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Absiract

We describe e framework for controlling a group of un-
manned aerial vehicles (UAVs) flying in close forma-
tion. We first present a nonlinear dynamical model
which includes the induced rolling moment by the lead
aircraft on the wing of the following aircraft. Then,
we outline two methods for trajectory generation of the
leading aircraft, based on interpolation techniques on
the Euclidean group, SE(3). Two formation controllers
that allow each aircraft to maintain its position and ori-
entation with respect to neighboring UAVs are derived
using input-oufput feedback linearization. Numerical
simulations illustrate the epplication of these ideas and
demonstrate the velidity of the proposed framework.

1 Introduction

Research activity in unmanned aerial vehicles has in-
creased substantially in the last fcw years. Areas of
application include, space exploration [1], surveillance,
target acquisition, and formation flight, see for exam-
ple [2]. Researchers in UAV systems are facing new
challenges and open issues that require deeper investi-
gation. Singlc-agent techniques would require improve-
ments and extensions to make them suitable for multi-
agent analysis and design. For instance, we nced to
address stability and robustness of multi UAV systems.

Flying in close formation is a hard problem which
requires highly accurate scnsors (i.e., GPS/INS
[3]), precisc control systems [4], and communica-
tion/coordination protocols [5]. It is well-known that
the follower aircraft can bencfit from a drag reduction
if it is placed on the kot spot of the vortex produced by
its leader aircraft. Howcever, it is also known that it is
very difficult to find and maintain the airplane on such
a hot spot, see for instance [6, 7].

Another important clement in formation flight is tra-
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jectory generation of the lead aircraft. An attractive
choice is optimal path planning on SE(3) [8]. In [9],
authors develop a method for generating smooth tra-
Jjectories that minimize the total energy associated with
the translations and rotations of the UA Vs, while main-
taining a rigid formation. If the leading aircraft is
holonomic, we can generate optimal motion. For the
nonholonomic case, we generate a smooth interpolant
satisfying appropriate boundary conditions and non-
holonomic constraints.

Two controllers have been designed based on input-
output linearization. The first controller allows the
following aircraft to maintain a desired position with
respect to its leader. The second controller allows a
third aircraft to follow two leading aircraft. Thus, a
triangular formation can be maintained without colli-
sions as the leader maneuvers along its trajectory.

The rest of the paper is organized as follows. Scction 2
gives some mathematical preliminaries and formulates
the formation control problem. In section 3, the non-
lincar dynamical model of an aircraft is presented. The
trajectory generator for the lead aircraft is outlined in
scction 4. Section 5 describes the basic formation con-
trollers we use in our work. Section 6 presents some
numerical simulation results and illustrates the bencfits
and the limitations of this methodology underlying the
implementation of autonomous formation flight. Fi-
nally, some concluding remarks and futurc work are
given in section 7.

2 Background and problem formulation

2.1 The Lie groups S0O(3) and SE(3)

Let GL(3) denote the genceral lincar group of dimension
3, which is a smooth manifold and a Lie group. The
rotation group on R? is a subgroup of the general linear
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group, defined as
50(3) = {R|R € GL(3,R), RRT = I, detR = 1}

GA(3) = GL(3) x B? is the affine group. SE(3) =
80(3) x R? is the special Euclidean group, and is the
set of all rigid displacements in R*. Special consid-
eration will be given to SO(3) and SE(3). The Lie
algebras of SO(3) and SE(3), denoted by so(3) and
se(3) respectively, are given by:

w

}s
J IQJESO(B),uERa}

so(3) = {w e B, &7 = -
AT

wor={[2 ¢

where @ is the skew-symmetric matrix form of the vec-
tor w € B3, Given a curve

A(t) : [~a,0] - SE(3), Alt) = [ RO it ] W

an element ((¢) of the Lic algebra se(3) can be associ-
ated to the tangent vector A(t) at an arbitrary point ¢

by: }

where &(t) = RTR is the corresponding element from
s0(3). Consider a rigid body moving in free space. As-
sume any inertial reference frame {E} fixed in space
and a frame {B} fixed to the body at point O as shown
in Figure 1. A curve on SE(3) physically represents a
motion of the rigid body. If {w(t),v(#)} is the vector
pair corresponding to ¢{(¢), then w corresponds to the
angular velocity of the rigid body while v is the lin-
ear velocity of O, both expressed in the frame {B}. In
kincmatics, elements of this form are called twists and
se(3) thus corresponds to the space of twists. The twist
¢{(t) computed from Equation {2) does not depend on
the choice of the inertial frame.

