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Therefore, the closed-loop matrices are given by Trading the Stability of Finite Zeros for Global Stabilization
i of Nonlinear Cascade Systems
A(1) = (0.4888 0.112
TV T -1.512 —0.388 Rodolphe Sepulchre, Murat Arcak, and Andrew R. Teel
A(2) = 0.2353  0.0894
AT -0.1324  —0.1353 Abstract—This note analyzes the stabilizability properties of nonlinear
) cascades in which a nonminimum phase linear system is interconnected
A.(3) = 0.092 0.016 through its output to a stable nonlinear system. It is shown that the insta-
«(3) = 1.296 0.008 |~ bility of the zeros of the linear system can be traded with the stability of

the nonlinear system up to a limit fixed by the growth properties of the cas-

Th d sufficient diti 20) i tisfiedstor— cade interconnection term. Below this limit, global stabilization is achieved
e necessary and sufficient condition (40) is satisfiedéfor= by smooth static-state feedback. Beyond this limit, various examples illus-

10, 62 = 15, 83 = 10. One can easily check that all the closed-loorate that controllability of the cascade may be lost, making it impossible
matricesA.(«), are assigned the same spectrfii ). to achieve large regions of attractions.
Onthe other hand, the sufficient condition (41) of stochastic stability |ngex Terms—Nonlinear cascades, peaking, stabilization.

is also satisfied fop = ().

. INTRODUCTION
VI. CONCLUSION The study of partially linear cascades
In this note, necessary and sufficient conditions for donfgito L= f(2)+ Uz £ y)y

be positively invariant w.r.t the system in the closed-loop (5) are es- .
tablished for linear discrete-time systems with Markovian jumping pa- {=A¢+ Bu

rameters and symmetrical constrained control. A new sufficientcondi- vy =C{+Du, :€R,(eR". yeR . veR" (1)
tion of stochastic stability is then deduced. These results are obtained . . .
by using non quadratic Lyapunov function as is usually the case Ims peen helpful to identify structural obstacles to large regions of _at-
the problems with constraints of inequality type. An Algorithm is aIsHaCtIon (see, e.q., [9]_’ (4], [2], [1], [5]1 and [11]). The general scenario
presented to compute matricBg o) together with a simple sufficient " these references is that the nonlinear subsystem f(z) has a

condition of stochastic positive invariance which is independent of t}gé(_)bal_ly asymptotlc_:al!y stable equilibrium= 0, so_thzi\t the local sta-
probability transition matrixl. bilization problem is linear, but that the perturbati®nz, ¢, y)y may

cause finite escape time for the solutiof#) if the outputy(¢) of the
linear subsystemid, B, C., D) is not properly controlled.

Beyond invertibility conditions for the linear system, successive con-
tributions in the literature have revealed the prominent role played by
The authors would like to acknowledge the careful reviews by tiBezerosof the linear system in the global stabilizability of the cascade

referees whose comments have been very helpful in improving ttle-
overall quality of this note. With their analysis of the peaking phenomenon, Sussmann and
Kokotovit [9] have shown that thinfinite zerosof the linear system
are the most harmful ones. Because of the large transients that they
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phase”), then the stabilizability of the linear system guarantees the Il. MAIN RESULT
global stabilizability of the cascade. This result was further extended
in [5] (see also [11] for a different version and [2] for the semiglobal.

