
 1

OS-aware Tuning: Improving Instruction Cache  
Energy Efficiency on System Workloads 

 
Tao Li 

Department of Electrical and Computer Engineering
University of Florida, Gainesville, Florida, 32611 

taoli@ece.ufl.edu 

Lizy Kurian John 
Department of Electrical and Computer Engineering
University of Texas at Austin, Austin, Texas, 78712 

ljohn@ece.utexas.edu 
 

Abstract 
Low power has been considered as an important issue in 

instruction cache (I-cache) designs. Several studies have 
shown that the I-cache can be tuned to reduce power. These 
techniques, however, exclusively focus on user-level 
applications, even though there is evidence that many 
commercial and emerging workloads often involve heavy use 
of the operating system (OS). This study goes beyond previous 
work to explore the opportunities to design energy-efficient I-
cache for system workloads. Employing a full-system 
experimental framework and a wide range of workloads, we 
characterize user and OS I-cache accesses and motivate OS-
aware I-cache tuning to save power. We then present two 
techniques (OS-aware cache way lookup and OS-aware cache 
set drowsy mode) to reduce the dynamic and the static power 
consumption of I-cache. The proposed OS-aware cache way 
lookup reduces the number of parallel tag comparisons and 
data array read-outs for cache accesses to save dynamic I-
cache power in a given operation mode. The proposed OS-
aware cache set drowsy mode puts I-cache regions that are 
only heavily used by another operation mode to reduce 
leakage power. The proposed mechanisms require minimal 
hardware modification and addition. Simulation based 
experiments show that with no or negligible impact on 
performance, applying OS-aware tuning techniques yields 
significant dynamic and static power savings across the 
experimented applications. To our knowledge, this is the first 
work to explore cache power optimization by considering the 
interactions of application-OS-hardware. It is our belief that 
the proposed techniques can be applied to improve the I-cache 
energy efficiency on server processors mostly targeting on 
modern and commercial applications that heavily invoke OS 
activities. 

1. Introduction 
Power dissipation is considered as a major impediment in 

today’s high performance microprocessor designs. Caches 
account for a sizeable fraction of the total power consumption 
of microprocessors. High performance cache accesses 
dissipate significant dynamic power due to charging and 
discharging highly capacitive bit lines and sense amps [2]. 
Moreover, on-chip caches constitute a significant portion of 
the transistor budget of current microprocessors. With the 
continued scaling down of threshold voltages, static power due 
to leakage current in caches grows rapidly. Clearly, with the 
increasingly constrained power budget of today’s high 
performance microprocessors, low power has been considered 
as an important issue in cache designs. In this paper, we focus 
on techniques to reduce both dynamic and static power of 
instruction cache (I-cache).  

In general, processor I-cache is designed to accommodate a 
wide range of applications. Nevertheless, it has been observed 
that the performance of a given I-cache architecture is largely 
determined by the behavior of the application using that cache 
[4, 5]. To reduce power, previous studies [6, 7, 8, 9, 10, 1, 11, 
12, 13, 14, 4, 15, 16] proposed adapting I-cache to the need of 
application’s demand. These techniques, however, exclusively 
focus on user-level applications, even though there is 
evidence that many system workloads (e.g., database, web 
and file/e-mail servers) often involve heavy use of the 
operating system (OS) [3, 18, 33].  

During system workload execution, both user applications 
and OS contribute to power dissipation. Previous studies [17, 
18, 33] shown that without considering the impact of OS, 
performance evaluations on system workloads can only 
capture incomplete scenarios. To understand the impact of OS 
on the I-cache power dissipation, we run fifteen benchmarks 
with various OS activity (see Section 2 for benchmarks 
description) on a full-system power simulation framework [18] 
and breakdown the I-cache (32KB, 4-way set associative and 
32-byte cache line) power into user applications and OS 
components. 
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Figure 1. I-Cache Power Breakdown: User vs. OS 
Figure 1 shows that OS can highly impact processor I-cache 

power on modern and emerging applications, such as e-mail 
(sendmail), file (fileman), Java (db, jess) and database 
(postgres.select, postgres.update) programs. On the average, 
OS accounts for 30% of total I-cache power on the 15 
experimented workloads. The proportion of OS energy 
overhead is likely to continuously grow in the future due to 
other emerging system administrative activities, such as 
thermal sensor reading, energy accounting and power mode 
control for memory and I/O devices [19, 20]. Therefore, it is 
necessary to consider the OS for I-cache power modeling and 
optimization.  

