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Therefore, the closed-loop matrices are given by

Ac(1) =
0:4888 0:112

�1:512 �0:388

Ac(2) =
0:2353 0:0894

�0:1324 �0:1353

Ac(3) =
0:092 0:016

1:296 0:008
:

The necessary and sufficient condition (40) is satisfied for�1 =
10; �2 = 15; �3 = 10. One can easily check that all the closed-loop
matricesAc(�), are assigned the same spectrum�(H0).

On the other hand, the sufficient condition (41) of stochastic stability
is also satisfied for� = (25).

VI. CONCLUSION

In this note, necessary and sufficient conditions for domainF to
be positively invariant w.r.t the system in the closed-loop (5) are es-
tablished for linear discrete-time systems with Markovian jumping pa-
rameters and symmetrical constrained control. A new sufficient condi-
tion of stochastic stability is then deduced. These results are obtained
by using non quadratic Lyapunov function as is usually the case in
the problems with constraints of inequality type. An Algorithm is also
presented to compute matricesH(�) together with a simple sufficient
condition of stochastic positive invariance which is independent of the
probability transition matrix�.
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Trading the Stability of Finite Zeros for Global Stabilization
of Nonlinear Cascade Systems

Rodolphe Sepulchre, Murat Arcak, and Andrew R. Teel

Abstract—This note analyzes the stabilizability properties of nonlinear
cascades in which a nonminimum phase linear system is interconnected
through its output to a stable nonlinear system. It is shown that the insta-
bility of the zeros of the linear system can be traded with the stability of
the nonlinear system up to a limit fixed by the growth properties of the cas-
cade interconnection term. Below this limit, global stabilization is achieved
by smooth static-state feedback. Beyond this limit, various examples illus-
trate that controllability of the cascade may be lost, making it impossible
to achieve large regions of attractions.

Index Terms—Nonlinear cascades, peaking, stabilization.

I. INTRODUCTION

The study of partially linear cascades

_z = f(z) + 	(z; �; y)y

_� =A� +Bu

y =C� +Du; z 2
s
; � 2

n
; y 2

p
; u 2

m (1)

has been helpful to identify structural obstacles to large regions of at-
traction (see, e.g., [9], [4], [2], [1], [5], and [11]). The general scenario
in these references is that the nonlinear subsystem_z = f(z) has a
globally asymptotically stable equilibriumz = 0, so that the local sta-
bilization problem is linear, but that the perturbation	(z; �; y)y may
cause finite escape time for the solutionz(t) if the outputy(t) of the
linear subsystem(A; B; C; D) is not properly controlled.

Beyond invertibility conditions for the linear system, successive con-
tributions in the literature have revealed the prominent role played by
thezerosof the linear system in the global stabilizability of the cascade
(1).

With their analysis of the peaking phenomenon, Sussmann and
Kokotović [9] have shown that theinfinite zerosof the linear system
are the most harmful ones. Because of the large transients that they
exhibit during the fast stabilization of the output, the output derivatives
must be excluded from the interconnection	 to render the global
stabilization of the cascade possible. In a subsequent paper [4], Saberi
and the same authors showed that if the output derivatives do not enter
the interconnection and the zero dynamics of the linear system are
Lyapunov stable (the cascade is then said to be “weakly minimum
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phase”), then the stabilizability of the linear system guarantees the
global stabilizability of the cascade. This result was further extended
in [5] (see also [11] for a different version and [2] for the semiglobal
counterpart) to the unstable situation where repeated zeros are allowed
on the imaginary axis.

The situation ofunstable finitezeros was considered for the first time
by [1]. With simple but illuminating examples, the authors showed that
unstable zeros may constitute an obstacle to semiglobal stabilization if
they are “too far” to the right. Indeed, their stabilization requires a fi-
nite output energy [3] which is sufficient to cause finite escape time for
z(t). In the same paper, the authors showed on an example (using dis-
continuous feedback) that global stabilization might be possible when
the zeros are closer to the imaginary axis.

The present note (see [7] for a preliminary version) pursues the anal-
ysis of nonlinear cascades in the presence of unstable zeros under the
following assumptions.

