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Abstract

In this paper the problems of optimal collision avoidance

and optimal formation switching for multiple agents mov-

ing on a Riemannian manifold are studied. It is assumed

that the underlying manifold admits a group of isometries,

with respect to which the Lagrangian function is invariant.

Reduction method is used to derive optimality conditions

for the solutions. Some examples are presented.

1 Motivation

We study two related problems for multiple agents mov-
ing on a Riemannian manifold: the optimal collision
avoidance (OCA) and the optimal formation switching
(OFS). In each case, the trajectories of the agents must
satisfy the separation constraint that at any time the
riemannian distance between any two of them is at least
r for some positive r. In the OFS problem, the distances
between certain pairs of agents are further required to
be r. The optimal (joint) trajectories are the ones that
minimize the weighted sum of the trajectory energies
of individual agents, with the weights representing the
priorities of the agents.

The motivating application for this research is aircraft
conflict resolution [1, 2], in which the underlying man-
ifold is R2 or R3, and r is 5 nautical miles for en
route aircraft. Related applications can be, for ex-
ample, multiple mobile robots cooperating to carry a
common object, or a multi-link reconfigurable robot
performing configuration switching. In this paper we
consider only holonomic constraints, as opposed to
the many treatments dealing with nonholonomic con-
straints, such as [3, 4, 5]. Other relevant papers in-
clude [6, 7].

In many applications, it is often the case that the un-
derlying manifold admits a group of symmetries. In
the case of a smooth state space, the classical Noether
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theorem [8, 9] can be used to reduce the dimension of
the problem by establishing the conservation of certain
quantities called the momentum maps. The problems
we consider here have nonsmooth boundary constraints.
However, since the constraints are also invariant with
respect to the symmetries, the conservation laws still
apply. In particular, if the number of agents is small,
these laws may help to characterize the solutions.

This paper is organized as following. The OCA and
OFS problems are formulated in Section 2. In section 3,
we focus on the case when the underlying manifold ad-
mits a group of symmetries, and establish the conser-
vation of momentum maps. To illustrate the results, a
simple example of three agents moving on the plane is
presented in Section 4. We show that the conservation
laws enable us to characterize the solutions in a cer-
tain sense. Finally Section 5 contains some concluding
remarks.

2 Problem Formulation

In this section the problems we are going to study are
formulated in their most generality.

Let M be a C∞ Riemannian manifold. Given t0, t1 ∈ R
with t0 ≤ t1, the arc length of a curve1 γ : [t0, t1] →
M is defined as

∫ t1
t0
‖γ̇(t)‖ dt, where ‖ · ‖ denotes the

norm of tangent vectors associated with the riemannian
metric 〈·, ·〉. The distance between two arbitrary points
a and b in M , dM (a, b), is by definition the infimum of
the arc lengths of all the curves connecting a and b. A
geodesic in M is a locally distance-minimizing curve. In
this paper, we always assume that M is connected and
complete, and that all the geodesics are parameterized
proportionally to arc length.

Let L : TM → R be a smooth function defined on the
tangent bundle of M (the Lagrangian function). As
an example one can take L = 1

2‖ · ‖
2. For each curve

1All curves in this paper are assumed to be continuous and
piecewise C∞, unless otherwise stated.



γ : [t0, t1] → M , its cost is defined as

J(γ) =
∫ t1

t0

L[γ̇(t)] dt. (1)

The curve joining two fixed points in M with mini-
mal cost is an instance of the extremals of the func-
tional J , which in any local coordinates of TM ,
(q1, . . . , qm, q̇1, . . . , q̇m), m = dim(M), can be charac-
terized by the Euler-Lagrange equations [8]:

d

dt

∂L

∂q̇i
=

∂L

∂qi
, i = 1, . . . ,m.

By choosing L = 1
2‖ · ‖

2, the above equations describe
the geodesics in M ([10]).

Consider an (ordered) k-tuple of points of M , 〈qi〉ki=1 =
(q1, . . . , qk). We say that 〈qi〉ki=1 satisfies the r-
separation condition for some positive r if and only if
dM (qi, qj) ≥ r for all i 6= j. Let 〈ai〉ki=1 and 〈bi〉ki=1

be two k-tuples of points of M , each of which satisfies
the r-separation condition. 〈ai〉ki=1 is called the starting
position and 〈bi〉ki=1 the destination position.