Adhering to this philosophy, this paper explores the 
opportunities to design low power I-cache by considering the 
interactions of application-OS-hardware. We start from 
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characterizing user and OS I-cache access behavior to identify 
power saving opportunities. We observe that in a system that 
frequently invokes OS activity, instruction blocks from user 
applications and OS often interleave and co-exist within I-
cache that is shared by all processes.  

To ensure proper operation and protect the OS from errant 
users, modern processors and operating systems provide two 
separate modes of operation: user mode and privileged mode. 
Processor executes user processes in user mode. Whenever the 
OS is invoked (by a trap or an interrupt/exception), the 
hardware switches to privileged mode. The OS always 
switches back to user mode before passing control to a user 
program.  

The semantics of dual mode operation provides 
opportunities to save the dynamic power of I-cache access: 
without affecting the performance and the correctness of 
program execution, I-cache lookups for user applications can 
bypass caches lines that store OS code and vice-versa. 
Therefore, the number of parallel tag comparisons and data 
array read-outs needed to fulfill a set-associative I-cache 
access can be reduced, implying less dynamic power 
dissipation per access. Moreover, we find that a significant 
fraction of I-cache regions are only heavily accessed in one 
operation mode. This characteristic can be exploited to reduce 
I-cache leakage power: when processor executes in one mode, 
cache regions that are only frequently accessed in another 
mode can be put into lower power state.  

To explore these power saving opportunities, we propose 
two OS-aware tuning techniques - OS-aware cache way 
lookup and OS-aware cache set drowsy mode - to improve the 
I-cache energy efficiency for system workloads. We show in 
this paper that with very simple hardware modification and 
addition, OS-aware I-cache tuning exhibits promising dynamic 
and static power reduction. More attractively, the OS-aware 
tuning yields no or negligible impacts on performance. Since 
system performance is sensitive to that of the OS, the 
proposed techniques preserve merits especially valuable for 
the energy-efficient, high performance server processor I-
cache designs. 

The rest of this paper is organized as follows: Section 2 
describes the experimental framework, methodology and 
benchmarks. Section 3 characterizes user applications and OS 
I-cache access behavior to identify power saving opportunities. 
Section 4 proposes two OS-aware tuning techniques to 
improve I-cache energy efficiency. Section 5 evaluates the 
impact of proposed techniques on power and performance. 
Section 6 discusses related work. Finally, Section 7 concludes 
with some final remarks. 

2. Experimental Methodology 
In this study, we use energy-aware, full-system simulation 

driven by a wide range of applications with various OS 
activity. This section describes the simulation framework, the 
machine architecture modeled and the workloads executed. 

2.1 Framework and System Configuration 
We use a modified version of the complete system power 

simulator SoftWatt [18] that models the power dissipation of 

the CPU, memory hierarchy and I/O subsystems. The 
SoftWatt framework, built on top of the SimOS [21] 
infrastructure, integrating energy models similar to Wattch 
[34] into the full-system simulator. By leveraging the SimOS 
cycle-accurate, full-system simulation capability, the 
framework captures complete performance and power 
characteristics on system workload execution. The simulated 
OS is a commercial version of the SGI IRIX 5.3 (a modern 
UNIX variant). 

The simulated architectural model is an 8-issue superscalar 
processor with instruction latencies as in the MIPS R10000. 
The memory subsystem consists of a split L1 instruction and 
data caches, a unified L2 cache and main memory. The 
simulated machine also includes a scaled SCSI HP97560 disk 
model. The described architecture is simulated cycle by cycle. 
The execution and power dissipation of both user applications 
and operating system are modeled. The detailed configuration 
of the simulated machine architecture can be found in [18]. 
 

