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Abstract

To find a controller that provides the maximal stability mar-
gin to an LTI system under rank-one perturbations is a qua-
siconvex problem. In this paper, the dual quasiconvex prob-
lem is obtained, using the convex duality arguments in the
Hardy space H>. It is shown that the dual problem can
be viewed as minimization of a “length” of uncertainties
that destabilize the system. Several examples establishing a
connection with such classical results as the corona theorem
and the Adamyan-Arov-Krein theorem are considered.

Keywords: robust stabilization, stability radius, rank-one
problem, quasiconvex optimization, duality.

1 Intreduction

Most control designs are based on the use of adesign model.
A good model should be simple enough to facilitate design,
yet complex enough to capture impertant properties of the
true plant. One way to bridge the gap between medel and
reality is to incorporate uncertainties that reflect both our
knowledge of the physical mechanism of the plant and our
ability to solve control problems with such uncertainties.

During the last two decades, much research efforts have
been devoted to the robust control of uncertain models.
Hewever, design problems appear to be very hard, and only
a few methods have proved to be efficient in the synthe-
sis of robust controllers. Among them, H* optimization
and p synthesis should be mentioned. H*™ optimization
gives a convenient and very efficient tool for robust syn-
thesis. However, it is limited to the class of unstructured
uncertainties and becomes particularly complicated in the
case of nonrational plants. In contrast, g synthesis allows
for a much more fiexible uncertainty structure, but design
procedures become very involved, and one has to use con-
servative simplifications and upper bounds.

Halfway between the unstructured uncerfainties and g syn-
thesis is a rank-one uncertainty model where the structure of
uncertainty is limited to a vector {or a rank one matrix). This
class of models turns out to be quite rich to describe, for
instance, many physical plants with real parametric uncer-
tainties, yet simple enough to be dealt with by rigour math-
ematical analysis. In particular, the set of all robustly stabi-
lizing controllers can be parameterized as a convex specifi-
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cation [5], and a linear programming approach can be used
to design the optimal controller in case of “diamond” and
“square’ uncertainty sets [4].

In this paper, we continue the study of the rank-one problem
where the uncertainty set is relaxed to an arbitrary convex
compact set in a finite-dimensional vector space. The pri-
mal problem of robust stabilization, which is the maximiza-
tion of stability radius over all stabilizing controllers, can
be stated as a quasiconvex optimization. The paper presents
the precise analytical form of the dual quasiconvex prob-
lem for this optimization. It is shown that the dual problem
can be stated as a minimization of the “length” of uncertain-
ties that destabilize the plant. We also trace a relationship
between the dual problem and such classical results as the
corona and Adamyan-Arov-Krein thecrems.

The paper is organized as follows. All maia notations used
throughout the paper are collected in Section 2. Section 3
introduces the robust stabilization problem as the primal
quasiconvex optimization. The dual problem is obtained
in Section 4. Section 5 clarifies the primal and the dual
probiems through considering two particular cases. Further
analysis of the dual problem in Section & makes it clear that
the dual problem is the “norm” minimization of destabiliz-
ing uncertainties. Section 7 provides a detailed considera-
tion of the primal-dual pair in case of scalar H* optimiza-
tion and traces the relation between the dual problem and
Adamyan-Arov-Krein’s result. Section 8 offers a numeri-
cal example where the primal-dual method is applied to a
nonconvex H® optimization. The conclusion is found in
Section 9.

2 Notation

By Ik (or C) we denote the field of real (or complex) num-
bers. The subset of R of nonnegative numbers is denoted by
R ;. The unit circle and the open unit disc in C are denoted
by T and D respectively. For any measurable ¥ ¢ C*, the
notation LP(Y") stands for the standard Lebesgue space of
functions f: T — Y equipped with the norm

£l = { (f-ﬂ- |f ()P dm(z)) 1/p$
ess sup,r | f(2)];

The notation HP(Y') denotes the Hardy space of functicns
in L? (¥) that have an analytical continuation inside the unit

1 < p<+oo,
P = +oo.



disc, and HE (Y') denotes the shifted HP (Y'), that is
HE(Y) = zHF(Y) = {f € HP(Y) | f(0) = 0}.

We use the notation RH* (Y) for all real-rational func-
tions from H* (¥). The space of all continuous functions
f: T =Y isdenoted by C{Y). The notation A (Y") stands
for the disc algebra H* (Y) n C(Y).

The short notations L?, H? etc will be used if Y = C" and
the dimension n is ¢lear from context or makes no differ-
ence for presentation.

Given © € L, the subspace H? o ©H? contains all func-
tions f € H? such that f*@ € H2.