H1) The linear systemH � (A; B; C; D) is square (m = p) and
has a uniform relative degreefr; . . . ; rg so that (1) is feedback
equivalent to the normal form

_z = f(z) + 	(z; �0; y; _y; . . . ; y
(r�1))y

_�0 =A�0 +By

y(r) =u; z 2 s; �0 2
n�mr; y 2 m; u 2 m (2)

with new matricesA andB. The pair(A; B) is stabilizable
and all the eigenvalues ofA (that is, the finite zeros ofH) have
a real part smaller or equal to� > 0, i.e.,maxRe�(A) � �.
The functionsf and	 are locally Lipschitz.

H2) The equilibriumz = 0 of _z = f(z) is globally asymptotically
stable. In a neighborhood of the origin, the solutions satisfy the
exponential estimateU(z(t)) � U(z(0))e��t for some pos-
itive constant� > 0 and a smooth positive–definite function
U(z) with (@2U=@z2)(0) > 0.

H3) The interconnection term	 does not depend on the output
derivatives, i.e.,	(z; �; y) = 	(z; �0; y), and satisfies the
following growth condition: there exist positive constants
p; q; C such that, forz sufficiently small

k	(z; �; y)k � Ckzkq+1k(�; y)kp�1: (3)

Under the three assumptions above, the results of this note determine
a sharp stabilizability boundary in terms of structural parameters of
the cascade. The stabilizability condition is expressed as an inequality
between two ratios: astability ratio between the local stability of the
z-subsystem_z = f(z) (parameter�) and the instability of the finite
zeros (parameter�), and agrowthratio between the growth of the inter-
connection term	(z; �; y) in the variablez (parameterq) and in the
variables(�; y) (parameterp). The stabilizability limit of the cascade
is attained when the stability ratio becomes equal to the growth ratio

�

�
=

q

p
:

Below this limit, the stability of the finite zeros associated with the
z-subsystem can be traded with the instability of the finite zeros asso-
ciated with the�-subsystem and we design a smooth feedback control
that achieves global stabilization of the origin. Beyond this limit, var-
ious examples illustrate the possible loss of global controllability.

Section II describes our main result in the relative degree zero case,
that is wheny = u. Section III provides three examples of loss of
global controllability when the stabilizability boundary is attained. Ex-
tension to the general cascade (2) is included in Section IV.

II. M AIN RESULT

For the sake of clarity, we formulate our main result with further
simplifying assumptions that will be removed in Section IV.

Theorem 1: Assume that H1) holds with a relative degreer = 0,
that H2) holds with a linearz-subsystem, and that H3) holds globally
in z. Then the cascade (2) reduces to

_z =Fz +	(z; �; u)u

_� =A� +Bu (4)

and the equilibrium(z; �) = 0 of (4) is globally asymptotically stabi-
lizable by smooth state feedback if

�

�
<
q

p
: (5)

Proof: We let

U(z) = zTQz; V (�) = �TP� (6)

where the matrixQ = QT > 0 will be specified andP = P T >
0 is arbitrary, and design a control law which enforces forU(z) the
exponential decay

U(z(t)) � U(z(0))e�2�t (7)

and limits the exponential growth ofV (�) to

V (�(t)) � �V (�(0))e2�t (8)

for constants� < �, � > �, and� to be designed. Inequalities (7) and
(8) imply that the positive–semidefinite function

W (z; �) := U(z)q=2V (�)p=2 (9)

satisfies the estimate

W (z(t); �(t)) � �W (z(0); �(0))e��t (10)

where

� = � p=2 and � := �q � �p: (11)

To ensure thatW (z; �) converges to zero exponentially, we select� <
� and� > � sufficiently close to� and�, respectively, so that� > 0
because of (5).

Global asymptotic stabilization of (4) will then be achieved if the
design is such that, whenW is sufficiently small, the control law be-
comes a linear feedbacku = K� which stabilizes the�-subsystem.

A first lemma puts conditions on the control law to guarantee the
exponential decay ofU(z).

Lemma 1: For any� < �, there exists�0 > 0 such that the expo-
nential estimate (7) holds if

kuk � 
(W )k�k (12)

with 
(�) : �0 ! �0 a bounded function such that
(W )W � �0
for all W � 0.