2.2 Benchmarks 
We use fifteen applications that have different 

characteristics. This section provides a brief overview of the 
selected applications. Pmake is a parallel program 
development workload that is a variant of the compiled phase 
of the modified Andrew benchmark employed in [22]. Vortex 
is a database manipulation code and gcc is a compiler code 
from the SPECint95 benchmark suite. The sendmail 
benchmark forwards emails messages to local accounts on the 
system using the Simple Mail Transport Protocol (SMTP). 
The sizes of the messages vary from 1KB to 1.5MB.  The 
fileman program performs file management activities, such as 
copy, remove, chmod, tar -cvf and tar -xvf. A set of six Java 
applications (db, jess, javac, jack, mtrt and compress) from 
the SPECjvm98 [23] suite is executed using a commercial 
JDK from Sun Microsystems. We also use three benchmarks 
that run on a relational database management system (DBMS) 
engine- PostgreSQL [24]. The database is populated with 
relational tables for the TPC-C benchmark [25]. We evaluate 
the execution of three specific queries on this data set. The 
postgres.select performs a sequential table scan of a table with 
1 million rows and a selectivity of 3%. The postgres.update 
updates to a field of a 300,000 row table and the postgres.join 
executes a nested loop join query involving two tables of sizes 
11MB and 24KB. The osboot executes a complete OS booting 
sequence form the root disk image and then generates a shell 
for the root user. The postgres.select, postgres.update, 
postgres.join benchmarks are simulated for billion-instruction 
execution. All other applications are all executed to 
completion. The OS activity in the selected benchmarks 
ranges from 6% in compress to as high as 92% in fileman. 

 

3. User/OS I-Cache Accesses Characterization 
During system workload execution, instructions from user 

applications and OS are fetched into I-cache and exercise on 
the processor alternately, as shown in Figure 2(a). OS is 
activated either voluntarily by a system call from the 
application, or from a call by some other application, or 
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implicitly by some underlying periodic/asynchronous 
(timer/device interrupt) mechanism. Among multiple 
processes that must all share the same I-cache, instruction 
blocks from the OS co-exist with those from user processes. 
Previous studies analyzed the impact of inter-mingling of user 
and OS instructions in the I-cache and found that interferences 
between the two degrade performance. The interest of our 
characterization in this study, however, is to identify the 
power saving opportunities. 
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To achieve low miss rates for typical applications, modern 
microprocessors employ set-associative I-Caches. In a system 
that frequently invokes OS, there is a high possibility that user 
and OS code simultaneously reside within the same cache set. 
As illustrated in Figure 2(b), in a 4-way set-associative I-
cache, based on user/OS residency, cache sets can be 
classified as: (1) user code occupies all of the four cache lines 
(User(4)+OS(0)); (2) user occupies three cache lines and OS 
resides in one cache line (User(3)+OS(1)); (3) user and OS 
each occupy two cache lines (User(2)+OS(2)); (4) user 
resides in one cache line and OS occupies three cache lines 
(User(1)+OS(3)); and (5) OS dominates all of the four cache 
lines (User(0)+OS(4)). 

To protect OS from malfunctioning programs, modern 
processor architectures support user and privileged mode 
operations. Processor executes user applications in user mode 
and OS instructions can only be exercised in privileged mode. 
At any time, processor runs in one of the two modes. 
Therefore, OS instructions in I-cache will not be selected 
when processor runs in user mode and vice versa. The 
semantic of dual-mode operation implies opportunities to save 
the dynamic power of set-associative I-cache accesses: when 
processor runs in one mode, the number of parallel cache way 
lookups can be reduced by filtering out accesses to cache lines 
holding instruction blocks that are only executed in another 
mode. For example, to access cache sets in the User(2)+OS(2) 
category, processor really needs to only perform two parallel 
cache way lookups. Similarly, in the OS mode, if the 
processor is aware of user/OS instruction block residency, 

75% of parallel cache way lookups can be reduced when the 
processor accesses cache sets in the User(3)+OS(1) category.  