L Sim
counterpart) to the unstable situation where repeated zeros are alIoweFEeorem 1: Assume that H1) holds with a relative degree= 0,

on the imaginary axis. . .
that H2) holds with a lineat-subsystem, and that H3) holds globall
The situation ofinstable finitezeros was considered for the first time, ) y ) 9 y

by [1]. With simple but illuminating examples, the authors showed th!ar'][ #- Then the cascade (2) reduces to

unstable zeros may constitute an obstacle to semiglobal stabilization if i=Fz+Y(z,&u)u

they are “too far” to the right. Indeed, their stabilization requires a fi- ¢ = A¢ + Bu (4)
nite output energy [3] which is sufficient to cause finite escape time for _ . ) )
=(t). In the same paper, the authors showed on an example (using 8f&d the equilibriuni =, £) = 0 of (4) is globally asymptotically stabi-

continuous feedback) that global stabilization might be possible whifble by smooth state feedback if

For the sake of clarity, we formulate our main result with further
lifying assumptions that will be removed in Section IV.

the zeros are closer to the imaginary axis. r.1 (5)
The present note (see [7] for a preliminary version) pursues the anal- @ - p
ysis of nonlinear cascades in the presence of unstable zeros under the Proof: We let
following assumptions. ; , , X
9 assHmp _ U(:)=:7Q= V(o) =T Pe (6)
H1) The linear systen = (A, B, C, D) is squares. = p) and

k Where the matrixy = QT > 0 will be specified and? = PT >
0 is arbitrary, and design a control law which enforces@ar) the
exponential decay

has a uniform relative degrde, ..., r} sothat (1) is feedbac
equivalent to the normal form

P=f(2)+ (2 oy Gy )y U(z(t) < U(2(0))e > @)
(f(; = A& + By and limits the exponential growth &f(¢) to
vosw GERGERTTLyeRLueRT () VIEW) < V€0 ®)

with new matrices4 and B. The pair(4, B) is stabilizable for constantst < a, 7 > v, and to be designed. Inequalities (7) and
and all the eigenvalues of (that is, the finite zeros off ) have ~ (8) imply that the positive—semidefinite function
areal par_t smaller or equal to > O., I.e., max ReX(A) < v. Wiz, €)= U(Z)q/zv(f)p/z )
The functionsf and¥ are locally Lipschitz. o _
H2) The equilibrium: = 0 of = f(z) is globally asymptotically satisfies the estimate
stable. In a neighborhood of the origin, the solutions satisfy the Wi=(t M) < eW(=(0 0))e~ " 10
exponential estimat& (z(¢)) < U(z(0))e " for some pos- (1), £() < oW(=(0), £(0))e (10)
itive constanty > 0 and a smooth positive—definite functionwhere
U(z) with (U /92%)(0) > 0. p/2
H3) The interconnection tern¥ does not depend on the output o=0
derivatives, i.e.¥(z, &, y) = ¥(z, &, y), and satisfies the To ensure thali’ (

followi h dition: th : " z, £) converges to zero exponentially, we sel@ct
ollowing growth con |t|o_n_. there exist positive constants, andv > v sufficiently close tox andv, respectively, so that > 0
p, ¢, C such that, for: sufficiently small

because of (5).

ot o Global asymptotic stabilization of (4) will then be achieved if the
¥ (= & )l < Ol IE pIPT - (3)  design is such that, whéit’ is sufficiently small, the control law be-

comes a linear feedbaek= K¢ which stabilizes thé-subsystem.

Under the three assumptions above, the results of this note determin® first lemma puts conditions on the control law to guarantee the

a sharp stabilizability boundary in terms of structural parameters ®fponential decay df (z).

the cascade. The stabilizability condition is expressed as an inequalit-€mma 1: For anya < «, there existgy; > 0 such that the expo-

between two ratios: atability ratio between the local stability of the nential estimate (7) holds if

z-subsystent = f(z) (parametery) and the instability of the finite lull < v (W)|€] (12)

zeros (parameter), and agrowthratio between the growth of the inter- -

connection termi(z, £, y) in the variable: (parameter) and in the With (+) : R>o — Rxo a bounded function such thatW)W < e

variables(¢, y) (parametep). The stabilizability limit of the cascade for all W > 0.

is attained when the stability ratio becomes equal to the growth ratio  Proof of Lemma 1:Leto’ € (@, o), and letQ = Q" > 01in (6)
be such that

and r:=a@g — vp. (11)

v q T .