RTd

(0 =a"wie = %0 )

In this paper, we use Euler angles body fixed ZY X
as parameterization of SO(3). Explicitly, the rotation
R($,0,1) is composed of a rotation of ¥ about the z-
axis, followed by a rotation of @ about the y-axis, and
a rotation of ¢ about the x-axis.

2.2 Problem formulation

We formulate the autonomous formation flight prob-
lem as a threc-level hierarchy. The trajcctory gener-
ator produces a trajectory A(t) € SE(3) for the lead
aircraft to follow. Then, the coordination protocol pro-
vides the desired set-point values to the control level.
Finally, controllers based on input-output feedback lin-
carization allow the aircraft A; to follow its designated
leader A;.

In general, we would like to place cach follower on the
hot spot of the vortex produced by its leader, thus a
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Figure 1: Body reference frames on an aircraft.

maximum drag reduction for the group is achieved. If
in addition we generate a smooth leading trajectory,
then the whole formation will flew describing a well-
behaved motion in terms of fuel consumption.

3 Aircraft Nonlinear Model

In this section, we describe the dynamical model of an-
aircraft. As it isshown in Figure I, the angles (i, v, x)
describe the attitude with respect to the wind azes,
(p, g, ) are the components of the angular velocity wy
with respect to the body frame (these components are
usually referred as roll rate, pitch rete, and yaw rate).
V is the aircraft veloeity, and o, 3 are the angles of at-
tack and sideslip, respectively. The notation commonly
used in flight dynamics [10] is summarized in Table 1.
The range of values of the Euler angles is

Table 1: ZY X Euler Angles

Axes roll 4, | pitch 8, | yaw 8,
Wind M ¥ X
Body @ [ P
Stability 0 o -8
—r<8, <m, —ggaygg, 0<8, < 2.

The equations of motion of an aircraft are given by

- D
V=———gs

o~ gsiny 3
G=g—qgysecf —(pcosa+rsina)tanf {4)
B =ry,+psina—rcosa {(5)

where m is the mass of the aircraft and g is the gravity
constant. The components of the angular velocity in
wind frame become

Pw = (pcosa +rsina)cos S + {g ~ &) sin
= —_— L —
Qu = —= (L — mgcos pcosy)
1
w=——(—C+ i
¥ v ( myg sin g cos-y)
The input vector is u = [§, 8. . &.]7 where &,

denotes the setting of the throttle, and (4,4, &, §;) de-
note the deflections of the adleron, elevator, and rudder,
respectively.



The roli, pitch and yaw rates in wind axes become

i Pw + (G 5in g + 7, cos ) tany (6)
¥ = QuCOSH —Ty,sSinp (7
x = (guwsinp+ 7y cosp)secy (8)

If the angular velocity with respect to the body frame
iswp=1[p ¢ r]7,then

3.

wpy =g |= Jb"lzinwab + Jb_l'r +L (9)

7

where J; is the inertia matrix, & is the skew-symmetric
operator, T is the external moment vector, and £ =
[L, 0 0]T is the rolling moment induced by the wake
of the lead aircraft [11, 12]. The vortex produces an
up-wash on the wing of the following aircraft. As a re-
sult, the angle of attack and the lift increase. Since the
vortex-induced velocity decreases with distance, Ly is
generated. It is assumed here that L, can be estimated
using an appropriate filter [6]. For a detailed introduc-
tion on formation flight aerodynamics, the reader is
referred to [4].