To evaluate the opportunities to reduce cache way lookups 
by exploiting the information of user/OS cache blocks 
residency within cache sets, we count the frequencies of I-
cache accesses to each cache set category during program 
execution. The results are summarized in Table 1. Not 
surprisingly, during system workload execution, a significant 
fraction of I-cache accesses encounters cache sets in which 
both user and OS instruction blocks reside (marked with 
categories II, III, IV and shown by the shaded columns in 
Table 1). On benchmarks gcc and vortex, user mode 
dominates execution cycles. Still, more than 25% of I-cache 
references access cache sets in categories II, III, and IV. 
Interestingly, on benchmark compress, 97% of I-cache 
accesses encounter OS cache lines, even though OS accounts 
for only 6% of program execution time. This is because 
compress has small I-cache footprint and a few most 
frequently accessed cache sets (hot-spot) are mapped by 
codes from both user and kernel spaces. On benchmarks 
fileman and osboot where OS mode dominates, there are still 
35% and 16% of I-cache references that touch user blocks. 
Table 1 shows that on the average, 56% of program I-cache 
references access cache sets in categories II, III and IV, 
indicating there are abundant opportunities to reduce the 
number of parallel cache way lookups (and associated 
dynamic power) by incorporating user/OS operation mode in 
I-cache designs. 

 

Table 1. I-Cache (32KB, 4-Way and 32Byte Block) 
Accesses Categorized by User/OS Residency 

 

% in Program I-Cache Accesses 
I II III IV V Benchmarks 

User(4)
+OS(0) 

User(3) 
+OS(1) 

User(2) 
+OS(2) 

User(1)
+OS(3) 

User(0)
+OS(4) 

pmake 33 26 25 11 5
gcc 73 17 7 2 1
vortex 72 20 6 1 0
sendmail 1 8 28 33 30
fileman 0 0 2 33 65
db 19 17 28 27 10
jess 32 21 23 20 5
javac 32 22 24 18 4
jack 26 34 26 14 1
mtrt 27 17 11 44 1
compress 2 8 25 64 1
postgres.select 25 27 21 22 4
postgres.update 28 19 17 20 17
postgres.join 55 18 13 12 1
osboot 0 2 4 9 84
AVERAGE 28 17 17 22 16

 
Previous research [15, 16] found that during program 

execution, not all cache regions are accessed frequently. To 
save energy, the less frequently accessed cache regions can be 
put into lower power state with tolerable performance loss. 
The dual-mode operation provides yet another opportunity: if 
cache regions are heavily accessed by processor in only one 
operation mode, then those cache regions can be put into 
lower power state when the processor runs in another mode. 



 4

To identify cache regions heavily accessed only in one of the 
two operation modes, we further breakdown the 
characterization shown in Table 1 into user and OS parts. The 
results are shown by Figure 3 (a) and (b). 

Figure 3 (a) and (b) show both user and OS access cache 
sets in the categories II, III and IV frequently. Interestingly, 
we find that cache sets in the category User(4)+OS(0) are 
heavily accessed only in user mode. In contrast, cache sets in 
the category User(0)+OS(4) are heavily accessed in OS mode 
but they are rarely accessed in user mode. On the average, 
only 0.08% of user I-cache accesses touch cache sets in the 
category User(0)+OS(4). The percentile of OS I-cache 
accesses that encounter cache sets in the category 
User(4)+OS(0) is merely 0.11%. The above characterization 
implies that during user execution, cache sets in the category 
User(0)+OS(4) can be put into lower power state. On the 
other hand, when processor runs in OS, cache sets in the 
category User(4)+OS(0) can remain in lower power state. 

To summarize, in this section, we characterize system 
workload user/OS I-cache accesses categorized by the 
user/OS residency. We find that dual-mode operation opens 
additional opportunities to save processor I-cache power. We 
discuss how I-cache design can explore these opportunities to 
achieve low power in the following sections. 
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4. OS-aware I-Cache Tuning 
This section proposes two simple mechanisms to improve 

I-cache energy efficiency for system workloads. 
 

4.1 OS-aware Cache Way Lookup 
In a set associative cache, the number of cache way 

lookups largely determines the dynamic power of a cache 
access. A conventional 4-way set associative cache requires 
four tag comparisons and four data array read-outs for a cache 
access. Nevertheless, during user execution, performing tag 
comparisons and data array read-outs for OS cache lines are 
unnecessary and waste extra dynamic power. Therefore, 
processor operation mode can be integrated with I-cache 
design to reduce the number of cache way lookups (and hence 
dynamic power) on cache accesses. 

