the filter to perform well in the presence of out-of- 

Figure 13: Filter’s performance during final approach 
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