a FTQ+QF < —240. (13)

Below this limit, the stability of the finite zeros associated with th&rom (4), (3), and (13Y/ (=) satisfies

z-subsystem can be traded with the instability of the finite zeros asso- U<—2a'U+2:7Q¥(z, €, u)u

ciated with thet-subsystem and we design a smooth feedback control _ TrTeoN L a+2)| ¢ p—1

that achieves global stabilization of the origin. Beyond this limit, var- < =200 () 4 20N QT ol el

ious examples illustrate the possible loss of global controllability.  If « satisfies (12), then there exists a constant- 0 such that
Section Il describes our main result in the relative degree zero case, . 0 177 o TINT 17 .

that is wheny = u. Section Il provides three examples of loss of U< =200 +alUy(W)W < =200 + cocr U (14)

global controllability when the stabilizability boundary is attained. Exthus (7) holds if we selecte, small enough to satisfy

tension to the general cascade (2) is included in Section IV. @ < o' — €(c1/2). [An explicit calculation vyields
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¢r = 200 QIAZE P (PN (Q) (1 + 77)®~D/2 where7 is Theorem 2: With all the remaining assumptions being unchanged,
an upper bound on(W)]. O assume that the assumption (5) of Theorem 1 is replaced by

To design a control law that ensures (8) for theubsystem of (4), v q
we denote bys.(-) : R — [0, 1], for a given constant > 0, a smooth PY (18)

o p
monotone function satisfying o ) »
i Then the equilibrium(z, £) = 0 of (4) is globally stabilizable by
5. (W) = 0 when|W| > e (15) Smooth state feedback if the matricds- »I and F’ + ol are Lya-
e 1 when|[W| < ¢/2 punov stable an@(z, &, 0) = 0.

. . . Proof: Using the strengthened assumptionssoand F', we let
and we make use of the following lemma proved in the Appendix. 0=0" > 0andP = P* > 0 be such that
Lemma 2: Let A, be a matrix such thaRe A(4;) < v, and letl - -
denote the number of its eigenvalues in the closed right-half plane. If FTQ+QF <—2a0Q (19)

the pair(A;, B) is stabilizable, then there exists a matfixsuch that A'P 4+ PA<2P (20)
1) A—BBT P, has at most—1 eigenvalues in the closed right-half
plane; and construct/, V', andWW as in the proof of Theorem 1.
2) Given anyP = P! > 0 and7 > v, we can find a constant Augmenting the control law (17) with the additional term
a; > 0 such that, for any constant > 0, the solutions of the 9 -
system o = ————— B P¢ (21)
L+I(W)
. e A7 ( ~ T . . . .
= (4i = B;,(W(z, §)BB F)¢ (18) " we will construct the functiof(-) in such a way that all solutions con-
satisfy the exponential estimate (8) whéfét) = ¢7 P¢ asin  Verge infinite time to an invariant region where the proof of Theorem
(6). 1 can be applied. Our first requirement kn) will be that
In view of Lemmas 1 and 2, we select the control law " oW
. . IB"Pl| — s < o (22)
w=—F,W)B'Pi¢ - =3, (W)B' Py¢ a7 L+1(W)