Figure 4 illustrates architectural modifications to support 
OS-aware cache way lookup. A bit called cache way mode bit 
is added to each cache line. With the cache way mode bit (e.g., 
0 for OS and 1 for user), we are able to differentiate between 
cache way stores instructions on behalf of the operating 
system, and of one that stores instructions on behalf of the 
user applications. When a cache line is uploaded to I-cache 
the first time, its cache way mode bit is generated, depending 
on the processor operation mode. The cache way mode bit 
will keep unchanged unless the associated cache line is 
replaced. The current machine execution mode in processor 
status register (PSR) is used to compare with cache way mode 
bit to decide whether a cache way needs to be accessed in a 
given operation mode. The results of comparisons are used to 
generate enable signals (assuming active low) to circuitry 
such as tag and data array access logic, tag comparators, data 
array sense amps and output drivers.  As can be seen from 
Figure 4, the hardware modification and addition needed to 
support OS-aware cache way lookup is simple.  
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The generation of above enable signals is not in the critical 
path of I-cache access because once generated, they remain 
unchanged (due to the one-to-one hard-wired mapping 
between each cache way mode bit and each cache block) 
unless a cache line replacement (due to a cache miss) occurs 
or the processor switches mode. When a cache miss occurs, 
the requested cache line is retrieved from the next level of 
memory hierarchy and is immediately forwarded to processor 
for execution. The corresponding cache mode bit needs to be 
accessed and then updated. The latency to access and update 
cache way mode bit array and regenerate cache way access 
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enable signals can be overlapped with processor execution. 
Similarly, the latency of regenerating cache way access enable 
signals due to processor mode changes can be easily hidden as 
well due to the inherent cost and the low frequency of user/OS 
context switches.  

Note that the correctness of OS-aware cache way lookup is 
ensured by the dual-mode operation semantic and the precise 
exception handling mechanism. Processor switches mode to 
OS upon handing an exception or interrupt or upon handling a 
TRAP instruction (usually used to implement all system calls 
by OS), which all raises an exception. To handle precise 
exceptions, the processor pipeline must drain before OS code 
execution can begin. To return the processor to 
user/unprivileged mode, most architectures use a privileged 
instruction (return-from-exception) that performs this step in 
an atomic manner. Therefore, even on processors with out-of-
order and speculative execution, instructions from user and 
OS will not be fetched from I-cache and executed in pipeline 
simultaneously.  

For some systems, there could be certain circumstances 
where user-defined signal handlers were performed within the 
OS. Also, it is possible that certain runtime actions/exceptions 
of user code, may be trapped by the hardware, given to the OS, 
and the OS executes the user code in OS mode. For user code 
that dedicatedly runs in OS mode, OS-aware cache way 
lookups treat it as if it was OS code. However, for user code 
that can run in both user and OS mode, additional attention is 
required to ensure correctness. For example, a special purpose 
register (1 bit) can be added to enable/disable OS-aware cache 
way lookup by gating the cache way lookup enable signals. 
An instruction writes to that special purpose register to set (or 
reset) OS-aware cache way lookup. Two such instructions are 
placed at the boundaries of the above code region so that OS-
aware cache way lookups are disabled before the code region 
execution starts and are resumed after the code region 
execution completes. During the above code region execution, 
full cache way lookups are required and no power saving is 
achieved. Because this situation happens infrequently, its 
impact on performance as well as energy saving is negligible. 
We never encountered this situation during all applications 
simulation on the OS we studied in this paper. 