Let h = (h1, . . . , hk) be a k-tuple of curves in M de-
fined on [t0, t1] such that hi(t0) = ai, hi(t1) = bi, for
i = 1, . . . , k. One can think of h as the joint trajectory
of k agents moving on M which starts from ai at time t0
and ends at bi at time t1 for i = 1, . . . , k respectively.
h is said to be collision-free if the k-tuple 〈hi(t)〉ki=1

satisfies the r-separation condition for each t ∈ [t0, t1].
Alternatively, if each agent is a disk of radius r

2 in M ,
then h is collision-free if and only if the correspond-
ing joint trajectory satisfies that no two agents overlap
throughout the encounter [t0, t1]. Naturally, r is chosen
to be small enough so that it is possible to pack k disks
of radius r

2 in M .

The first problem we are going to study is

Problem 1 (OCA) Among all collision-free h =
〈hi〉ki=1 which start from 〈ai〉ki=1 and end at 〈bi〉ki=1, find
the one (or ones) minimizing the cost

J(h) =
k∑

i=1

λiJ(hi). (2)

Here 〈λi〉ki=1 is a k-tuple of positive numbers represent-
ing the relative priorities of the k agents, while J(hi) is
defined in (1) for each i.

There is an alternative way of formulating the OCA
problem. By viewing each k-tuple of points of M as a
single point in M (k) = M × . . .×M , h becomes a curve
in M (k) starting from a = (a1, . . . , ak) at time t0 and
ending at b = (b1, . . . , bk) at time t1, while avoiding the
obstacle W defined by

W = ∪i 6=j{(x1, . . . , xk) ∈ M (k) : dM (xi, xj) < r}.

Hence solutions to Problem 1 are cost-minimizing
curves in M (k) \W between a and b. If L = 1

2‖ · ‖
2 and

all λi’s are identical, solutions are geodesics in M (k)\W ,
a manifold with nonsmooth boundary.

To introduce the second problem we need some notions.
Let 〈qi〉ki=1 be a k-tuple of points of M satisfying the
r-separation condition. Then a graph (V,E) called the
formation pattern of 〈qi〉ki=1 can be constructed as fol-
lowing: the set of vertices is V = {1, . . . , k}, and the
set of edges E is such that an edge eij between vertex i
and vertex j exists if and only if dM (qi, qj) = r. For a
collision-free k-tuple of curves h = 〈hi〉ki=1 in M defined
on [t0, t1], the formation pattern of h at time t ∈ [t0, t1]
is defined to be the formation pattern of 〈hi(t)〉ki=1.
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Figure 1: Formation adjacency graph.

Depending on M, r, and k, not all graphs with k vertices
can be realized as the formation pattern of some 〈qi〉ki=1.
Two possible formation patterns are called adjacent if
either of them is a subgraph of the other. This relation
can be used to define a graph Gadj called the formation
adjacency graph, whose set of vertices is the set of all
possible formation patterns, and whose set of edges is
such that an edge connects two formation patterns if
and only if they are adjacent. Figure 1 shows Gadj in
the case M = R and k = 3, where the attachments
of the “ground” symbol to vertices 2, . . . , 8 signal their
adjacency with vertex 1.

Now we are ready to define the second problem.

Problem 2 (OFS) Let G′
adj be a connected subgraph

of Gadj such that the formation patterns of 〈ai〉ki=1 and
〈bi〉ki=1 are both vertices of G′

adj. Among all collision-
free h which start from 〈ai〉ki=1, end in 〈bi〉ki=1, and sat-
isfy the additional constraint that the formation pattern
of h at any time t ∈ [t0, t1] belongs to the vertices of
G′

adj, find the one (or ones) minimizing the cost (2).

