
Delft University of Technology

Fac. of Information Technology and Systems Control Systems Engineering

Technical report bds:00-18

Model predictive control for perturbed

max-plus-linear systems∗

T.J.J. van den Boom and B. De Schutter

If you want to cite this report, please use the following reference instead:

T.J.J. van den Boom and B. De Schutter, “Model predictive control for perturbed

max-plus-linear systems,” Systems & Control Letters, vol. 45, no. 1, pp. 21–33, Jan.

2002.

Control Systems Engineering

Faculty of Information Technology and Systems

Delft University of Technology

Delft, The Netherlands

Current URL: https://www.dcsc.tudelft.nl

∗This report can also be downloaded via https://pub.deschutter.info/abs/00_18.html

https://www.dcsc.tudelft.nl
https://pub.deschutter.info/abs/00_18.html

Model Predictive Control for Perturbed Max-Plus-Linear

Systems

T.J.J. van den Boom and B. De Schutter
∗

Control Lab, Faculty of Information Technology and Systems
Delft University of Technology, P.O.Box 5031, 2600 GA Delft, The Netherlands

email: {t.j.j.vandenboom,b.deschutter}@its.tudelft.nl

Abstract

Model predictive control (MPC) is a popular controller design technique in the process
industry. Conventional MPC uses linear or nonlinear discrete-time models. Recently,
we have extended MPC to a class of discrete event systems that can be described by
a model that is “linear” in the (max,+) algebra. In our previous work we have only
considered MPC for the deterministic noise-free case without modeling errors. In this
paper we extend our previous results on MPC for max-plus-linear systems to cases with
noise and/or modeling errors. We show that under quite general conditions the resulting
optimization problems can be solved very efficiently.

Keywords: discrete event systems, model predictive control, max-plus-linear systems, noise
and modeling errors.

1 Introduction

Model predictive control (MPC) [1, 3, 5, 10] is currently one of the most widely used advanced
control design methods in the process industry. MPC provides many attractive features: it
is applicable to multi-input multi-output systems, it can handle constraints on inputs and
outputs in a systematic way, it is capable of tracking pre-scheduled reference signals, and
it is an easy-to-tune method. Usually MPC uses linear or nonlinear discrete-time models.
However, the attractive features mentioned above have led us to extend MPC to a class of
discrete event systems: the max-plus-linear (MPL) systems [2, 6]. Loosely speaking, this class
corresponds to the class of discrete event systems in which there is synchronization but no
concurrency. Such systems can be modeled using the operations maximization (corresponding
to synchronization: a new operation starts as soon as all preceding operations have been
finished) and addition (corresponding to durations: the finishing time of an operation equals
the starting time plus the duration). This leads to a description that is “linear” in the max-
plus algebra [2, 6] (see also Section 2). Max-plus-linear discrete event systems usually arise
in the context of manufacturing systems, telecommunication networks, railway networks, and
parallel computing.

In [8, 9] we have extended MPC to MPL systems, and in [17] we have presented some
results in connection with the closed-loop behavior (including stability) and tuning rules for
MPL-MPC. However, in those papers we have only considered the deterministic noise-free

∗Corresponding author.

1

case without modeling errors. In this paper we will extend these results to cases with noise
and/or modeling errors.

In contrast to conventional linear systems, where noise and disturbances are usually mod-
eled by including an extra term in the system equations (i.e., the noise is considered to
be additive), the influence of noise and disturbances in MPL discrete event systems is not
max-plus-additive, but max-plus-multiplicative. This means that the system matrices will be
perturbed and as a consequence the system properties will change. Ignoring the noise can lead
to a bad tracking behavior or even to an unstable closed loop. A second important feature
is modeling errors. Uncertainty in the modeling or identification phase leads to errors in the
system matrices. It is clear that both modeling errors, and noise and disturbances perturb
the system by introducing uncertainty in the system matrices. Sometimes it is difficult to
distinguish the two from one another, but usually fast changes in the system matrices will be
considered as noise and disturbances, whereas slow changes or permanent errors are consid-
ered as model mismatch. In this paper both features will be treated in one single framework
and the characterization of the perturbation will determine whether it describes model mis-
match or disturbance. To the authors’ best knowledge this is the first time that such an
approach is used in the MPL context. We will also show that under quite general restrictions
the resulting MPC optimization problem can be solved very efficiently.

Note that there are few results in the literature on noise and modeling errors in an MPL
context. However, for other classes of discrete event systems uncertainty results can be found
in [4, 11, 15, 19] and the references therein.

This paper is organized as follows. In Section 2 we give a concise introduction to MPL
systems and MPC for MPL systems (without noise or modeling errors). Next, we present a
noise and uncertainty model for MPL systems. In Section 4 we describe the prediction model
and in Section 5 we show how the worst-case MPC controller can be designed. We conclude
with a worked example.