The prefix B denotes the unit ball in the corresponding
space, and § the unit sphere. The superscript 7 stands for
transposition, ! for pseudoinverse. Re is the real part of a
complex number. A bar over a function denotes the complex
conjugate. For two sets A and B

A\B={ac AlagB}.

3 Preliminaries

Since the Hardy classes H*® in the unit disc and in the
right half plane are equivalent modulo the conformal bilin-
ear transformation s = (1—z)/{1+ z), only the former will
be considered.

Given a nominal LTI plant P and an uncertainty set A 3
0, the general robust controller design problem is to find
a controller K that robustly stabilizes the whole family of

perturbed plants
w
P(2):

8Tz, decvA

for as large a v as possible. The rank-one problem is a par-
ticular case when w is a scalar or, equivalently, the uncer-
tainty 4 is of rank one (that is just a vector). This particular
case is appealing since in this case, a convex parameteri-
zation of all robustly stabilizing controilers is available [5]
provided that the uncertainty set A is convex. Briefly speak-
ing, for the rank-one problem the Youla parameterization of
all admissible closed-loop transfer functions from w to z
has the form T, = T) + T2 @, @ € RH™, with the given
functions Ty € A(CN+), T, € A(CV=*Nv). Then, the ro-
bustly stabilizing controllers are those whose } parameter
satisfies

1487 (N + Q) #0, YzeT,¥6evA. (1)
Hyperplane separation of convex sets and a little bit of sim-
ple analysis (see details in [5]) yield the equivalent condi-

tion to (1) in terms of the function A € RH* as

Re(F +8TG(2))h(z) >0, VzeT,¥8cwvA (2)
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where F = (1 0) and G = (T, T>). The function Q €
RH® can be reconstructed from k by the simple formula

T
Q - (h2 hNu+1) /h]_
Let A 3 0 be a convex compact set in C™ . Denote

pa(z) = sup Red? z.
fea

3)

This is a gauge of the polar set of A (i.e. almost a norm), so
the problem (2) is a quasiconvex optimization

of Re Fh(z)

e 26T pa(G(2)h(2))

heRH*>

“)

Vopt =

The purpose of this paper is to provide a dual form of (4).

4 Primal and Dual Problems

Let F € A(C'*"), G € A(C**")and A C C" bea
convex compact set containing the origin. For any h € H*
define

Cu(h) = eszsei_ﬂpf(Re F(2)h(z) — vpa(GL2)h(2}))

where pa is defined in (3). The problem of finding A €
RH™ such that T,,(h) > 0 will be referred to as primal
problem. Obviously it has a solution if and only if ¥ < vep

V< Vopt & Aope := sup I',(h) > 0. )]
heBA

Thus by solving the convex problem (5) and checking if
Yopt > 0, one can find the lower bound on v, along with
the suboptimal sclution . Numerically it can be imple-
mented as a convex optimization over a n-dimensional sub-
space H(n) C RH™ since

Yn = SUp Fy(h) /"Yopt-

heBH(n)

Once v, > 0, we conclude that y.p; > 0 and, hence, v <
vapt. However, the case y, = 0 cannot indicate that yop; =
0 and provide an upper bound on v, . The upper bound can
be found from a dual representation of 7., which gives us
a condition to determine whether vy,,, = €.

Before the dual representation is considered, let us slightly
medify the problem (5). The following lemma states that
"opt Can be calculated by the optimization over the larger
set BH*>,

Lemma1

sup [u(h).
heBH>

(6

Yopt =

Now we are in a position to give the dual representation
of Yope- The following theorem is a generalization of [4,
Theorem 2] to the case of any convex compact sets A.



Theorem 1 Let F € H®(C*"), G € H®(C™*") and
A C C" be a convex compact set. Then the following
equality holds

Yopt = __inf inf inf
SeL=(vA) weSL1 (B 4) peHA(CLxn)

Theorem 1 provides an upper bound on 7y, by which we
can determine the case when vop: = 0.

Corollary 1

1. A number v is an upper bound on vup: in (4) if
and only if there exists a sequence of functions
{(w.-,J;,p,-)}};“(‘,’ such that w; € SLI(R+), 4 €
L®(vA), pi € HY(C*™) and

HF 48T Gyw; —pifl1 = 0, i>+400. (D

2. Ifthere existw € LY(B4)\ O and § € L™ (v A) such
that (F + 6T G)w € B} then v > v,p,.

To find the optimizing sequence of functions in (7) is not an
easy problem in general. However in our case, the functions
F and G belong to the disc algebra A, and the problem can
be essentially simplified. The optimal function w is proved
to be either a regular function in SL!(Ry} or Dirac’s 4-
function, and by this, the dual problem can be naturally split
into two parts — regular and singular. The regular part has
been already covered by Corollary 1, and the dual problem
is completed by the singular part in the next theorem.