In the example shown in Figure 1, one can choose G′
adj

to be the subgraph consisting of vertices 5, 6, 7, 8, and
all the edges among them, thus requiring that all three



agents, each of which is of radius r
2 , have to “contact”

each other either directly or indirectly at all time. Al-
ternatively, G′

adj can be the subgraph consisting of ver-
tices 2, 5, 7, 8, and all the edges among them. So agent
1 and 2 have to be bound together at all time, and the
OFS problem becomes the optimal collision avoidance
between agent 3 and this two-agent subsystem.

For certain G′
adj , the OFS problem may not have a

solution. For example in Figure 1, if G′
adj consists

of only vertex 1, then the corresponding subset of
M (k) \W = R6 \W is its interior. For any two points
a, b ∈int(R6 \ W ) that are not ’visible’ to each other
with respect to the obstacle W (i.e., the line segment
connecting them is not fully contained in int(R6 \W )),
the OFS problem does not admit a solution. Therefore
some constraints on G′

adj have to be imposed to ensure
that a solution exists for the OFS problem. This is
guaranteed if G′

adj has the following property: for each
formation pattern (V,E) belonging to the vertices of
G′

adj , any formation pattern (V ′, E′) containing (V,E)
as a subgraph is also a vertex of G′

adj . We call such
a G′

adj closed, since the subset of M (k) \ W it corre-
sponds to is closed. In the following, we will always
assume G′

adj to be closed.

3 Symmetry Reduction

Instead of working on general Riemannian manifolds,
we focus on the special case when M admits a group of
symmetries. More precisely, we assume:

1. Φ : G×M → M is a C∞ left action of a Lie group
G on M by isometries.

2. The Lagrangian function L is G-invariant.

For brevity, we write gx = Φ(g, x). For each g ∈ G,
define Φg : M → M to be the map x 7→ gx, ∀x ∈ M .
Similarly, for each x ∈ M define Φx : G → M to be the
map g 7→ gx, ∀g ∈ G. Both Φg and Φx are C∞ maps.
That Φ is a left action is equivalent to that Φe = idM ,
where e is the identity of G, and that for g1, g2 ∈ G,
Φg1g2 = Φg1 ◦ Φg2 . For each g ∈ G, assumption 1
implies that Φg is an isometry of M , while assumption
2 implies that L ◦ dΦg = L. Here dΦg : TM → TM is
the tangent map of Φg.

Examples of such M and G include

Example 1 Let M = Rn, L = 1
2‖ · ‖

2. Let G = SEn

be the group of rigid body motions of Rn.

Example 2 Let M = Sn−1 be the (n−1)-sphere in Rn

with the standard metric. Let G = SOn be the group of
rotations. Let L = 1

2‖ · ‖
2.

Example 3 Let M = G be a Lie group equipped with a
left invariant riemannian metric. Then the group mul-
tiplication G × G → G is a left action of G on itself
by isometries. Let L : TG → R be any left invariant
function. Such L’s correspond in a one-to-one way with
functions l : g = TeG → R.

In mechanics there is the well-known Noether theorem,
which roughly states that for every symmetry there cor-
responds an integral of motion [8, 9]. This is also the
case here. In general, there are two equivalent ways
of deriving the conserved quantities, the Lagrangian
and the Hamiltonian, which are related by the Leg-
endre transform [8]. In this paper we adopt the more
direct Lagrangian point of view for two reasons. First
the nonsmooth nature of the problems can be more eas-
ily dealt with this way; second some modification of the
arguments can lead to global results which are other-
wise hard to obtain. These will be explored in future
work.

Suppose h = 〈hi〉ki=1 is an optimal solution to the OCA
(or OFS) problem. We shall derive necessary conditions
on h in the following way. Let g : (−ε, ε)× [t0, t1] → G
be a C∞ proper variation of the constant identity map
ce mapping every t ∈ [t0, t1] to e ∈ G, i.e. g(·, t0) =
g(·, t1) = g(0, ·) ≡ e, where ε is a small positive number.
Then for each s ∈ (−ε, ε), gs(·) = g(s, ·) is a C∞ curve
in G both starting and ending at e, hence can be used
to define a k-tuple of curves hs = 〈hs,i〉ki=1 , 〈gshi〉ki=1,
which starts from 〈ai〉ki=1 and ends in 〈bi〉ki=1. Moreover,
hs is collision-free and has the same formation pattern
at all time as h by assumption 1. Notice that h0 = h.
Define J(s) = J(hs). Then a necessary condition for h
to be optimal is that dJ

ds (0) = 0.