Proof of Lemma 1:Let�0 2 (�; �), and letQ = QT > 0 in (6)
be such that

F TQ+QF � �2�0Q: (13)

From (4), (3), and (13)U(z) satisfies

_U ��2�0U + 2zTQ	(z; �; u)u

��2�0U(z) + 2CkQkkzkq+2k(�; u)kp�1kuk:

If u satisfies (12), then there exists a constantc1 > 0 such that

_U � �2�0U + c1U
(W )W � �2�0U + �0c1U (14)

thus (7) holds if we select�0 small enough to satisfy
� � �0 � �0(c1=2). [An explicit calculation yields
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c1 = 2CkQk�
�(p=2)
min (P )�

�(1+q=2)
min (Q)(1 + 
2)(p�1)=2 where
 is

an upper bound on
(W )].
To design a control law that ensures (8) for the�-subsystem of (4),

we denote by��(�) : ! [0; 1], for a given constant� > 0, a smooth
monotone function satisfying

��(W ) =
0 whenjW j � �

1 whenjW j � �=2
(15)

and we make use of the following lemma proved in the Appendix.
Lemma 2: Let Ai be a matrix such thatRe�(Ai) � �, and letl

denote the number of its eigenvalues in the closed right-half plane. If
the pair(Ai; B) is stabilizable, then there exists a matrixPi such that

1) A�BBTPi has at mostl�1 eigenvalues in the closed right-half
plane;

2) Given anyP = P T > 0 and� > �, we can find a constant
�i > 0 such that, for any constant�i > 0, the solutions of the
system

_� = (Ai � �� (W (z; �))BBTPi)� (16)

satisfy the exponential estimate (8) whereV (�) = �TP� as in
(6).

In view of Lemmas 1 and 2, we select the control law

u = ��� (W )BTP1� � � � � � �� (W )BTPN� (17)

where�� (�)s are smooth functions defined as in (15), andN � l
wherel denotes the number of closed right-half plane eigenvalues of
A.

The design of the matricesPi, 1 � i � N , uses the construction of
Lemma 2 applied toA1 = A, and then iteratively toAi+1 = Ai �
BBTPi, i � 1, until a matrixAN is obtained that is Hurwitz. By
construction, the number of eigenvalues in the closed right-half plane
decreases at each iteration, so thatN does not exceed the number of
eigenvalues ofA in the closed right-half plane. With this construction,
the control law (17) is a linear stabilizing feedback for the�-subsystem
in the region defined byW (z; �) � �N=2.

The design of the parameters�N < �N�1 < � � � < �1 is made to
guarantee thatW (z(t); �(t)) indeed decreases to zero along any solu-
tion. The parameter�1 is selected to guarantee the exponential decay
(7) with the control law (17). Becauseu = 0 whenW � �1 and be-
causekuk � Kk�k (with K = N

i=1 kB
TPik), (12) holds with a

function
(�) satisfying
(W )W � K�1. Thus, Lemma 1 ensures that
(7) holds if�1 is selected such thatK�1 < �0.

Having selected�1 and using the matrixP1 constructed according
to Lemma 2, (8) holds for some�1 wheneveru = ��� (W )BTP1�,
which is the control (17) in the region whereW � �2.

The parameter�2 is now selected to guarantee that for any initial con-
dition (z0; �0), there exists a finite timeT such thatW (z(t); �(t)) �

�1=2 for all t � T . Using the estimate (10) (with�1 = �
p=2
1 ) when-

everW � �2, such aT will exist if �1�2 < �1=2. From timeT on, and
as long asW (z(t); �(t)) � �3, the closed-loop system reads

_� = (A2 + �� (W )BBTP2)�

thus, by Lemma 2, the estimate (8) holds in the region defined by
W (z; �) � �3. This construction is iterated fori = 3; . . . ; N by
selecting�i such that�i�1�i < �i�1=2. With � selected as�N , the
estimate (8) then holds along every closed-loop solution.

With the�i parameters so constructed,W (z(t); �(t)) exponentially
converges to zero along any solution of the closed-loop system. After
a finite time,W (z(t); �(t)) must remain smaller than�N=2, and from
this time on,�(t) exponentially converges to zero, which concludes the
proof.