2 Max-plus-linear systems and MPC

Define ε = −∞ and Rε = R ∪ {ε}. The max-plus-algebraic addition (⊕) and multiplication
(⊗) are defined as follows [2, 6]:

x⊕ y = max(x, y) , x⊗ y = x+ y

for numbers x, y ∈ Rε and

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =
n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The matrix ε is the max-plus-algebraic zero

matrix: [ε]ij = ε for all i, j.
In [2, 6] it has been shown that (time-invariant) discrete event systems in which there is

synchronization but no concurrency can be described by a model of the form

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (1)

y(k) = C ⊗ x(k) . (2)

2

Systems that can be described by this model are called time-invariant max-plus-linear (MPL)
systems. The index k is called the event counter. For discrete event systems the state x(k)
typically contains the time instants at which the internal events occur for the kth time, the
input u(k) contains the time instants at which the input events occur for the kth time, and
the output y(k) contains the time instants at which the output events occur for the kth time1.

In [8, 9] we have extended the MPC framework to time-invariant MPL models (1)–(2) as
follows. Just as in conventional MPC [5, 10] we define a cost criterion J that reflects the
reference tracking error (Jout) and the control effort (Jin) in the event period [k, k+Np − 1]:

J(k) = Jout(k) + λJin(k)

where Np is the prediction horizon and λ is a weighting parameter. Possible choices for Jout
and Jin are given in [8, 9] (see also Section 5). The aim is now to compute an optimal input
sequence u(k), . . . , u(k+Np−1) that minimizes J(k) subject to linear constraints on the inputs
and outputs. Since the u(k)’s correspond to consecutive event occurrence times, we have the
additional condition ∆u(k+j) = u(k+j)−u(k+j−1) ≥ 0 for j = 0, . . . , Np−1. Furthermore,
in order to reduce the number of decision variables and the corresponding computational
complexity we introduce a control horizon Nc (≤ Np) and we impose the additional condition
that the input rate should be constant from the point k+Nc−1 on: ∆u(k+j) = ∆u(k+Nc−1)
for j = Nc, . . . , Np − 1, or equivalently ∆2u(k + j) = ∆u(k + j) − ∆u(k + j − 1) = 0 for
j = Nc, . . . , Np − 1.

MPC uses a receding horizon principle. This means that after computation of the optimal
control sequence u(k), . . . , u(k+Nc−1), only the first control sample u(k) will be implemented,
subsequently the horizon is shifted one sample, if necessary the model and the state estimate
are updated using new information of the measurements, and the optimization is restarted.

Define the vectors

ũ(k) =







u(k)
...

u(k+Np−1)






, ỹ(k) =







y(k)
...

y(k+Np−1)






.

Now the (noise-free) MPL-MPC problem for event step k can be defined as:

min
ũ(k)

Jout(k) + λJin(k)

subject to2 x(k + j) = A⊗ x(k + j − 1)⊕B ⊗ u(k + j) for j = 0, . . . , Np − 1 (3)

y(k + j) = C ⊗ x(k + j) for j = 0, . . . , Np − 1 (4)

∆u(k + j) ≥ 0 for j = 0, . . . , Np − 1 (5)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (6)

Ac(k)ũ(k) +Bc(k)ỹ(k) ≤ cc(k) , (7)

where (7) represents the linear constraints on the inputs and the outputs.

1More specifically, for a manufacturing system, x(k) contains the time instants at which the processing
units start working for the kth time, u(k) the time instants at which the kth batch of raw material is fed to
the system, and y(k) the time instants at which the kth batch of finished product leaves the system.

2In Section 4 we will see that it is possible to rewrite (3)–(4) as an expression of the form ỹ(k) = C̃⊗x(k−
1)⊕ D̃ ⊗ ũ(k) for properly defined matrices C̃ and D̃.

3

We conclude this section with some results on a class of (max,+) functions. Let Smpns

be the set of max-plus-nonnegative-scaling functions3, i.e., functions f of the form f(x) =
maxi(αi,1x1 + . . .+ αi,nxn + βi) with x ∈ R

n
ε and αi,j ∈ R

+ and βi ∈ R, where R
+ is the set

of the nonnegative real numbers. If we want to stress that f is a function of x we will denote
this by f ∈ Smpns(x).

Lemma 1 The set Smpns is closed under the operations ⊕, ⊗, and scalar multiplication by a
nonnegative scalar.

Proof : This is a consequence of the fact that for x, y, z, v ∈ Rε and ρ ∈ R
+ we have

max(x, y)⊕max(z, v) = max(max(x, y),max(z, v)) = max(x, y, z, v), max(x, y)⊗max(z, v) =
max(x, y) + max(z, v) = max(x+ z, x+ v, y + z, y + v) and ρmax(x, y) = max(ρx, ρy). ⋄

Lemma 2 If f ∈ Smpns then f is a nondecreasing function of its arguments.