For each (s, t) ∈ (−ε, ε)× [t0, t1], denote

ġs(t) = ġ(s, t) =
∂g

∂t
(s, t), g′s(t) = g′(s, t) =

∂g

∂s
(s, t),

both of which belong to Tg(s,t)G. Define

ξs(t) = ξ(s, t) = g(s, t)−1ġ(s, t),

ηs(t) = η(s, t) = g(s, t)−1g′(s, t).

Here to simplify notation we use g(s, t)−1ġ(s, t) to de-
note dTg(s,t)−1 [ġ(s, t)] (for any g ∈ G, Tg : G → G
stands for the left multiplication by g, while dTg is
its tangent map). Similarly for g(s, t)−1g′(s, t). This
kind of notational simplifications will be carried out
in the following without further explanation. Both
ξ(s, t) and η(s, t) belong to TeG = g, the Lie algebra of
G. The fact that g is a proper variation implies that
g′(·, t0) = g′(·, t1) = 0, hence η(·, t0) = η(·, t1) = 0.
Moreover, g(0, ·) = e implies that ġ(0, ·) = 0, hence
ξ0(·) = 0.

Lemma 1 ([11]) Let ξ′(s, t) = ∂ξ
∂s (s, t) and η̇(s, t) =

∂η
∂t (s, t). Then ξ′ = η̇ + [ξ, η].



Define ω(t) = ξ′0(t), ∀t ∈ [t0, t1]. Then by letting s = 0
in Lemma 1, we have ω = η̇0 + [ξ0, η0] = η̇0 since ξ0 ≡
0. So

∫ t1
t0

ω dt = η0(t1) − η0(t0) = 0. Conversely, for

each ω : [t0, t1] → g with
∫ t1

t0
ω dt = 0, we can define

g(s, t) = expe[s
∫ t

t0
ω(t) dt], ∀(s, t) ∈ (−ε, ε)× [t0, t1] for

some ε > 0 small enough, which is a proper variation
of ce with ω = ξ′0, where ξ = g−1ġ. Therefore,

Lemma 2 A C∞ map ω : [t0, t1] → g can be realized as
ω = ξ′0 where ξ = g−1ġ for some C∞ proper variation
g of ce if and only if

∫ t1
t0

ω dt = 0.

Suppose one such g is chosen. For each (s, t) ∈ (−ε, ε)×
[t0, t1], i = 1, . . . , k, we have2

L[ḣs,i] = L[ġshi + gsḣi] = L[ξshi + ḣs], (3)

by the G-invariance of L. Here ġshi = dΦhi(ġs), and
gsḣi = dΦgs(ḣi). The cost of hs is

J(s) =
k∑

i=1

λi

∫ t1

t0

L[ξshi + ḣi] dt. (4)

For any vector space V , denote with (·, ·) : V ∗×V → R
the natural pairing between V and its dual V ∗. Differ-
entiating (4) at s = 0, one gets

J ′(0) =
k∑

i=1

λi

∫ t1

t0

(dLξshi+ḣi
, ξ′shi) dt

∣∣∣∣
s=0

=
k∑

i=1

λi

∫ t1

t0

(dLḣi
, dΦhi(ω)) dt

=
∫ t1

t0

(
k∑

i=1

λi(dΦhi)∗dLḣi
, ω) dt,

(5)

where dLḣi
∈ T ∗hi

M is in fact the differential at ḣi

of L|Thi
M , the restriction of L on ThiM . (dΦhi)∗ :

T ∗hi
M → g∗ is the dual of dΦhi : g → ThiM , i.e.,

((dΦhi)∗u, v) = (u, dΦhiv),∀u ∈ T ∗hi
M, v ∈ g. (6)

From (5) and Lemma 2, the condition that J ′(0) = 0
for all proper variation g of ce is equivalent to∫ t1

t0

(
k∑

i=1

λi(dΦhi)∗dLḣi
, ω) dt = 0,

for all ω : [t0, t1] → g such that
∫ t1

t0
ω dt = 0. Note that∑k

i=1 λi(dΦhi)∗dLḣi
is piecewise C∞, so we have

2Since hi is only piecewise C∞, this and all equations that
follow should be understand to hold only for those t where ḣi’s
are well defined.