We measure the reduction of cache way accesses on a 4-
way set-associative I-cache by employing OS-aware cache 
way lookup, as shown in Figure 5. The results are shown for 
user, OS and the aggregated cache accesses on each 
benchmark. On benchmarks gcc and vortex where the OS 
frequently accesses cache sets in the category User(3)+OS(1), 
OS-aware cache way lookup reduces the number of cache way 
accesses in OS significantly. On the other hand, the number of 
cache way lookups during the user execution on benchmark 
sendmail is largely reduced due to its high access frequencies 
to cache sets in the categories User(1)+OS(3) and 
User(2)+OS(2). On the average, the proposed technique 
reduces cache way lookups in user, OS and aggregated I-
cache accesses by 34%, 35% and 35% respectively, implying 
significant I-cache dynamic power saving. 
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OS-aware Cache Way Lookup 

4.2 OS-aware Cache Set Drowsy Mode 
Caches comprise a large portion of the on-chip transistor 

budget. Due to CMOS technology scaling, static power due to 
leakage current is gaining in importance in I-cache power 
dissipation. For example, Agarwal et al. [26] report that 
leakage energy accounts for 30% of L1 cache energy for a 
0.13-micro process technology. In a 0.07 micron process, 
ITRS predicts leakage may constitute as much as 50% of total 
power budget [31]. These make efforts at leakage control 
essential to maintain control of I-cache power on current and 
next generations of processors. 

To reduce cache leakage power, researchers [16, 27] have 
proposed turning off the unlikely used cache lines using 
gated-Vdd technique [11]. While the gated-Vdd technique is 
efficient in saving leakage, the disconnected cache line loses 
its state and needs to be fetched from L2 cache, causing 
performance penalty and dynamic power consumption due to 
an extra L2 access. Alternatively, cache lines can be put into a 
low-leakage drowsy mode to save power by exploiting the 
short-channel effects on dynamic voltage scaling [15]. Unlike 
the gated-Vdd, in drowsy mode, the information in the cache 
line is preserved. However, the cache line in drowsy mode 
must be reinstated to a high-power mode before its contents 
can be accessed. The performance penalty of accessing a 
drowsy cache line is an extra cycle to restore the full voltage 
for that cache line.  

Recent studies show that state-preserving drowsy cache 
techniques are preferable for leakage control in L1 caches 
where high performance is a must. Since system performance 
is sensitive to that of the OS, our objective here is to reduce 
power yet preserve high performance. Therefore, in this paper, 
we explore the opportunity of integrating OS-aware cache 
tuning with a state-preserving, leakage control mechanism. 
The rationale is to put cache regions that heavily accessed in 
only one operation mode into drowsy state when processor 
runs in another mode. A key issue is to classify or identify 
which cache regions are “hot” in one operation mode but stay 
“cool” in another operation mode.  

The user/OS I-cache accesses on system workloads show 
that the intra-cache set user/OS residency can be used as 
proximity for the above classification. During OS execution, 
cache sets in the category User(4)+OS(0) are infrequency 
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accessed and can be put into drowsy state. Similarly, during 
user mode execution, cache sets in the category User(0)+OS(4) 
can remain in drowsy state. 
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Figure 6 illustrates the control circuitry to implement OS-
aware cache set drowsy mode. To control memory cells 
leakage power, we use circuit technique proposed in [15]. A 
drowsy bit is used to control the supply voltages to the 
memory cells within a cache set. For a 0.07 micron process 
with normal supply voltage (Vdd) of 1.0V, the threshold 
voltage (Vdd Low) needed to preserve the state of memory 
cells is about 0.3V [15]. Depending on the state of the drowsy 
bit, all cache lines within a cache set can be put into either the 
high power active state or the low leakage drowsy state. 

In Figure 6, if all cache way mode bits within a cache set 
are identical (e.g., 0000 or 1111) and they are different with 
the current processor mode, the whole cache set is put into 
drowsy mode. This control logic puts cache sets in the 
category User(4)+OS(0) to drowsy mode during OS execution. 
When context switches back to user, cache sets in the category 
User(4)+OS(0) are waken up and cache sets in the category 
User(0)+OS(4) are then put into drowsy state. Moreover, if an 
OS (or a user) cache miss occurs on a cache set in the 
category User(4)+OS(0) (or User(0)+OS(4)),  the cache set is 
waken up due to the change of intra-cache set user/OS 
residency.  