Proof : If x̃, x̂ ∈ R
n
ε and x̃ ≤ x̂ then we have

∑

j αij x̃j + βi ≤
∑

j αij x̂j + βi since αi,j ≥ 0
for all i, j. As a consequence, we have f(x̃) ≤ f(x̂). ⋄

3 Noise and uncertainty model

In this section we extend the noise-free deterministic model (1)–(2) to include uncertainty.
So we now consider the following MPL system:

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k) (8)

y(k) = C(k)⊗ x(k) (9)

where A(k), B(k) and C(k) represent uncertain system matrices due to modeling errors or
disturbances. Usually fast changes in the system matrices will be considered as noise and
disturbances, whereas slow changes or permanent errors are considered as model mismatch.
In this paper both features will be treated in one single framework. The uncertainty caused by
disturbances and errors in the estimation of physical variables, is gathered in the uncertainty
vector e(k). In this paper we assume that the uncertainty is bounded. Furthermore, e(k) and
e(k−1) may be related, e.g., by assuming the change ∆e(k) = e(k)− e(k−1) to be bounded.

We assume that the uncertainty vector e(k) captures the complete time-varying aspect of
the system. Furthermore, the system matrices of an MPL model usually consist of sums or
maximizations of internal process times, transportation times, etc. (see, e.g., [2] or Section
6). Since the entries of e(k) directly correspond to the uncertainties in these duration times,
it follows from Lemma 1 that the entries of the uncertain system matrices belong to Smpns:

A(k) ∈ Sn×n
mpns(e(k)), B(k) ∈ Sn×m

mpns(e(k)), C(k) ∈ S l×n
mpns(e(k)) . (10)

4 Prediction model

We collect the uncertainty over the interval [k, k +Np − 1] in one vector

ẽ(k) =







e(k)
...

e(k +Np − 1)






.

3It is easy to verify that max-plus-nonnegative-scaling functions are convex and piecewise affine.

4

We assume that ẽ(k) is in a bounded polyhedral set Eẽ. Note that for ease of notation we
will sometimes drop the index k from ũ(k), ỹ(k) and ẽ(k). Now it is easy to verify that the
prediction model, i.e., the prediction of the future outputs for the system (8)–(9) is given by

ỹ(k) = C̃(ẽ(k))⊗ x(k − 1)⊕ D̃(ẽ(k))⊗ ũ(k) , (11)

in which C̃(ẽ(k)) and D̃(ẽ(k)) are given by

C̃(ẽ(k)) =







C̃1(ẽ(k))
...

C̃Np
(ẽ(k))






, D̃(ẽ(k)) =







D̃11(ẽ(k)) · · · D̃1Np
(ẽ(k))

...
. . .

...

D̃Np1(ẽ(k)) · · · D̃NpNp
(ẽ(k))







where
C̃m(ẽ(k)) = C(k +m− 1)⊗A(k +m− 1)⊗ . . .⊗A(k)

and

D̃mn(ẽ(k)) =



















C(k+m−1)⊗A(k+m−1)⊗ . . .⊗A(k+n)⊗B(k+n−1) if m > n

C(k+m−1)⊗B(k+m−1) if m = n

ε if m < n .

Lemma 3 The entries of C̃(ẽ(k)) and D̃(ẽ(k)) belong to Smpns(ẽ(k)). For a given x(k − 1)
and ũ(k) the entries of ỹ(k) belong to Smpns(ẽ(k)).

Proof : This is a direct consequence of the definition of C̃(ẽ(k)), D̃(ẽ(k)) and (11) in com-
bination with (10) and Lemma 1. ⋄

5 Worst-case criterion MPC

Recall that in MPL-MPC we want to minimize the criterion

J(k) = J(ỹ(k), ũ(k)) = Jout(ỹ(k)) + λJin(ũ(k))

where Jout represents the tracking error and Jin is related to the input dates. We aim to
find the optimal (ũ(k), ỹ(k)) that minimizes J(ỹ(k), ũ(k)), where ỹ(k) and ũ(k) are related by
(11). Note that, in contrast to the noise-free case, the relation between ũ(k) and ỹ(k) is not
unique anymore in the perturbed case because of the (bounded) perturbation ẽ(k). Instead of
considering general linear constraints (7) on the inputs and outputs as was done in [8, 9], we
will only consider linear constraints Ac(k)ũ(k) ≤ cc(k) on the input for the perturbed case.
A typical example of such a constraint is an upper and lower bound for the input rate:

dmin(k + j) ≤ ∆u(k + j) ≤ dmax(k + j) .

The worst-case MPC problem at event step k is now defined as follows:

min
ũ(k)

max
ẽ(k)∈Eẽ

J(ỹ(k), ũ(k))

subject to ỹ(k) = C̃(ẽ(k))⊗ x(k − 1)⊕ D̃(ẽ(k))⊗ ũ(k) (12)

5

∆u(k + j) ≥ 0 for j = 0, . . . , Np − 1 (13)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (14)

Ac(k)ũ(k) ≤ cc(k) . (15)

We now will eliminate (12) by substituting it in the cost criterion and by maximizing the
result over all possible ẽ(k). For a fixed ũ(k) the worst-case ẽ(k) will be denoted by ẽ#(ũ(k)),
or by ẽ#(k) or ẽ# for short if no confusion is possible. So for any ũ(k), we let4

ẽ#(k) = arg max
ẽ(k)∈Eẽ

Jout(ỹ(ẽ(k), ũ(k)))

J
#
out(ũ(k)) = Jout(ỹ(ẽ

#(k), ũ(k))) .