Theorem 1 (Noether) Suppose h = 〈hi〉ki=1 is an
optimal solution to the OCA (or OFS) problem. Then
there exists a constant ν0 ∈ g∗ such that

ν ,
k∑

i=1

λi(dΦhi)∗dLḣi
≡ ν0 (7)

for all t ∈ [t0, t1] where ḣi’s are well defined.

If the boundary constraints are ignored, then ν defined
in (7) as a function of ḣi’s is in fact the momentum
map for the left action of G on M (k) with Lagrangian
function

∑k
i=1 λiL(ḣi) ([9]). The point of Theorem 1 is

that this momentum map is still conserved in the pres-
ence of obstacles, even when the state space is obtained
by piecing together cells in a nonsmooth way.

If L = 1
2‖ · ‖

2, the conclusion of Theorem 1 can be
simplified by canonically identifying each u ∈ ThiM
with the element in T ∗hi

M defined by v 7→ 〈u, v〉, ∀v ∈
Thi

M . Thus dLḣi
is identified with ḣi, and (7) becomes

k∑
i=1

λi(dΦhi)∗ḣi ≡ ν0 ∈ g∗ (8)

where (dΦhi)∗ : Thi
M → g is now defined by

((dΦhi)∗u, v) = 〈u, dΦhiv〉,∀u ∈ ThiM, v ∈ g. (9)

In Example 1, it can be shown that the conserved quan-
tities are the classical linear momentum and the (gener-
alized) angular momentum of a k-particle system mov-
ing on Rn. In Example 2, (7) becomes the conservation
of angular momentum of a k-particle system moving
on Sn−1. In both cases, the k particles have masses
λ1, . . . , λk. We illustrate this only for Example 2. For
any u ∈ ThiS

n−1 and any v ∈ son,

〈u, dΦhiv〉 = 〈u, vhi〉 = utvhi = 〈uht
i, v〉F ,

where 〈·, ·〉F is the Frobenius inner product on Rn×n

defined by 〈A,B〉 = tr(AtB〉, ∀A,B ∈ Rn×n. Since v is
skew-symmetric, we have

〈uht
i, v〉F =

1
2
〈uht

i − hiu
t, v〉F ,

where uht
i − hiu

t is skew-symmetric, hence belongs to
son. Combining the above two equations with (9), we
have ((dΦhi)∗u, v) = 1

2 〈uht
i − hiu

t, v〉F ,∀v ∈ son. So
(dΦhi)∗u = uht

i − hiu
t under the identification of son

with so∗n via 1
2 〈·, ·〉F , and (8) becomes

k∑
i=1

λi(ḣih
t
i − hiḣ

t
i) ≡ ν0 ∈ son, (10)

In coordinates, if hi = (hi,1, . . . , hi,n) ∈ Sn−1, then∑k
i=1 λi(ḣij1h

t
ij2

− hij1 ḣ
t
ij2

) ≡ Cj1j2 for all j1 6= j2. In



particular, if n = 3, (10) can be written compactly as∑k
i=1 λi(hi × ḣi) ≡ Ω0 for some Ω0 ∈ R3, where × is

the vector product. So the total angular momentum is
conserved.

Next we study a special case of Example 3 for which
the conclusion of Theorem 1 takes an especially simple
form. Let M = G be a Lie group with a bi-invariant
riemannian metric (i.e., a metric that is invariant under
both left and right multiplications. Let the action Φ :
G × G → G be the left multiplication. Choose L =
1
2‖ · ‖

2. Suppose h = 〈hi〉ki=1 is a solution to the OCA
(or OFS) problem. Then ∀u ∈ Thi

M, v ∈ g,

〈u, dΦhiv〉 = 〈u, vhi〉 = 〈uh−1
i hi, vhi〉 = 〈uh−1

i , v〉.
(11)

Therefore, we have

((dΦhi)∗u, v) = 〈uh−1
i , v〉, ∀v ∈ g.