Whenever a cache set is accessed, the drowsy bit 
associated with it is checked. If the cache set stays in active 
mode, the ongoing cache access acts normally. Otherwise, if a 
drowsy cache set is encountered, the drowsy bit is cleared; 
causing the supply voltage resorted back to the normal Vdd 
during the next cycle. The data can be accessed during 
consecutive cycles. The wordline gating circuit is used to 
prevent unchecked accesses to a drowsy set which could 
destroy the memory’s contents.  

In Figure 6, OS-aware cache set drowsy mode uses a 
shared source (cache way mode bit) to control leakage, 
reducing the cost of drowsy I-cache implementation. We 
count the percentile of cache sets can be put into drowsy state 
on user, OS and aggregated execution by employing the 
leakage control method described. The results are shown in 
Figure 7. On the average, 17% of I-cache sets can be put into 
drowsy mode during user execution while the percentage of I-

cache sets remain in drowsy state during OS execution is 35%. 
Overall, 22% of I-cache sets can be put into drowsy mode 
during program execution. On most benchmarks, we observed 
that larger fraction of cache regions can remain in drowsy 
mode during OS execution. This is because that although OS 
is large and sophisticated software, OS execution is usually 
dominated by a small fraction of highly invoked service 
routines [18]. Therefore, a sizeable fraction of the I-cache is 
not accessed by the OS during its execution. 
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Figure 7. % of I-cache Sets can be put into Drowsy 
State by Using Leakage Control Illustrated in Fig. 6 

 
Table 2. % of I-Cache Accesses to Drowsy Sets and 

Average Number of Reinstated Drowsy Sets 
 

Benchmarks

% of User 
Accesses to 
Drowsy Sets 
(in the 
category 
User(0)+OS(
4)) 

Avg. Num. 
of Drowsy 
Sets 
Reinstated 
in User 

% of OS 
Accesses to 
Drowsy Sets 
(in the 
category 
User(4)+OS(0
)) 

Avg. 
Num. of 
Drowsy 
Sets 
Reinstate
d in OS 

pmake 0.01 0.18 0.10 0.16
gcc 0.00 0.01 0.21 0.04
vortex 0.00 0.00 0.05 0.01
sendmail 0.15 1.40 0.01 0.10
fileman 0.22 0.92 0.00 0.01
db 0.05 0.10 0.09 0.09
jess 0.04 0.04 0.09 0.04
javac 0.02 0.04 0.14 0.07
jack 0.01 0.01 0.28 0.06
mtrt 0.00 0.02 0.11 0.03
compress 0.00 0.01 0.03 0.01
postgres.select 0.04 0.15 0.23 0.26
postgres.update 0.20 0.30 0.20 0.33
postgres.join 0.01 0.03 0.08 0.04
osboot 0.47 2.17 0.00 0.11

 
As described earlier, an extra cycle is needed to access 

cache sets in drowsy mode, implying a performance penalty. 
To effectively save power while maintaining high 
performance, both the number of accesses to the drowsy sets 
and the number of drowsy cache sets reinstated to the high 
power mode should be small. Table 2 summarizes the 
percentage of I-cache accesses to the drowsy sets and the 
average number of drowsy sets that are waken-up. The data 
are shown for both user and OS execution. As can be seen 
from Table 2, the possibilities to access a drowsy cache set in 
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both operation modes are extremely low (< 0.1% in most 
cases), indicating negligible performance lost due to drowsy 
cache sets wake ups. Additionally, most of the drowsy sets 
remain in the low power state during a given mode execution 
by showing very small fraction of reinstated drowsy sets. 

It should be noticed that although the intra-cache set 
user/OS residency provides a good approximation on user/OS 
access frequencies to that cache set, this heuristic may be too 
conservative from the perspective of power saving. We further 
explore the directly using of cache set access frequencies from 
different operation mode as the metric to control cache set 
drowsy mode. 