The outer worst-case MPC problem is now defined as follows:

min
ũ(k)

J
#
out(ũ(k)) + λJin(ũ(k))

subject to ∆u(k + j) ≥ 0 for j = 0, . . . , Np − 1 (16)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (17)

Ac(k)ũ(k) ≤ cc(k) . (18)

Now we make the following assumptions:

Assumption A1: Jout is a nondecreasing5, convex function of ỹ.

Assumption A2: Jin is convex in ũ.

These assumptions hold for several objective functions that are frequently encountered in a
discrete event systems context. As a consequence, they are not overly restrictive:

• If the due dates r for the outputs of the systems are known and if we have to pay a
penalty for every delay, a possible output cost criterion is the tardiness:

Jout,1(ỹ(k)) =
∑

i

max(ỹi(k)− r̃i(k), 0) ,

where r̃ is defined in a similar way as ỹ. Clearly, Jout,1 satisfies Assumption A1. Another
objective function that satisfies Assumption A1 is the maximal output delay:

Jout,2(ỹ(k)) = max
i

(

max(ỹi(k)− r̃i(k), 0)
)

.

• For the input cost criterion we could take [8, 9]:

Jin,0(ũ(k)) = ũT (k)ũ(k) or Jin,1(ũ(k)) =
∑

i

ũi(k)

which minimize the input time instants, or

Jin,2(ũ(k)) = −
∑

i

ũi(k) ,

4Note that Jin(k) does not depend on ẽ(k).
5The function f : Rn → R is nondecreasing if for any x, y ∈ R

n with xi ≤ yi for i = 1, . . . , n, we have
f(x) ≤ f(y).

6

which maximizes the input time instants6. Clearly, Jin,0, Jin,1 and Jin,2 all satisfy
Assumption A2.

Proposition 4 If Assumptions A1 and A2 hold, then the outer worst-case MPC problem is
convex in ũ.

Proof : The function Jin is convex in ũ by Assumption A2. Furthermore, the constraints
(16)–(18) only depend on ũ and they are convex in ũ. So we only have to prove that J#

out is
convex in ũ. Define for 0 ≤ ρ ≤ 1:

ũ3(k) = ρũ1(k) + (1− ρ)ũ2(k) ẽ
#
1 (k) = arg max

ẽ(k)∈Eẽ
Jout(ỹ(ẽ(k), ũ1(k)))

ẽ
#
2 (k) = arg max

ẽ(k)∈Eẽ
Jout(ỹ(ẽ(k), ũ2(k))) ẽ

#
3 (k) = arg max

ẽ(k)∈Eẽ
Jout(ỹ(ẽ(k), ũ3(k))) .

Now we have7:

[ỹ3(ẽ
#
3 , ũ3)]i =

[

C̃(ẽ#3) D̃(ẽ#3)
]

i
⊗

[

x(k − 1)
ũ3(k)

]

(by (11))

= max
ℓ

(

[

C̃(ẽ#3) D̃(ẽ#3)
]

i,ℓ
+

[

x(k − 1)
ũ3(k)

]

ℓ

)

= max
ℓ

(

[

C̃(ẽ#3) D̃(ẽ#3)
]

i,ℓ
+

[

x(k − 1)
ρũ1(k) + (1− ρ)ũ2(k)

]

ℓ

)

= max
ℓ

(

[

ρC̃(ẽ#3) + (1− ρ)C̃(ẽ#3) ρD̃(ẽ#3) + (1− ρ)D̃(ẽ#3)
]

i,ℓ
+

[

ρx(k − 1) + (1− ρ)x(k − 1)
ρũ1(k) + (1− ρ)ũ2(k)

]

ℓ

)

≤ max
ℓ

(

[

ρC̃(ẽ#3) ρD̃(ẽ#3)
]

i,ℓ
+

[

ρx(k − 1)
ρũ1(k)

]

ℓ

)

+max
ℓ

(

[

(1− ρ)C̃(ẽ#3) (1− ρ)D̃(ẽ#3)
]

i,ℓ
+

[

(1− ρ)x(k − 1)
(1− ρ)ũ2(k)

]

ℓ

)

(since maxi(vi, wi) ≤ maxi(vi) + maxi(wi) for vi, wi ∈ Rε)

≤ ρmax
ℓ

(

[

C̃(ẽ#3) D̃(ẽ#3)
]

i,ℓ
+

[

x(k − 1)
ũ1(k)

]

ℓ

)

+ (1− ρ)max
ℓ

(

[

C̃(ẽ#3) D̃(ẽ#3)
]

i,ℓ
+

[

x(k − 1)
ũ2(k)

]

ℓ

)

≤ ρ[ỹ(ẽ#3 , ũ1)]i + (1− ρ)[ỹ(ẽ#3 , ũ2)]i

and thus
Jout(ỹ3) ≤ Jout

(

ρỹ(ẽ#3 , ũ1) + (1− ρ)ỹ(ẽ#3 , ũ2)
)

, (19)

6For a manufacturing system, this would correspond to a production scheme in which raw material is fed
to the system as late as possible.