Theorem 2 The optimal value v,y in (4) has the following
dual representation
Yopt = min{ Vopt|cr Vopt|s }1 (8)
where
inf{v | Jw € L' (R4)\ 0, § € L®(vA):
(F +8T6)w € HY}, )
Vepts = ind{w | Jz €T, €vA:
F(z)+8TG(2)=0}. (10)

Yopt|c

5 Two Particular Cases of A

To get better insight to the dual problem, we consider in
details two particular cases of the set A. These two cases
are extremal in the following sense: one is for A = 0, i.e.
there is no uncertanty at all, and second is for A = BC™,
i.e. all directions in ™ are allowed for the uncertainty.

Casel: A=10.

The primal problem is to find a function K € RH*(C)
such that
Re F(z)h(2) >0, VYzeT
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I(F+87 G)uw—pl-

for given F € A(C'*"). The dual representation for Yop:
in Theorem 1 is simplified to

= inf inf ||[Fw—
Yapt wESlfl(E+)pleriiéll w—pl,

and the duality result in Theorem 2 claims that the primal
problem has no solution if and only if

1. 3w € LY (R4} \ 0 such that Fw € H or
2. 3z € T such that |F(z)| = 0.

The second condition is the absence of zeros of F on the
unit circle. Let us show that the first one is related to that in
the open unit disc.

Proposition 1 Let F € A(C'*"). The following condi-
tions are equivalent:

1. 3X € D such that |F(X)| = 0.
2. Jw € LY(Ry) \ 0 such that Fw € H(C1*").

Note that the existence of h € A such that Re F(z)A(z) >
0, ¥z € T, is equivalent to the existence of g € A such that
Fg = 1 (if we just set ¢ = A(FA)~!). Thus the duality
theorem in the particular case A = 0 gives the well-known
tesult [6] concerning Gelfand’s theory of maximal ideals in
disc algebra A:

JgcA:Fg=1 & ;IEIBIF(AH}U. an
A remarkable generalization of this result to functions in

H®, called the corona theorem, was proved by Carleson in
1962 [2].

Case2: A = BC™.

The following proposition shows that this case is reduced to
the standard H*® optimization.

Propesition2 Let F ¢ A{C*"), G € A(C"*") and
A = BC™. Then the following statements are equivalent:
1. 3he A(C*1): ¥z € T, Vi e vA
Re (F(z) + 67G(2))h(2) > 0. (12)
2. g€ A(C1): Fg=1,||Ggll < »~L.

By Proposition 2, the primal optimization (4) is reduced to
convex oplimization

vl - _
Vopt = glgg{ IGgllo | Fg=1}. (13)

To obtain the standard H* setting, we need to perform the

parameterization of solutions to Fg = 1 (Youla parame-

terization). If g € A is some solution to the equation

Fg=1and M =€ A(C**") is a basis of the kernel of

F (ie FM = 0), then all solutions can be parameterized as
9=go+ Mg, geAC™"),

which gives the standard H* optimization

u;p% = qig}; 1Ggo + GMql|oo.



6 Dual Problem as Uncertainty Minimization

Let us take a close lock at the bounds vgp,), and vgpy ., in the
dual preblem (9}, (10). Denote

®5(2) = F(2) + 8(2)7 G(2). (14)

To calculate v, one has to solve the linear equation
$5(z) = 0 with respect to 6 at every z € T. Thisis a
relatively easy problem. The necessary and sufficient condi-
tion for the equation to have a solutionis F(I — G'G) = 0,
which means that the vector F7 belongs to the range of G7 .
Denoting by N a full rank £ x rm matrix that annthilates G

N(2)G(z) = 0, (15

and £ = {z € T | F(z)(I -~ G(2)'G(2)) = 0}, the upper
hound 1,,p, can be calculated as

Vopuls = Jnf inf {v|4(2,2) €vA}  (16)
where
8(z,2) = AT N(2) - F(2)G(2)")*. an

The calculation of v,;), is more complicated since we have
a bilinear equation with respect to § € L*=,(vA) and w €
LY(Ry4)

5w e HY. (18)
First of all, we notice that the real positive function w €
L'(R ) can be factorized as w(z) = f(z)* f(2) where f €
H?2 is the outer function (that is f has no zeros in D) [6].
Thetefore, the condition (18) can be rewritten as

osfreH < feH?edH . (19

Intuitively, it is clear that for (19} to hold, all unstable poles
of f* must be cancelled by zeros of each entry of @5, so
such a function f # 0 exists only if |®s| has at least one
zero in ) {cmp. Proposition 1).