where 4., (-)s are smooth functions defined as in (15), afid< ¢ SO that the conclusion of Lemma 1 applies.
where! denotes the number of closed right-half plane eigenvalues of | N€ time-derivative of¥” satisfies
A. (e w 4 T T
The design of the matrice®, 1 < i < N, uses the construction of W< <‘1 U~ QU +p¢ PB) u- (23)
Lemma 2 applied tod; = A, and then iteratively tod,11 = A4; —
BBTP, i > 1, until a matrix Ay is obtained that is Hurwitz. By
construction, the number of eigenvalues in the closed right-half plaﬁ
dgcreases at egch iteration, S0 thatoes not ex<_:eed_the numbe_r of lu|| < Clléll = V(ONT(z & u)|| < callz|T N Jull. (24)
eigenvalues ofi in the closed right-half plane. With this construction,
the control law (17) is a linear stabilizing feedback for gasubsystem This also implies, for some other constagt= c5(C)
in the region defined by (=, &) < ex/2. V() v )
The design of the parameters < ex—1 < --- < € is made to llull < ClIEll = 00 l27 QU(z, & w)|| < esWllull.  (25)
guarantee thd#’ (z(¢), £(¢)) indeed decreases to zero along any solu-
tion. The parameter; is selected to guarantee the exponential decay From (23), (25), and with the control law given by (21), we obtain
(7) with the control law (17). Because= 0 whenW < ¢ and be- for cy = 2qcy
causellu|| < K||¢|| (with & = 3% ||B" Pi|]), (12) holds with a . w o7y
function~(-) satisfyingy (W)W < Ke,. Thus, Lemma 1 ensures that W=y <f’4 i) P
(7) holds ife; is selected such thdt'e; < ep.
Having selected, and using the matrix?; constructed according Which yields the estimate
to Lemma 2, (8) holds for some, wheneven: = -3, (WHYBT Pre, W< —L1B" Pe|f? @7)
which is the control (17) in the region whe¥g > ¢,. 2
_ _The parametes, is noyv selec_;t(_ed tg guarantee thag forany initial CON in addition to (22)](W) is chosen such that (2W/(1+1(W))) <
dition (zo, &), there exists a finite tim@&' such that?’ (= (¢), £(¢)) < p/2 andi(W) = 1 for W < e with e; small enough to havesey <
e1/2 forall ¢ > T. Using the estimate (10) (with, = Ef’/z) when- p/4.
everlV > e, such al will existif o1, < /2. FromtimeI'on,and " \we now prove that” decays to zero exponentially along any solu-
aslong asV(z(t), £(f)) > es, the closed-loop system reads tion of the closed-loop system with= . By contradiction, suppose
€ = (As + Bey (W)BBT Py)¢ that, for some initial condition|¥ (z(¢), £(¢)) does not converge to

) ) _ _ zero. Then, (27) implies that(t) := B* P¢(t) is in L (0, co) while
thus, by Lemma 2, the estimate (8) holds in the region defined ?)(f) is solution of the differential equation
/ by

From (3) and¥(z, &, 0) = 0, there exists a constant = ¢2(C) > 0
léCh that

) 18" Pe|l? (26)

W(z, £) > es. This construction is iterated far= 3, ..., N b )
selectinge; such thatr;_ie; < ¢,_1/2. With 7 selected ag v, the £ =A¢ - # BB P¢
estimate (8) then holds along every closed-loop solution. 1+ 1U(W)
With thee; parameters so constructd®l,(=(t), £(¢)) exponentially —(A—BBTP <1 _ 2 ) olt o8
converges to zero along any solution of the closed-loop system. After ( e+ 1+1(W) y(t). (28)

finite time,W (z(¢), £(¢), t i ller thany /2, and f . ,
a finite time, W (z(£), £(¢)) must remain smaller thai /2, and from Note that all the eigenvalues af — BBT P have a real part smaller

this time on£(#) exponentially converges to zero, which concludes th . - .
A() exp Y 9 t%an or equal to some < v. The solutions of (28) satisfy the estimate