Under the canonical identification of g with g∗ via 〈·, ·〉,
the last equation is equivalent to

(dΦhi)∗u = uh−1
i ∈ g, ∀u ∈ Thi

M.

Therefore the conservation law (8) can now be simpli-
fied to

k∑
i=1

λiḣih
−1
i ≡ ν0 ∈ g. (12)

In the simplest case, if M is a Euclidean space Rn or
a flat n-torus Tn with the canonical metric and with
addition as the group operation, then (12) implies the
conservation of linear momentum.

4 An Example

In this section, we apply the results in the previous sec-
tion to the OFS problem when M = R2 and G = SE2.
We assume k = 3, r = 1, so the formation adjacency
graph Gadj is plotted in Figure 1. Let G′

adj be the
subgraph of Gadj consisting of vertices 5, 6, 7, 8 and all
the edges among them. Therefore, in steering the three
agents from their starting position 〈ai〉3i=1 to their des-
tination position 〈bi〉3i=1, it is required that at any time
t ∈ [t0, t1], there exists (at least) one agent whose dis-
tances with the rest two agents are both 1.

Suppose L = 1
2‖ · ‖

2. Then the cost defined in (2)
coincides with the sum of the integrals of kinetic en-
ergy of the three agents with masses λ1, λ2, λ3 respec-
tively. Therefore by the Hamiltonian principle of least
action [8], for each formation pattern, a solution to
the OFS problem restricted to this particular formation
pattern corresponds to the motion of a multi-link sys-
tem moving on the plane with no external forces acting
on it. The multi-link system consists of three particles
(agents) of masses λ1, λ2, λ3 respectively, and there is

a rod of zero mass and length 1 between particle i and
particle j if and only if eij is an edge of this forma-
tion pattern. If 〈ai〉3i=1 and 〈bi〉3i=1 belong to different
formation patterns, then a switching between forma-
tion patterns must occur at some t ∈ [t0, t1]. During
the switching, the velocities of the three agents will in
general experience discontinuous changes.

However, by applying Theorem 1, we conclude that for
any solution 〈hi〉3i=1 to the OFS problem, the total lin-
ear momentum

∑3
i=1 λiḣi and the total angular mo-

mentum
∑3

i=1 λih
t
iRπ/2ḣi are both constant through-

out [t0, t1]. Here Rπ/2 is the 2 by 2 matrix of rotation
by π

2 counterclockwise. This is true even when there are
switchings between different formation patterns. More-
over, since in this case solutions as curves in M (k) are
geodesics in a certain manifold with boundary, the total
energy

∑3
i=1 λi‖ḣi‖2 is also conserved.

It turns out that these conserved quantities are enough
to characterize the solutions. For simplicity we assume
that λ1 = λ2 = λ3.

Proposition 1 ([12]) If 〈hi〉3i=1 is a solution to the
OFS problem with starting position 〈ai〉3i=1 and desti-
nation position 〈bi〉3i=1. Then for any w ∈ R2, a solu-
tion to the OFS problem with starting position 〈ai〉3i=1

and destination position 〈bi + w〉3i=1 is 〈ĥi〉3i=1, where
ĥi(t) = hi(t) + t−t0

t1−t0
w, ∀t ∈ [t0, t1].

An intuitive way to understand Proposition 1 is that
the solutions to the OFS problem correspond to the
motions of a physical system, hence are invariant with
respect to the choice of inertial coordinate systems, say,
the one moving at constant speed −w relative to the
stationary one.

By choosing an appropriate w if necessary, we can en-
sure that 1

3

∑3
i=1 ai = 1

3

∑3
i=1 bi. Proposition 1 implies

that we only need to solve the OFS problem for this
special case. In particular, we shall in the following
assume that 1

3

∑3
i=1 ai = 1

3

∑3
i=1 bi = 0. Since the lin-

ear momentum is conserved, the solution 〈hi〉3i=1 in this
case must satisfy

∑3
i=1 hi(t) ≡ 0, i.e., the three-agent

system has its center of masses stationary at 0. As
a result, 〈hi〉3i=1 as a curve in R6 is always contained
in the four dimensional subspace V of R6 defined by
{(x1, y1, x2, y2, x3, y3) :

∑3
i=1 xi =

∑3
i=1 yi = 0}. This

reduces the dimension of the problem by 2.