7We use [M]i ([m]i) to denote the ith row (component) of a matrix M (column vector m).

7

since Jout is a nondecreasing function of ỹ by Assumption A1. This implies that

J
#
out

(

ρũ1 + (1− ρ)ũ2
)

= J
#
out(ũ3) = Jout(ỹ3(ẽ

#
3 , ũ3))

≤ Jout
(

ρỹ(ẽ#3 , ũ1) + (1− ρ)ỹ(ẽ#3 , ũ2)
)

(by 19)

≤ ρJout(ỹ(ẽ
#
3 , ũ1)) + (1− ρ)Jout(ỹ(ẽ

#
3 , ũ2))

(since Jout is convex in ỹ by Assumption A1)

≤ ρJout(ỹ(ẽ
#
1 , ũ1)) + (1− ρ)Jout(ỹ(ẽ

#
2 , ũ2))

(by the definition of ẽ#1 and ẽ
#
2)

≤ ρJ
#
out(ũ1) + (1− ρ)J#

out(ũ2) .

Hence, J#
out is a convex function of ũ. ⋄

So the outer worst-case MPC problem is a convex problem, which can be solved very
efficiently using, e.g., an interior-point algorithm [14, 18].

Let us now consider the inner worst-case MPC problem:

max
ẽ(k)∈Eẽ

Jout(ỹ(ẽ, ũ)) (20)

subject to ỹ(ẽ, ũ) = C̃(ẽ)⊗ x(k − 1)⊕ D̃(ẽ)⊗ ũ . (21)

We will show how this problem can be solved efficiently. Recall that Eẽ is a bounded polyhedral
set. The vertices of Eẽ form a lattice w.r.t. the partial order relation ≤. Let Ev

ẽ,max be the top
points of this lattice, i.e., Ev

ẽ,max is the set of the vertex points ẽvmax of Eẽ for which we have

6 ∃ẽ ∈ Eẽ with ẽ 6= ẽvmax and ẽvmax ≤ ẽ .

Now consider the reduced inner worst-case MPC problem:

max
ẽ(k)∈Ev

ẽ,max

Jout
(

C̃(ẽ)⊗ x(k − 1)⊕ D̃(ẽ)⊗ ũ
)

. (22)

Lemma 5 If Assumption A1 holds, then for a given x(k − 1) and ũ(k) the function Jout is
a convex function of ẽ(k).

Proof : If the function h is defined by h(x) = f(g(x)) and if g is convex and f is convex
and nondecreasing, then h is convex [16, Theorem 5.1]. Functions that belong to Smpns are
convex. Since for a given ũ we have ỹ(ẽ, ũ) ∈ Smpns by Lemma 3, ỹ is convex as a function
of ẽ. Furthermore, Jout is convex and nondecreasing as a function of ỹ by Assumption A1.
Hence, Jout is convex in ẽ. ⋄

Proposition 6 If Assumption A1 holds, then an optimal solution of the reduced inner worst-
case MPC problem (22) is also an optimal solution of the (full) inner worst-case MPC problem
(20)–(21).

Proof : First we prove that the maximum in the (full) inner worst-case MPC problem
(20)–(21) will be reached in a “maximal” point of Eẽ, i.e., a point ẽmax (not necessarily
a vertex point!) of Eẽ for which we have 6 ∃ẽ ∈ Eẽ with ẽ 6= ẽmax and ẽmax ≤ ẽ . Indeed,
from Lemmas 2 and 3 it follows that if ẽ1 ≤ ẽ2 then we have ỹ(ẽ1) ≤ ỹ(ẽ2) and thus also

8

Jout(ỹ(ẽ1, ũ) ≤ Jout(ỹ(ẽ2, ũ)) because of Assumption A1. Hence, the maximum of the (full)
inner worst-case MPC problem will be reached in a “maximal” point of Eẽ.
Now we show that the maximum will be reached in a “maximal” vertex point. Suppose that
the maximum would be reached in a point ẽmax that is not a vertex point. In that case, ẽmax

can be written as the convex combination of the vertex points ẽv,jmax of the face of Eẽ to which
ẽmax belongs. Since for a given x(k − 1) and ũ(k) the function Jout is convex in ẽ by Lemma
5 and thus also quasi-convex, we have Jout(ỹ(ẽmax, ũ)) ≤ maxj Jout(ỹ(ẽ

v,j
max, ũ)). Hence, an

optimal solution of the reduced inner problem is also an optimal solution of the full inner
problem. ⋄

The set Ev
ẽ,max is independent of ũ and can thus be pre-computed off-line. Methods to compute

all vertex points of a polyhedral set can be found in [12, 13]8. Note that the computation
can be made more efficient by already discarding the vertex points that cannot result in
vertex points that will belong to Ev

ẽ,max during the computation (cf. [7]). In combination with
Proposition 6 this allows for an efficient solution of the inner worst-case MPC problem. Since
the outer worst-case MPC problem is convex by Proposition 4, this implies that the overall
worst-case MPC problem can be solved efficiently.