proof. O
The next theorem deals with the situation where the inequality (5) o SR
becomes an saualty el < Me™ (Il + [ lts)las).
0
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Along a solution such that(t) is in L»(0, o), this implies andéi(t) = &(0) + Ji €(s)ds > 1+t on the interval0, T and,
lE@ < M e”|e0)| hence, (34) |mp||es‘T 0
where the constant{’ is allowed to depend on(0). Then, such a / @(s)(s+1)"ds < 2) (36)
solution also satisfies . Y o !
Using Holder’s inequality, we have
W (=(t), £(1) < ae™"" W (2(0), £(0)) (29) T T 1
. _ ) . ) 3 / a(s)ds = / (@(s)(s+1)%) ———ds
with k = ag — 7p > 0, which contradicts the assumption th&tdoes ./, o (s+1)
not decay exponentially to zero. T 1/2 T 1 1/2
BecausdV exponentially decays to zero with= o and because < </ @’(s)(s+1)* d5> </ Gre d5‘>
ug = —BT P¢ for W < &, all solutions converge in finite time to a 0 1 0
region where = (A — BBT P)¢ + B(u — uo). With A replaced by <K </T @(s)(s + 1) ds)
A — BBT P andv replaced by, the design ofi — u, is pursued as 0
in the proof in Theorem 1 becausga < p/q. O  where the constant’ > 0 is independent of . Using (35) and (36),
we obtain the constraint
lll. OBSTACLES TOCONTROLLABILITY . . {|o(0)] 1/2
) ) ) . £0)>21 = &O0)-1<K <—) (37)
In this section, we show that relaxing any of the conditions of q

Theorems 1 and 2 leads to situations in which the cascade (4) iswgich implies that initial conditions of (32) violating (37) cannot be
longer globally asymptotically controllable to the origin. (Globatontrolled to the origin.
asymptotic controllability to the origin is obviously a necessary Our last example illustrates the necessity of the condition
condition for semiglobal stabilization). ¥(z, & 0) = 0in Theorem 2.

Our first example, adapted from [1], illustrates a situation of uncon- Example 3: The cascade
trollability when the inequality (5) is reversed.

s q. 2.2
Example 1 [1]: Consider the cascade =32
. 112 =&+ u, :eER E€ER vER (38)
F= st tisfi Il th diti f Th 1 t that, &, 0
: satisfies all the conditions of Theorem 1 exce LE6,0) =
f=vé+u, :eREERuER (30) pt tiige, &, 0)

—2%6%2 # 0. (The equalitypr = «gq is satisfied witha = p = 3,
and suppose that— aq/2 := x > 0. With an argument similar to the andv = ¢ = 1). Itis easily verified that¢® = 3 is an invariant mani-
one in [1], one shows that, &(t) converges to zero, the finite escapdold regardless of the choice afbecause

time of z(¢) can be avoided only for initial conditions that satisfy the d 5 3
constraint pr (z€7) =uz (=28 + 3)|.g5-3 = 0. (39)
2£3=3
21(0)£(0) < L (31) Hence, initial conditions satisfying(0)£(0)° = 3 cannot be con-
2qk trolled to the origin.
Initial conditions that violate (31) are uncontrollable to zero.
Our second example illustrates that the requirementifer»I and IV. DISCUSSION ON THEGENERAL CASE
F' + aI to be Lyapunov stable in Theorem 2 cannot be weakened tothe results of Section II, proven for the particular cascade (4), are
the conditionmax ReA(4) < ». retained under the more general assumptions H1)-H3).
Example 2: Consider the cascade First, observe that the linearity assumption on the z-subsystem is
i = —az 4 el easily relaxed to H2) and that H3) needs not hold globally, as it is as-
z = ZTZ 1 . . .
. sumed in Section II, but only locally. The extension of the results to
§1 =v6 + & this situation is straightforward because the proof of the theorems only
& = v +u, ER EER, u€ER (32) relies onlocal properties of the:-subsystem. As a consequence, it is

d héi — hat th ditio _ . sufficient to multiply the constructed control laws by a gain function
and assume théiv = aq. Note that the conditiof¥(z, ¢, 0) = 0is A(||=]]) which is zero for||z]] > 6_ and which is equal to one for

satisfied but thati — v 1 is the (unstable) double integrator. Defining”Z” < 5, wheres_ ands are sufficiently small positive constants.