Each vertex in G′
adj is a formation pattern, which cor-

responds to a smooth submanifold of V \W . For exam-
ple, vertex 5 corresponds to {(x1, y1, x2, y2, x3, y3) ∈
V : d12 = d13 = 1, d23 > 1}, where dij =√

(xi − xj)2 + (yi − yj)2, 1 ≤ i, j ≤ 3. Denote this set
with X5. If we define θ12 (respectively, θ13) to be the
angle (x2−x1, y2− y1) (respectively, (x3−x1, y3− y1))
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Figure 2: X̂5

makes with the positive x-axis of R2, then (θ12, θ13) is
a global coordinate of X6, taking values in the rectan-
gle [0, 2π] × [0, 2π] with the opposite edges identified,
i.e. the 2-torus T2. Moreover, the shaded region in
Figure 2 has to be removed from T2 in order to sat-
isfy the constraint d23 > 1, resulting in a subset X̂5

homeomorphic to S1×(0, 1), an untwisted ribbon whose
boundary consists of two disjoint circles. Similarly, ver-
tex 6 and 7 correspond to sets X6 and X7 respectively,
both of which are also untwisted ribbons. Moreover,
X5, X6 and X7 share the same boundary, which is ex-
actly the set vertex 8 corresponds to, namely, X8 =
{(x1, y1, x2, y2, x3, y3) ∈ V : d12 = d13 = d23 = 1}. X8

consists of two connected components since in forming
the equilateral triangle, agent 1, 2, and 3 can be counted
either clockwise or counterclockwise.

A solution 〈hi〉3i=1 to the OFS problem restricted to the
domain of any particular formation pattern is a geodesic
in that domain. After some computation, geodesics in
X5 are governed by [12]

θ̈12 =
− sin[2(θ12 − θ13)](θ̇12)

2 + 4 sin(θ12 − θ13)(θ̇13)
2

2[4− cos2(θ12 − θ13)]

θ̈13 =
−4 sin(θ12 − θ13)(θ̇12)

2 + sin[2(θ12 − θ13)](θ̇13)
2

2[4− cos2(θ12 − θ13)]
(13)

Total angular momentum of the three agents in the
(θ12, θ13) coordinate is

K1(θ̇12 + θ̇13)[2− cos(θ12 − θ13)], (14)

for some constant K1. Total kinetic energy is

K2[(θ̇12)2 + (θ̇13)2 − cos(θ12 − θ13)θ̇12θ̇13], (15)

for some constant K2. At the boundary of X5, θ12 −
θ13 = ±π

3 , so (14) and (15) become 3
2K1(θ̇12 + θ̇13) and

1
2K2[2(θ̇12)2 + 2(θ̇13)2 − θ̇12θ̇13] respectively. Similar
results hold for geodesics in X6 and X7.

Consider now the switching from formation pattern 5
to 6 via formation pattern 8 at some point in X8. Let
(θ31, θ32) be the coordinate of X6. Then the above anal-
ysis implies that

θ̇12 + θ̇13 = θ̇31 + θ̇32

2(θ̇12)
2 + 2(θ̇13)

2 − θ̇12θ̇13 = 2(θ̇31)
2 + 2(θ̇32)

2 − θ̇31θ̇32

(16)

These two equations will determine uniquely θ̇31 and
θ̇32 after the switching subject to the constraint that
they must point inside of X6.

Equations such as (13) and (16) characterize the evolu-
tion of the solutions for the OFS problem completely.
Alternatively, they define the dynamics and the reset
maps of a hybrid system.

5 Conclusions

We study the problems of optimal collision avoidance
and optimal formation switching for multiple agents on
a Riemannian manifold with a group of symmetries.
Some necessary conditions are given, and the results
are illustrated by examples.
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