6 Example: Simple production system

M1

M2

p1(k)

p2(k)

✲

✲ ✑
✑
✑

✑
✑
✑✑✸

✲u(k) y(k)

x1(k)

x2(k)

t1=1

t2=6

t3=0

t4=3

Figure 1: A production system.

Consider the production system of Figure 1. This system consists of two machines M1 and
M2. When a batch of raw material is fed to the system, one part of the batch goes directly
from the input of the system to the input of machine M2 (with a certain transportation delay),
whereas the other part of the batch first goes to machine M1 for pre-processing. Afterward,
assembly takes places on machineM2. We assume that each machine starts working as soon as
possible on each batch, i.e., as soon as the raw material or the required intermediate products
are available, and as soon as the machine is idle (i.e., the previous batch has been finished and
has left the machine). The values of the transportation times tj are specified in the figure.
Define u(k) : time instant at which the system is fed for the kth time

y(k) : time instant at which the kth product leaves the system
xi(k) : time instant at which machine i starts for the kth time
pi(k) : processing time on machine i for the kth batch.

Both processing times p1(k) and p2(k) are assumed to be estimated with some modeling error,
and are corrupted by noise. Suppose p1(k) ∈ [2, 6] and p2(k) ∈ [1, 6] and p1(k) + p2(k) ≤ 9.

8The paper [12] also provides more information on the complexity of computing the set of vertices of Eẽ

and a (crude) upper bound for the number of elements of Eẽ (and thus also of Ev
ẽ,max).

9

Note that this implies that if p1(k) < 5 then the direct path from the input to machine M2 is
the longest, whereas if p1(k) > 5 the path from the input via machine M1 to machine M2 is
the longest. The constraint p1(k)+p2(k) ≤ 9 indicates that the processing times are somehow
related. For example, if the processing time p1(k) is larger than 3, the upper bound for p2(k)
will decrease. So, if p1(k) is large, then p2(k) will be small, and vice versa.

From the system equations

x1(k) = max
(

p1(k − 1) + x1(k − 1), u(k) + 1
)

x2(k) = max
(

p2(k − 1) + x2(k − 1), p1(k) + x1(k), u(k) + 6
)

y(k) = x2(k) + p2(k) + 3

we derive:

x(k) =

[

p1(k − 1) ε

p1(k − 1) + p1(k) p2(k − 1)

]

⊗ x(k − 1)⊕

[

1
max(6, p1(k) + 1)

]

⊗ u(k)

y(k) =
[

ε p2(k) + 3
]

⊗ x(k) .

If we define

e(k) =









e1(k)
e2(k)
e3(k)
e4(k)









=









p1(k − 1)
p2(k − 1)
p1(k)
p2(k)









,

then we obtain

A(k) =

[

e1(k) ε

e1(k) + e3(k) e2(k)

]

, B(k) =

[

1
max(6, e3(k) + 1)

]

, C(k) =
[

ε e4(k) + 3
]

.

Note that the entries of A(k), B(k) and C(k) belong to Smpns(e(k)).
For this perturbed MPL system we solve the worst-case MPC problem with Np = 4,

Nc = 2 and the cost criterion9

J(ỹ(k), ũ(k)) = Jout,1(ỹ(k)) + λJin,2(ũ(k))

=

Np−1
∑

i=0

max(y(k + i)− r(k + i), 0)− λ

Np−1
∑

i=0

u(k + 1) (23)

with λ = 0.01. The initial state is equal to x(0) = [5 10]T . The due date signal r is an
monotonically increasing function with initial value r(0) = 18 and a random increment within
the bounds 6.1 ≤ ∆r(k) ≤ 6.5. With the above choice of the cost criterion, we can recast the
worst-case MPC problem as a linear programming problem (see Appendix), which we have
solved using the linear programming function linprog of Matlab.

The top points ẽvmax correspond to the critical points (p1(k + j), p2(k + j)) = (3, 6) and
(p1(k+j), p2(k+j)) = (6, 3). The set Ev

ẽ,max consists of 2
Np+1 = 32 top points10, corresponding

to all 25 combinations of the two critical points (p1(k+j), p2(k+j)) for j = −1, 0, . . . , Np−1.
The optimal MPC input sequence is computed for k = 1, . . . , 100, and for each k, the first

element u(k) of the sequence ũ(k) is applied to the perturbed system (due to the receding

10

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

1

2

3

4

5

6

parameter p1 −−>

p
a
ra

m
e
te

r
 p

2

−

−
>

Figure 2: The parameters
{

(ptrue1 (k), ptrue2 (k))
}

k=0,...,100
for the true system.