The acrodynamic forces F,, = [-D — C — L]T are the
drag, side, and lift, respectively, and the external mo-
ments acting on the aircraft are 7 = [Ly My Ny).
Forces and moments are nonlinear vector functions of
the aerodynamic parameters, the mazimal thrust P,
the input vector, and the state of the aircraft. It is
assumed that the thrust has no cffect on 7, and the
deflections (d,, d., d;) have no effect on F,.

By using the flat non-rotating Earth assumption, the
wind—azis navigation equations expressed on Earth ref-
crence frame {E} become

Bt = Vcosyeosy (10}
£y = Veosvysiny (11}
E; = —Vsing (12)

Equations (3)-(12} describe an aircraft whose state
X = [XT = XTI|T is defined in an open neighbor-

long lat

hood X C R'?, where

Xlong = {V @x q ¥ Em Ez}T (13)
Xaw = B prou x By (14)
u = [6 8, 6. 67 (15)

are the longitudinal and lateral state vectors, and the
"input vector, respectively.

In the next section we deseribe the trajoctory generator
for the lead aircraft.
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4 Trajectory Generation on SFE(3)

4.1 Optimal trajectory generation for a holo-
nomic aircraft

If J; is the inertia matrix of the airplane about frame
{B} placed at the centroid and m is its mass, then the
total kinetic energy of the moving airplane induces a
left invariant metric on SE(3). If A is an arbitrary
point on SE(3) and X,Y € T4SE(3), then

< XY >sp=[wT oI ]G [ “ ] ()
G| B2 0 !
=l 0 mi2n

where {w,,v;} is the vector representation of the twist
corresponding to X. Metric (16} can be shown to be in-
herited from the ambient space GA(3), where the met-
ric has the following form:

<X,Y >ga=Tr(X"YW) (17)
with
o+ | w0 1 1
W= [ 0 1/2m ] ’ W = ZTT(JE)I:; - Ewa (18)

We can use the norm induced by metric (17) to define
the distance between elements in GA{3). Using this
distance, for a given B € GA(3), we define the projec-
tion of B an SE(3) as being the closest A € SE(3) with
respect to metric (17). The following result is stated
and proved in [13]:

Proposition 4.1 Let B € GA(3} with the following
block partition

|

and U, %,V the singuler value decomposition of B, W :

B,
0

B,

B 1

] , Bl € GL(-?)), B e R?

B,W =UzvT (19)
Then the projection of B on SE(3) is given by
T
A= [ v B ] € SE@3) (20)

Based on Proposition 4.1, a procedure for generat-
ing near optimal curves on SE(3) follows: generate
the curves in GA(3) and project them on SE(3). In
[13], we prove that the overall procedure is left invari-
ant {i.e., the generated trajectorics arc independent of
the choice of the inertial frame {E}). The projection
method can be used to gencrate near optimal interpo-
lating motion between end poses (geodesics) or poses
and velocities (minimum acceleration curves). In what
follows, the given boundary conditions will be denoted
by R%,d% R%,d® at ¢t = 0 and R, d', R}, d" at t = 1.



The differential equations to be satisfied by geodesics
on SE(3) equipped with metric (16) are derived in
[14]. The translational part is easily integrable: d(t) =
d® + (d* — d°)t, t € [0, 1] If the projection method is
used, the rotation is given by R(t) = U(t)V7(2), where
MW = UZVT with M(t) = [R® + (B! — RO)W.

4.2 Trajectory generation for a nonholonomic
leader

In this scction we assume that the leader is a nonholo-
nomic (airplane like) aircraft, whose velocity is always
along the x-axis of its body frame {B}. Given the mo-
tion of its centroid d(¢) in the earth frame {E}, we gen-
erate the airplane’s rotation so that the nonholonomic
constraint is satisfied at all times.