Lemma2 Let &5 € L=®(C'*"), [®4] # 0o0n T, and
f € H*(C) be an outer function such that (19) holds. Sup-

pose that ®; has a finite number of unstable zeros {ax }2_,
counted according to their multiplicities. Then

1. f € H2 & RH? where R(z) = [[2.,(z — ax). This
means that f = #/R € RH™ where " denotes the
polynomial conjugation (¥(z) = 298" F(z71)) and »
is an unstable polynomial of at most N — 1 degree.

R
d; € —H™.
v

In particular, the lemma gives the following generalization
of (11).

Corollary 2 Given v € Ry, the dual problem has a solu-
tion if and only if there exists a function § € L®(vA) such
that for the function ® 5 the number of common unstable ze-
ros is greater than the number of unstable poles.
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Lemma 2 yields the equation for &

F+éTGa= ?h, h € H®(C'*")

and, similarly to the singular case, the necessary and suffi-
cient condition for such a 4 to exist is
(F - Rh/m){I -G'G)= 0. (20)

Denote by Hy-1 € L™ the set of all meromorphic func-
tions that have not more than V — 1 poles in D and

Q={g € Hn_1(C") | (F — R)(I - G'G) = 0}.

Then the upper bound vy, can be found from the opti-
mization problem

Voptc = ;gg Aeégiéc*){u 1 3(rq,2) €vA, V2 € T}
2D
where
6(Ar0,2) = (M2)T N(z} — (F(2) - R(2)q(z))G())".
(22)

Thus the dual problem can be thought of as the minimiza-
tion of the “length” of uncertainty (16), (21) that destabilize
our system.

7 Scalar H> Optimization

In this section, the standard H* optimization is considered:

inf |71+ T2Q)ec:

Ty, Ts € A(C). (23
Qeln(C) 1, T2 (©). (23)

€opt =
1t has been shown in Section 5 (see Proposition 2) that this
gives the primal problem with A = I (this also follows
from Small Gain Theorem)

sup{v | Re[(10) + 6(T1(2) Ta(2))]h(z} > 0,
Vz €T, 18] < v}

€apt

The dual bound (10) is
Vopela = inf{|d] | 3z € T: (14 8Ti(z) 8Ta(2)) = 0}.

To obtain the representation (16), we notice that the linear
equation {1 4 871(z) 873(z)) = € has a solution if and
only if

IE(Z) G, (24)

Thus (16) becomes

opt|s — inf
Fortl 5ET{ITl(z)l

The interpretation of this bound is very simple. Obviously

73(2) ﬁﬁ 0.

1

7 =0}.

= sup{|Ti(z)| | T2(2) = 0} < cope.
Voptla €T



Thus the singular part of the dual problem handles the in-
variant zeros of the plant on the border of stability region.
Under the assumption that 73 has no zeros on T, the singu-
lar part gives only the trivial infinity bound.

Let us have a look at the second bound Vopt]e (9). In order to
obtain the representation (21) we should find all possible ze-
1os of the function (14 5(2)T1(z) &(2)Tz(2)) in D. This
is a simple job — similarly to (24):

Ti(2) # 0.

Let us factorize the function T3 = RT;, so that the poly-
nomial R absorbs all those zeros from (25) and denote
N = deg K. Then by Lemma 2 we have

Ta(z) = 0, (25)

(1467, es:rz)zf(h1 ha)

with 7 being any unstable polynomiat of at most N — 1
degree. The functions (h; hg) cannot be chosen indepen-
dently -— they must satisfy (20). If we find the function 4
from the second equation § = hz/(T2,7) and substitute it
to the first one, we get

T

1
——hy=m.
Rhl Tga 2 w (26)

This is the condition (20) for our example. Note that the
functions R and T3 /T3, are both analytical in I and co-
prime (since they do not have common unstable zeros).
Hence there exists a solution to Diophantine equation

T
RHy—- —H; =1
1 T20 2 L]

and ali (kq h2) € H* satisfying (26) can be parameterized
as

(b1 ho)=m(Hy H)+(Ti/Te B)Q
where @ € H*. Finally

_ hz _ ITH2+RQ
B Toem - Taem

)

and the representation (21) becomes
Voptjc = Inf ||T2;1(H2 + Rg)|loo
gEH w1

where Hy_; is the set of all meromorphic functions that
have not more than N — 1 unstable poles in D. In particular,
if Ty and T3 are coprime, the function Ty, is outer, and the
representation becomes even simpler

Vopt)c = qe;ﬁf_, IB* L2 + glloo @7
where (L, L;) € H™ is a solutionto Toly — 7Ly =1
and B = R(z)/(z™ R{z7')) is the Blaschke product. The

function L, can be found, for example, from 1 + Ty Ly €
BH™ as a Lagrange interpolation polynomial.
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o5
Figure 1: The set Q from (29).