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

3

4

5

6

event counter k −−>

tr
a
c
k
in

g
 e

rr
o
r

 (
r−

y
)

 −
−

>

Figure 3: The difference r(k)−y(k) between the due date signal r and the output date signal
y (solid: worst-case algorithm, dashed: fixed model algorithm).

horizon strategy). In the experiment, the true system is simulated for a random sequence
{

(ptrue1 (k), ptrue2 (k))
}

k=0,...,100
in the allowed region (see Figure 2).

Figure 3 gives the difference between the due date signal r and the output date signal y.
To see the influence of the worst-case approach, the design is also done with a fixed model

9Since the production system is a single-input single-output system, we have ỹi(k) = y(k + i− 1).
10In general, if e(k) has 4 components, then we would expect 4Np components in ẽ(k), but since e(k) and

e(k + 1) have 2 components in common, there will be 2Np+1 components in ẽ(k).

11

in one of the critical points (p1, p2) = (6, 3). The fixed model algorithm minimizes the cost
criterion (23) using the algorithm of [9], so u(k) is chosen as large as possible such that r ≥ y

(then Jout,1 is zero). Perturbations will often push the real value y over the due date r (so
r < y) as can be seen in Figure 3. This implies that for the fixed model algorithm the due
dates are not always met. The worst-case algorithm minimizes the cost criterion (23) for the
worst-case realizations of perturbation ẽ. For all possible perturbations we will find y ≤ r,
for the worst-case perturbation we find y = r. In Figure 3 it can be observed that for the
worst-case approach, the difference signal is always larger than zero, which means that the
due dates are always met. For the events k = 35 and k = 60 the solid line is close to zero,
which means that the actual perturbation is close to worst-case.

To compare the closed-loop results numerically, we introduce a closed-loop criterion

Jcl =
100
∑

k=1

max(y(k)− r(k), 0)− λ

100
∑

k=1

u(k)

which gives an indication of performance over the larger time window [1,100] at which we aim
with the cost criterion (23) in each MPC interval [k, k+Np−1]. For the worst-case model we
find Jcl = −329, while for the fixed model we obtain Jcl = −302. Obviously the worst-case
approach has improved the performance in comparison with the fixed model approach.

7 Conclusions

We have further extended the MPC framework to include max-plus-linear discrete event
systems with modeling errors, noise and/or disturbances. For max-plus-linear systems, the
entries of the system matrices correspond to production times or transportation times. There-
fore, modeling noise (i.e., variation in the processing times) can be modeled as an additive
term to the system matrices. Modeling errors (caused in the modeling or identification phase)
also occur as additive uncertainty on the system matrices and can be added to the noise com-
ponent. In order to handle perturbations due to modeling errors and noise, we have presented
a unified framework to deal with bounded uncertainties for max-plus-linear discrete event sys-
tems. This allows the design of a worst-case MPC controller for such systems. We have shown
how the resulting optimization problem can be computed efficiently using a two-level opti-
mization approach, where the outer problem is convex. For specific choices, the problem can
be recast as a linear programming problem.

Topics for future include: inclusion of a state observer (based on partial information of
the current and previous states), extension to infinite horizon MPC, investigation of stability
issues and determination of tuning rules (for λ, Np Nc) in the perturbed case, characterization
of the computational complexity of the worst-case MPC problem, complexity reduction and
approximation to further improve the efficiency of our approach, inclusion of constraints on
the outputs, and extension to a probabilistic uncertainty framework.

Acknowledgments

This research was partially sponsored by the TMR project ALAPEDES (Algebraic Approach to Per-
formance Evaluation of Discrete Event Systems) of the European Community Training and Mobility of
Researchers Program (network contract ERBFMRXCT960074), and by the FWO (Fund for Scientific
Research–Flanders) Research Community ICCoS (Identification and Control of Complex Systems).

12

References

[1] F. Allgöwer, T.A. Badgwell, J.S. Qin, J.B. Rawlings, and S.J. Wright, “Nonlinear predictive
control and moving horizon estimation – An introductory overview,” in Advances in Control:
Highlights of ECC ’99 (P.M. Frank, ed.), pp. 391–449, Springer, 1999.

[2] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat, Synchronization and Linearity. New York:
John Wiley & Sons, 1992.

[3] E.F. Camacho and C. Bordons, Model Predictive Control in the Process Industry. Berlin, Ger-
many: Springer-Verlag, 1995.

[4] J. Cardoso, R. Valette, and D. Dubois, “Possibilistic Petri nets,” IEEE Transactions on Systems,
Man and Cybernetics, Part B: Cybernetics, vol. 29, no. 5, pp. 573–582, 1999.

[5] D.W. Clarke, C. Mohtadi, and P.S. Tuffs, “Generalized predictive control – Part I. The basic
algorithm,” Automatica, vol. 23, no. 2, pp. 137–148, Mar. 1987.

[6] R.A. Cuninghame-Green, Minimax Algebra, vol. 166 of Lecture Notes in Economics and Mathe-
matical Systems. Berlin, Germany: Springer-Verlag, 1979.