A nice solution to this problem can be found using con-
trols as in [15]. Alternatively, let d(¢) € R® be a smooth
curve describing the translational part of A(t) € SE(3)
as in (1). We need to generate the rotational part
R(t) € SG(3) s0 that the velocity d(t) is along the x-
axis of the moving frame {B}. For motion planning, we
assume that the body frame {B} is coincident with the
wind frame {W}. Let n(t) = [n. n, n.]T be the unit
vector along the velocity d(t), i.e., n(t) = d(t)/[{d(2)]i.
Then, by definition of a rotation matrix, n{t) should be
the first column of R(t). Using R(#, 8, ) and following
‘the notation in Table 1, x(¢) and (t) are easily deter-
mined. The third angle 4(¢) can be arbitrarily chosen,
for example, as a linear function of time to interpolate
between given end poses.

5 UAV Formation Control

By following the lines of [16], we would like to use dy-
namic feedback and coordinate transformation to con-
vert the nonlinear system (3)-(12) into a fully lincar
system. The state vector X is rearranged into the fol-
lowing four subsets

= (V,7x) (21)
2 = (g, o, B) (22)
z3 = (p,q 1) (23)
Ty = (Ea:, By, B2 (24)

Similarly for the input commands, we have

®w = 6,, (25)
Uz = (‘saad.e, 61‘) (26)

Now we derive a controller for the follower aircraft A;
assuming the lead aircraft A; is tracking A(¢) € SE(3).
Thus, A; should maintain a prescribed relative position
and orientation with respect to its leader A;. As usual,
the control objective is to drive the output vector ||z —
z|| = 0 as t — oo. The desired output z¢ will depend
on the desired formation shape.

Follower

i
1 L
g e
R o e

- . c -
Y% T

™ Fetrratioh Plafe

Figure 2: Flight formation geometry.

The geometry of two UAVs flying in formation is de-
picted in Figure 2. The plane formed by the Xw, and
Yw, wind axes of the lead aircraft is called formation
plane. Let Q;; denote the projection of the center of
mass of A; on the formation plane of A;. If we can
control the relative altitude *z;, then the control prob-
lem reduces to control the position of @;;. The relative
position of Q; is specified by the separation [;; and
bearing ;. Similarly, Qi; can be defined by the rel-
ative positions ‘z;, *y; in the leader’s frame {i}. The
fourth selected output variable is the relative roll angle
ftij, since the main effect of the flying in close formation
is the induced rolling moment on the wingman. Thus,
the output vector becomes

: ; : T
zip =[5 'y Czou] (27)
where
k2 Fa;
5 — g Ey;
70 I R
1 1
B = p—

where *Ap denotes the transformation matrix from
{E} to {i}. The output vector can be rewritten as

zij = [Za, [J{j]T. Moreaver, we have
5;5'4.',,' =F“($1jﬁxi) (28)

Fy is a nonlinear vector function, zy, is given in (21),
and X, is the state vector of the leader trecated as an
cxogenous input. Applying input-output feedback lin-
earization via dynamic extension, it can be shown that
system {21)—(23} with input (25)-(26), and output (27)
is transformed into a linear and controllable system
given by

i (4) — (4 _ -

‘z; )= zl,-,-) = (29)

W =Y = oy (30)

W= = w (31)
fli; = 24, = iy (32)
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The extended system (29)—(32) is 14th dimensional.
The auxiliary input vector @ is designed by well-known
linear control design methods. For a relative separation
distance (e.g., *z;) and relative roll angle, we have

W = '.:.'L'g‘-‘i)d + kn(izga)d - .'2:;3)) + klg(i.‘i’? - i:ij)
+k13(ii‘;~t - iz'j) + k14(i$? - iitj)
Wa =+ kar (- fg) + ke (pl; — pg)

where kgp’s are design parameters.
gn p

In order to achieve the maximum drag reduction on A;,
a precise close formation contzol is required [17, 12]. In
[11], authors showed that an optimal geometry can be
obtained if A; is placed on the formation plane of A;
(i.e., *z; =0), and *z; = 3b, *y; ~ Tb. b= 10m. is the
leader’s wingspan used in our simulation experiments.