Recall the definition of Hankel operator with symbol ¢ €
LCX}

Hy: B o (HYY,  Hy(f) = P-(61).
According to Adamyan-Arov-Krein theorem [1], the infi-

mum (27} is equal to the (N —1)-th singular value of Hankel
operator with symbol B* Ly

Vaptlc = aN—l(HB'Lz)'

It remains te note that the selution to the original H* op-
timization (23) is well-known [3]. Nehari theorem claims
that €., is equal to the norm of Hanke! operator with sym-
bol BTy

€opt = ||Hp-1,|| = o1(Hp-T1,)-

Thus the duality for coprime 77 and Tp with T3 £ 0on T
is the relation between singular values of two Hankel oper-
ators

or(Hpr)on-1(Hpep,) = 1.

8 Numerical example: a nonconvex H® optimization
problem

In this section, a nonconvex H™ optimization problem
is solved numerically by the primal-dual method derived
above

odtf {7 | Ti(2) + To(2)Q(2) €192, ¥z €D} (28)
where € is the neighbourhood of originin C, and T, T, €
A If Q = I, we have the standard H* optimization. If Q
is a convex set, the problem (28} is convex.



34 T T T T T T T T T

i ; i N i i i
a0 S0 L] 7o 50
Dimension of approximation

28
o
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Figure 2: The primal-dual approximations of growing dimen-
sions produce monotonic lower and upper bounds for
Vopt.

In this section, we consider the H™ optimization problem
(28) with the nonconvex set

Q={re’? € C | 0<r < |cos(¢)| + [sin{¢)]}. (29}

The shape of €2 ts shown on Figure 1. This set appears in
the optimization of stability radius for a linear system with
the “diamond” type of uncertainty in feedback

A={z+iyeC | |z|+ |y < 1}.
Take the following functions

2P 432V 492294422+ 5243 T2=z2+1.
23— 22— 42412

Tl = 2

1

(Note that with the unit disc being instability region, the
functions can be improper.) Since T31/T: ¢ H, the solu-
tion to the optimization problem is not trivial.

Each level set of the primal quasiconvex problem (4) is a
linear polytope. Taking into account only the finite grid
{2} . representing the upper half of T, and the first M
coefficients of the function k, the inequality (2) becomes
the finite-dimensional linear programming. Hence the pri-
mal search can be approximated by the linear programming
of growing dimensions [4].

We run the primal LP approximations for different dimen-
sions M and stop the optimization when M has reached
100. It becomes hard for the linear solver to find an approx-
imation of higher degree because the dimension of the linear
program at this step has already reached the size 1200 x 200.
The lower bound obtained for M = 100 is v, = 3.1560.

To estimate how far is vy, from the optimal value we use
the dual problem in the form (21) which is approximated
precisely in the same manner to get the finite-dimensional
linear programming.

In our case B = T3 and = is an unstable polynomial of
at most first degree. Thus m(2) z—a, |al < 1, and
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the upper bound can be calculated from (21) by the linear
programming followed by the line search for a. Taking the
same dimension of approximation as in the primal problem
M = 100, the upper bound vy, = 3.15736 is obtained.
The corresponding value of a is 0.1530. Hence, the primal
solution for ., has a good level of suboptimality (about
0.05%).

The lower and upper bounds produced respectively by the
primal and the dual approximations of different dimensions
are shown on Figure 2.

9 Conclusion

The robust design problem in case of rank-one uncertainty
can be stated as the quasiconvex optimization (4). Given a
level of suboptimality v, the corresponding convex problem
can be solved by finite-dimensional approximations. How-
ever, these approximations give only lower bounds on the
stability radius. In this paper, the dual quasiconvex problem
(8) has been derived using the convex duality arguments in
the Banach space. The dual problem gives the upper bounds
(9), (10) for the stability radius. It has been shown that
the corresponding equations can be solved explicitly, and
the dual bounds can be viewed as the minimization of the
“length” of destabilizing uncertainties in (£6), (21). Thus
the corresponding quasiconvex optimization can be thought
of as a functional quasiconvex game between the stabilizing
controller and the destabilizing uncertainty that has a saddle
point. The result can be used for numerical optimization of
the stability radius by primal-dual methods based on finite-
dimensional approximations similar to [4].
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