[7] B. De Schutter and B. De Moor, “The extended linear complementarity problem,” Mathematical
Programming, vol. 71, no. 3, pp. 289–325, Dec. 1995.

[8] B. De Schutter and T. van den Boom, “Model predictive control for max-plus-linear systems,”
in Proceedings of the 2000 American Control Conference, Chicago, Illinois, pp. 4046–4050, June
2000.

[9] B. De Schutter and T. van den Boom, “Model predictive control for max-plus-linear discrete event
systems,” Automatica, vol. 37, no. 7, pp. 1049–1056, July 2001.

[10] C.E. Garćıa, D.M. Prett, and M. Morari, “Model predictive control: Theory and practice — A
survey,” Automatica, vol. 25, no. 3, pp. 335–348, May 1989.

[11] F. Lin, “Robust and adaptive supervisory control of discrete event systems,” IEEE Transactions
on Automatic Control, vol. 38, no. 12, pp. 1848–1852, Dec. 1993.

[12] T.H. Mattheiss and D.S. Rubin, “A survey and comparison of methods for finding all vertices
of convex polyhedral sets,” Mathematics of Operations Research, vol. 5, no. 2, pp. 167–185, May
1980.

[13] T.S. Motzkin, H. Raiffa, G.L. Thompson, and R.M. Thrall, “The double description method,” in
Contributions to the Theory of Games (H.W. Kuhn and A.W. Tucker, eds.), no. 28 in Annals of
Mathematics Studies, pp. 51–73, Princeton, New Jersey: Princeton University Press, 1953.

[14] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming.
Philadelphia, Pennsylvania: SIAM, 1994.

[15] S.J. Park and J.T. Lim, “Fault-tolerant robust supervisor for discrete event systems with model
uncertainty and its application to a workcell,” IEEE Transactions on Robotics and Automation,
vol. 15, no. 2, pp. 386–391, Apr. 1999.

[16] R.T. Rockafellar, Convex Analysis. Princeton, New Jersey: Princeton University Press, 1970.

[17] T. van den Boom and B. De Schutter, “MPC for max-plus-linear systems: Closed-loop behav-
ior and tuning,” in Proceedings of the 2001 American Control Conference, Arlington, Virginia,
pp. 325–330, July 2001.

[18] S.J. Wright, Primal-Dual Interior Point Methods. Philadephia, Pennsylvania: SIAM, 1997.

[19] S. Young and V.K. Garg, “Model uncertainty in discrete event systems,” SIAM Journal on Control
and Optimization, vol. 33, no. 1, pp. 208–226, Jan. 1995.

13

Appendix

Consider the cost criterion (23). Let L = 2Np+1 and Ev
ẽ,max = {ẽv,ℓmax|ℓ = 1, 2, . . . , L}. Introduce the

auxiliary variables ηℓ,i defined as

ηℓ,i = max
(

ỹi(ẽ
v,ℓ
max, ũ)− r̃i, 0

)

(24)

for ℓ = 1, . . . , L = 2Np+1 and i = 1, . . . , Np. An upper bound for the worst-case cost function J
#
out,1(ũ)

is given by the scalar γ satisfying

γ ≥
∑

i

ηℓ,i for all ℓ = 1, . . . , L (25)

Using the equality

ỹi(ẽ
v,ℓ
max, ũ) = [C̃(ẽv,ℓmax)⊗ x(k − 1)⊕ D̃(ẽv,ℓmax)⊗ ũ]i

(cf. (11)), equation (24) leads to the following inequalities:

ηℓ,i ≥ [C̃(ẽv,ℓmax)]ip + xp(k − 1)− r̃i for ℓ = 1, . . . , L, i = 1, . . . , Np, p = 1, . . . , n (26)

ηℓ,i ≥ [D̃(ẽv,ℓmax)]iq + ũq(k)− r̃i for ℓ = 1, . . . , L, i = 1, . . . , Np, q = 1, . . . , Np (27)

ηℓ,i ≥ 0 for ℓ = 1, . . . , L, i = 1, . . . , Np (28)

If we define the vector z =
[

γ η1 . . . ηL ũT
]T

, then it is easy to verify that the minimization of the
worst-case cost criterion J(ỹ(k), ũ(k)) = Jout,1(ỹ(k)) + λJin,2(ũ(k)) can be recast as the optimization
problem

min
z

γ − λ
∑

i

ũi

subject to (16)–(18) and (25)–(28).

Since the cost criterion and all the constraints of this optimization problem are linear in vector z, the
optimization problem is a linear programming problem, which can be solved very efficiently.

Note that the minimization of γ forces the inequality (25) to be tight. A similar statement holds
for the system of inequalities (26)–(28): for each ℓ, i at least on of the inequalities in (26)–(28) is tight.
Hence, we have indeed ηℓ,i = max

(

ỹi(ẽ
v,ℓ
max, ũ)− r̃i, 0

)

and γ(ũ) = maxℓ Jout,1(ỹ(ẽ
v,ℓ
max, ũ)).

i