& = e "¢ andi = e~ "'u, we rewrite the linear part in the form Next, relaxing a relative degree zero assumption to an arbitrary rel-
ative degree is standard using Lyapunov backstepping of the relative
degree zero control law through chains of integrators [4]. Strictly
g =1 (33) speaking, standard backstepping requires the knowledge of a Lyapunov
function for the relative degree zero subsystem, and such a construc-
tion is not provided in the present note. Nevertheless, it is not difficult
to show that the backstepping procedure can be accommodated with
/m =Tt (s)u? (s) ds = /'“’ E4(s)a2(s) ds < w (34) the positive (semidefinite) functioris, ¥, andW, that were used to
o o q construct the relative degree zero control law in order to construct a
rsmooth gobally stabilizing control law in higher relative degree situa-
tions.
The results of the present paper thus extend previous results in the
"literature on global stabilization of relative degregartially linear cas-
cades, which did not allow for (finite) zeros in the open right-half plane.
The particular case of all zeros in the closed left half-plane with pos-
sibly repeated zeros on the imaginary axis is also of interest: previous
results do not require local exponential stability of theubsystem but

H

AT A S
=
N

Leto = z77 ande(0) > 0. To avoid the finite escape time oft),
the following condition must hold:

We now show that, for large initial conditions, it is not possible to e
sure the convergence étt) while satisfying the conditions (34). Let
€2(0) > 1 and& (0) > 1. If £(t) asymptotically converges to zero
then there exists a finit€ > 0 such that, (T) = 1 andé»(¢) > 1 on
the interval[0, T']. Thus

e
/ u(s)ds
0

=&(0)-1 (35)
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To prove the first part of the Lemma, we show tkatan be selected
such that

T7'(4, - BB"P)T, = (41)

J — k;ByBY Adaptive Observer for Multiple-Input—Multiple-Output
(MIMO) Linear Time-Varying Systems
has at least one eigenvalue in the open left half-pland. i§ scalar
thenJ — k; B, BI is negative for large enough. If .J is as in (40), Qinghua Zhang
we rewrite the matrix) — k; B, BY as

Voo bbb b - NSV .
J = { /} — K (42) Abstrac_t—Fpr joint state-parameter estimatiom linear time-varying
—w v b by bLb, (LTV) multiple-input—multiple-output (MIMO) systems, a new approach
to the design of adaptive observers is proposed in this note. It is con-
whereb, ?ndb? are the transp(I)ses of;he rOWTSBE' Th_us,.the sum of ceptually simple and computationally efficient. Its global exponential
the two eigenvalues of (42) B8/ — k,(by b( +b; b2) which is negative convergences established for noise-free systems. In the presence of noises,
for large enought;. This means that at least one eigenvalue moves itds proved that the estimation errors are bounded and converge in the
the open left-half plane by selectirig large. mean to zero if the noises are bounded and have zero means. Potential

To prove the second part of the Lemma we rewrite (16) in thaer)plications are fault detection and isolation, and adaptive control.

[ng EE]T = T:¢ coordinates Index Terms—Adaptive observer, continuous-time system, linear time-
. . s varying (LTV) system, multiple-input—-multiple-output (MIMO), state and
& =An& + A2 — Eife,(W)B B, |2 parameter estimation.
€ =[J = ki, (W)B2B; ]éa. (43)
Becausd” = &1 ¢, satisfies . INTRODUCTION
d % ZEQT(J +JT - Zkiﬁq(ﬂ/’)BngT)Ez . In this nqte, we mainly consider linear time-varying (LTV) multiple-
dt N ~ input—-multiple-output (MIMO) state-space systems of the form
<GET+TN6 <2y (44)
and, hence||&(t)[| < e”'[|€2(0)]|. Becausanax Re A(A11) < v, () = A(t)x(t) + B(t)u(t) + T(1)f (1a)
for anyw > v, the&; subsystem driven by, satisfies||¢ (¢)]| < y(t) =C(t)x(t) (1b)
a:e”|(€1(0), £2(0))|| for somesr; > 0. O
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