The next theorem deals with the situation where the inequality (5)
becomes an equality.

Theorem 2: With all the remaining assumptions being unchanged,
assume that the assumption (5) of Theorem 1 is replaced by

�

�
=

q

p
: (18)

Then the equilibrium(z; �) = 0 of (4) is globally stabilizable by
smooth state feedback if the matricesA � �I andF + �I are Lya-
punov stable and	(z; �; 0) = 0.

Proof: Using the strengthened assumptions onA andF , we let
Q = QT > 0 andP = P T > 0 be such that

F TQ+QF ��2�Q (19)

ATP + PA � 2�P (20)

and constructU , V , andW as in the proof of Theorem 1.
Augmenting the control law (17) with the additional term

u0 = �
2

1 + l(W )
BTP� (21)

we will construct the functionl(�) in such a way that all solutions con-
verge in finite time to an invariant region where the proof of Theorem
1 can be applied. Our first requirement onl(�) will be that

kBTPk
2W

1 + l(W )
< �0 (22)

so that the conclusion of Lemma 1 applies.
The time-derivative ofW satisfies

_W �
W

V
q
V

U
zTQ	+ p�TPB u: (23)

From (3) and	(z; �; 0) = 0, there exists a constantc2 = c2(C) > 0
such that

kuk � Ck�k ) V (�)k	(z; �; u)k � c2kzk
q+1k�kpkuk: (24)

This also implies, for some other constantc3 = c3(C)

kuk � Ck�k )
V (�)

U(z)
kzTQ	(z; �; u)k � c3Wkuk: (25)

From (23), (25), and with the control law given by (21), we obtain
for c4 = 2qc3

_W �
W

V
c4

2W

1 + l(W )
� p kBTP�k2 (26)

which yields the estimate

_W � �
p

2
kBTP�k2 (27)

if, in addition to (22),l(W ) is chosen such thatc4(2W=(1+l(W ))) �
p=2 andl(W ) = 1 for W � �0 with �0 small enough to havec4�0 <
p=4.

We now prove thatW decays to zero exponentially along any solu-
tion of the closed-loop system withu = u0. By contradiction, suppose
that, for some initial condition,W (z(t); �(t)) does not converge to
zero. Then, (27) implies thaty(t) := BTP�(t) is inL2(0; 1) while
�(t) is solution of the differential equation

_� =A� �
2

1 + l(W )
BBTP�

=(A�BBTP )� + 1�
2

1 + l(W )
y(t): (28)

Note that all the eigenvalues ofA � BBTP have a real part smaller
than or equal to some� < �. The solutions of (28) satisfy the estimate

k�(t)k �Me�t k�(0)k+
t

0

e��sky(s)kds :
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Along a solution such thaty(t) is inL2(0; 1), this implies

k�(t)k �M 0e�tk�(0)k

where the constantM 0 is allowed to depend onz(0). Then, such a
solution also satisfies

W (z(t); �(t)) � �e��tW (z(0); �(0)) (29)

with � = �q��p > 0, which contradicts the assumption thatW does
not decay exponentially to zero.

BecauseW exponentially decays to zero withu = u0 and because
u0 = �BTP� for W � �0, all solutions converge in finite time to a
region where_� = (A �BBTP )� +B(u� u0). With A replaced by
A � BBTP and� replaced by�, the design ofu � u0 is pursued as
in the proof in Theorem 1 because�=� < p=q.

III. OBSTACLES TOCONTROLLABILITY

In this section, we show that relaxing any of the conditions of
Theorems 1 and 2 leads to situations in which the cascade (4) is no
longer globally asymptotically controllable to the origin. (Global
asymptotic controllability to the origin is obviously a necessary
condition for semiglobal stabilization).

Our first example, adapted from [1], illustrates a situation of uncon-
trollability when the inequality (5) is reversed.

Example 1 [1]: Consider the cascade

_z =��z + zq+1u2

_� = �� + u; z 2 ; � 2 ; u 2 (30)

and suppose that� ��q=2 := � > 0. With an argument similar to the
one in [1], one shows that, if�(t) converges to zero, the finite escape
time of z(t) can be avoided only for initial conditions that satisfy the
constraint

zq(0)�(0)2 �
1

2q�
: (31)

Initial conditions that violate (31) are uncontrollable to zero.
Our second example illustrates that the requirement forA� �I and

F + �I to be Lyapunov stable in Theorem 2 cannot be weakened to
the conditionmaxRe�(A) � �.