We will use these specifications to design two basic for-
mation controllers that allow three aircraft A;;; to
maintain a triangle formation as the leader .4; maneu-
vers along A(t) € SE(3), see Figure 3. Assuming we
can regulate the relative altitudes about zg_.j = 0 and

z§ = 0, then we nced to control the relative sepa-

rations I;;, [z, and bearings ¢;;, vir to keep the de-
sired formation shape. Similar controllers have been
derived in our previous work for the case of on ground
autonomous vchicles [18, 19].

Figure 3: Three aircraft in a triangle formation.

5.1 Centroller 1

By using this controller, aircraft A; follows 4; with
desired separation z‘f'_j and zg‘_j. Similarly, Ax follows
Aj; with desired scparation zf”‘ and zgik.

The linearized closed-loop dynamics are given by

Z{?j = iy, zéi_) = Wy, (33)
zé?j} = by, £, = ay
2{2 = W, 2%‘2 = iy, {34)
z:(,‘:‘z = U3, 24, = Wak

Since there is no interaction/communication between
the followers A; and Ay, collisions (ie., L < dare
in Figure 3) may occur for some initial conditions or
leader’s trajectories. It is important to realize that sta-
bility of each agent in formation is a necessary but not
a sufficient condition for successfully accomplishing a
formation task. However, this limitation can be over-
come by directly controlling the separation between A;
and A; as it is shown next.

5.2 Controller I1
In this case, aircraft A; follows A; with desired sepa-

ration zfﬁ and zgﬁ‘ However, A, follows both A; and

Aj; with desired separation 1§ and I%. Thus the rel-
ative desired position of the third aircraft will depend
on the state of both A; and .4;. Suppose the follower
Aj; is commanded to change its position with respect
to the lead UAV, then A, will also update its position
accordingly.

As before, the linearized closed-loop dynamics can be
expressed as

9 _ = { 7
ZL,J, = wlj, 22‘) = W2j, (35)
4 _ o S = e
43, = Wsj, 24y = Wag
{4) = (4 =
O 2. = W2k (36)
4 _ .
35, T W3k, Z4;, = Wak

If the leader’s trajectory is well-behaved, then the
three-aircraft system maintains formation and no col-
lisions will occur.

6 Simulation Results

We illustrate our approach using three F-16 like air-
craft A;, A; and A, flying in close formation. Initially,
the lead UAV is flying at an altitude of £z;y = 12000
m, Vis = 250 m/s and roll g = 15°. It is commanded
to reach an altitude of £z;; = 15000 m, V;; = 250
m/s and roll p;y = 30°. Then, the lead trajectory
A(t) € SE(3) is generated by the method cutlined in
section 4. The desired scparation distances and rel-
ative roll angles for the followers are (*z9 = —30 m,
yd = —12 m, izf =0m, ,ufj =0°) and (*z¢ = -30
m, ‘yf =12 m, 2§ = 0 m, pf, = 0°), respectively.
As it can be seen in Figure 4 the relative position
variables converge asymptotically to the desired val-
ucs. Figure 5 depicts the 3.0 trajectories deseribed by
the group of UAVs flying in close formation. The plot
has been properly re-scaled for visualization purposes.
Controller I drives cach follower to the leader’s for-
mation planc. Controller IT has similar performance;
therefore, simulation results arc omitted here.
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Figure 4: Controlled output variables of follower UAVs.

3 UAVsFlying i Close Formalion
v

Figure 5: Three aircraft in formation.

7 Conclusions

In this paper, we have introduced a framework for au-
tonomous formation flight. We have integrated two
fundamental components in formation control of UA Vs:
trajectory generation for the lead aircraft, and a sct of
controllers based on input-output feedback lineariza-
tion for the following UAVs. The framework described
here can also be applied to other types of unmanned
vehicles (e.g., helicopters, spacecraft, and underwater
vehicles). Currently, we arc deriving a suite of stable
control laws that provides more flexibility and safety
in formation flight missions. In addition, we arc de-
veloping a coordination/communication protocol that
allows the aircraft change formations by switching con-
trol laws in a stable fashion.
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