Example 2: Consider the cascade

_z =��z + zq+1�41u
2

_�1 = ��1 + �2
_�2 = ��2 + u; z 2 ; � 2 2; u 2 (32)

and assume that6� = �q. Note that the condition	(z; �; 0) = 0 is
satisfied but thatA � �I is the (unstable) double integrator. Defining
~�i = e��t�i and~u = e��tu, we rewrite the linear part in the form

_~�1 =
~�2

_~�2 = ~u: (33)

Let � = z�q and�(0) > 0. To avoid the finite escape time ofz(t),
the following condition must hold:

1

0

e��qs�41(s)u
2(s)ds =

1

0

~�41(s)~u
2(s)ds <

�(0)

q
: (34)

We now show that, for large initial conditions, it is not possible to en-
sure the convergence of~�(t) while satisfying the conditions (34). Let
~�2(0) > 1 and ~�1(0) � 1. If ~�2(t) asymptotically converges to zero,
then there exists a finiteT > 0 such that~�2(T ) = 1 and~�2(t) > 1 on
the interval[0; T ]. Thus

T

0

~u(s)ds = ~�2(0)� 1 (35)

and ~�1(t) = ~�1(0) +
t

0
~�2(s)ds � 1 + t on the interval[0; T ] and,

hence, (34) implies
T

0

~u2(s)(s+ 1)4 ds <
�(0)

q
: (36)

Using Holder’s inequality, we have
T

0

~u(s)ds =
T

0

(~u(s)(s+ 1)2)
1

(s+ 1)2
ds

�
T

0

~u2(s)(s+ 1)4 ds

1=2 T

0

1

(s+ 1)4
ds

1=2

<K
T

0

~u2(s)(s+ 1)4 ds

1=2

where the constantK > 0 is independent ofT . Using (35) and (36),
we obtain the constraint

~�1(0) � 1 ) ~�2(0)� 1 < K
j�(0)j

q

1=2

(37)

which implies that initial conditions of (32) violating (37) cannot be
controlled to the origin.

Our last example illustrates the necessity of the condition
	(z; �; 0) = 0 in Theorem 2.

Example 3: The cascade

_z =�3z � z2�2u

_� = � + u; z 2 ; � 2 ; u 2 (38)

satisfies all the conditions of Theorem 1 except that	(z; �; 0) =
�z2�2 6= 0. (The equalityp� = �q is satisfied with� = p = 3,
and� = q = 1). It is easily verified thatz�3 = 3 is an invariant mani-
fold regardless of the choice ofu because

d

dt
(z�3)

z� =3

= uz�2(�z�3 + 3)jz� =3 = 0: (39)

Hence, initial conditions satisfyingz(0)�(0)3 = 3 cannot be con-
trolled to the origin.

IV. DISCUSSION ON THEGENERAL CASE

The results of Section II, proven for the particular cascade (4), are
retained under the more general assumptions H1)–H3).

First, observe that the linearity assumption on the z-subsystem is
easily relaxed to H2) and that H3) needs not hold globally, as it is as-
sumed in Section II, but only locally. The extension of the results to
this situation is straightforward because the proof of the theorems only
relies onlocal properties of thez-subsystem. As a consequence, it is
sufficient to multiply the constructed control laws by a gain function
�(kzk) which is zero forkzk � �� and which is equal to one for
kzk � �, where�� and� are sufficiently small positive constants.

Next, relaxing a relative degree zero assumption to an arbitrary rel-
ative degreer is standard using Lyapunov backstepping of the relative
degree zero control law throughm chains of integrators [4]. Strictly
speaking, standard backstepping requires the knowledge of a Lyapunov
function for the relative degree zero subsystem, and such a construc-
tion is not provided in the present note. Nevertheless, it is not difficult
to show that the backstepping procedure can be accommodated with
the positive (semidefinite) functionsU , V , andW , that were used to
construct the relative degree zero control law in order to construct a
smooth gobally stabilizing control law in higher relative degree situa-
tions.

The results of the present paper thus extend previous results in the
literature on global stabilization of relative degreer partially linear cas-
cades, which did not allow for (finite) zeros in the open right-half plane.
The particular case of all zeros in the closed left half-plane with pos-
sibly repeated zeros on the imaginary axis is also of interest: previous
results do not require local exponential stability of thez-subsystem but
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the unstable states of the�-subsystem are excluded from the intercon-
nection [5] because of the slow peaking phenomenon [6]. Theorem 1
yields different conditions. The unstable states are no longer excluded
from the interconnection but thez-subsystem must be locally exponen-
tially stable and the interconnection must be at least quadratic inz near
z = 0 [the inequality (5) is then satisfied for any values of�; p, and
q, because� can always be selected in the interval(0; �q=p)]. Thus,
a form of local input-to-state stability property for the nonlinear sub-
system is sufficient to overcome the slow peaking phenomenon in the
�-subsystem.

APPENDIX

PROOF OFLEMMA 2

Take one of the closed right half-plane eigenvalues ofAi, and let
� 0 � � denote its real part. Then, a coordinate transformation~� = Ti�
exists such that

T�1

i AiTi =
A11 A12

0 J
T�1

i B =
B1

B2

where eitherJ = �0 or

J =
�0 w

�w �0
: (40)

With the choice

Pi = (TT

i )�1 0 0

0 kiI
T T

i

whereki > 0 is to be specified, we obtain

T�1

i (Ai �BBTPi)Ti =
A11 A12 � kiB1B

T

2

0 J � kiB2B
T

2

: (41)

To prove the first part of the Lemma, we show thatki can be selected
such that

J � kiB2B
T

2

has at least one eigenvalue in the open left half-plane. IfJ is scalar
thenJ � kiB2B

T

2 is negative for large enoughki. If J is as in (40),
we rewrite the matrixJ � kiB2B

T

2 as

J =
�0 w

�w �0
� ki

bT1 b1 bT1 b2

bT1 b2 bT2 b2
(42)

whereb1 andb2 are the transposes of the rows ofB2. Thus, the sum of
the two eigenvalues of (42) is2�0�ki(b

T

1 b1+bT2 b2) which is negative
for large enoughki. This means that at least one eigenvalue moves to
the open left-half plane by selectingki large.

To prove the second part of the Lemma we rewrite (16) in the
[~�T1 ~�T2 ]

T = Ti� coordinates
_~�
1
=A11

~�1 + [A12 � ki�� (W )B1B
T

2 ]~�2
_~�
2
= [J � ki�� (W )B2B

T

2 ]~�2: (43)

BecauseY = ~�T2 ~�2 satisfies
d

dt
Y = ~�T2 (J + JT � 2ki�� (W )B2B

T

2 )~�2

� ~�T2 (J + JT )~�2 � 2�Y (44)

and, hence,k~�2(t)k � e�tk~�2(0)k. BecausemaxRe�(A11) � �,
for any � > �, the ~�1 subsystem driven by~�2 satisfiesk~�1(t)k �
�ie

�tk(~�1(0), ~�2(0))k for some�i > 0.
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Adaptive Observer for Multiple-Input–Multiple-Output
(MIMO) Linear Time-Varying Systems

Qinghua Zhang

Abstract—For joint state-parameter estimationin linear time-varying
(LTV) multiple-input–multiple-output (MIMO) systems, a new approach
to the design of adaptive observers is proposed in this note. It is con-
ceptually simple and computationally efficient. Its global exponential
convergenceis established for noise-free systems. In the presence of noises,
it is proved that the estimation errors are bounded and converge in the
mean to zero if the noises are bounded and have zero means. Potential
applications are fault detection and isolation, and adaptive control.

Index Terms—Adaptive observer, continuous-time system, linear time-
varying (LTV) system, multiple-input–multiple-output (MIMO), state and
parameter estimation.

I. INTRODUCTION

In this note, we mainly consider linear time-varying (LTV) multiple-
input–multiple-output (MIMO) state-space systems of the form

_x(t) =A(t)x(t) +B(t)u(t) + 	(t)� (1a)

y(t) =C(t)x(t) (1b)
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