00 01 1110

OS

User

UserUserUser

OSOSOS

OS Access
Biased

User Access
Biased

Figure 8. The 2-bit Counter and Finite State Machine 
to Implement User/OS Access-biased Classification 

 

This user/OS access-biased classification is similar to the 
one that has been used in classifying the biases of branches. 
To be more specific, a finite state machine formed by a 2-bit 
saturating up/down counter is used by each cache set to keep 
tracking the accesses from user and OS execution, as shown in 
Figure 8. Whenever an access to that cache set comes from 
user mode, the associated counter is increased by 1. On the 
other hand, when an access to that cache set from the OS 
mode occurs, the counter is decreased by 1. As a result, cache 
sets with counter’s value equals to 3 indicate they are user 
access-biased and cache sets with counter’s value equals to 0 
are classified as OS access-biased. During user execution, the 
OS access-biased cache sets are put into drowsy mode. On the 
other hand, when processor runs in OS, the user access-biased 
cache sets are put into drowsy mode. 
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Figure 9. % of I-cache Sets put into Drowsy State by 
using User/OS Access-biased Classification 

 
Figure 9 shows the percentile of cache sets can be put into 

drowsy state on user, OS and aggregated execution by 
employing the less restricted user/OS access-biased leakage 

control mechanism. One can see that the access-based 
classification has the capability of putting more cache sets 
into drowsy state. This is because access-based scheme can 
identify all cache sets that can be classified by the residency-
based scheme. Additionally, access-based scheme captures 
more scenarios. For example, it could be possible that a cache 
set has both user and OS blocks reside in it but are accessed 
frequently only in one operation mode. On the average, 29% 
of I-cache sets can be put into drowsy mode during user 
execution while the percentage of I-cache sets can be put into 
drowsy state during OS execution is 71%. Overall, 42% of I-
cache sets can remain in the drowsy state during program 
execution. 

Table 3 further summarizes the percentage of I-cache 
accesses to the drowsy sets and the average number of 
drowsy sets that are waken-up by using the access-based 
classification. As can be seen, both numbers are higher than 
the residency-based classification but are still low enough to 
incur observable performance degradation. 

 
Table 3. % of I-Cache Accesses to Drowsy Sets and 
Average Number of Reinstated Drowsy Sets using 

Access-Based Classification 

Benchmarks

% of User 
Accesses to 
Drowsy Sets 
(User(0)+O
S(4)) 

Avg. Num. 
of Drowsy 
Sets 
Reinstated in 
User 

% of OS 
Accesses to 
Drowsy 
Sets 
(User(4)+O
S(0)) 

Avg. Num. 
of Drowsy 
Sets 
Reinstated 
in OS 

pmake 0.06 1.06 0.69 1.07
gcc 0.05 0.17 0.81 0.16
vortex 0.03 0.04 0.32 0.04
sendmail 0.44 4.13 0.50 4.14
fileman 3.05 12.79 0.34 11.15
db 0.69 1.33 1.31 1.30
jess 0.68 0.70 1.44 0.67
javac 0.26 0.58 1.18 0.57
jack 0.26 0.28 1.26 0.26
mtrt 0.07 0.25 0.98 0.25
compress 0.15 0.54 2.59 0.53
postgres.select 0.24 0.82 0.70 0.82
postgres.update 0.45 0.67 0.41 0.68
postgres.join 0.04 0.20 0.42 0.21
osboot 1.18 5.45 0.11 5.42

 

5. Power and Performance Evaluation 
This section provides results showing the I-cache power 

savings as well as the performance impact due to the 
proposed OS-aware I-cache tuning. By default, the power and 
performance numbers are normalized to the base line I-cache 
and machine configuration described in Section 2. In our 
simulation, we account for the energy overhead due to 
hardware modification and addition to implement the 
proposed OS-aware tuning. 

Figure 10 shows the normalized I-cache dynamic power 
after employing the OS-aware cache way lookup scheme. On 
the average, the OS-aware cache way lookup can save 29% 
and 30% of I-cache dynamic power on user and OS execution 
respectively. The aggregated dynamic power saving of this 
technique is 30%. Looking at Figure 5 and Figure 10, one can 
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see that dynamic power saving is largely correlated with the 
reduced cache way accesses. It should be noticed that this 
30% of dynamic power saving is achieved without any impact 
on performance. This feature is especially valuable for the OS 
since system performance is sensitive to that of the OS and the 
processor energy overhead caused by performance 
degradation can easily offset the benefit of power saving in I-
cache. 
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Figure 10. % of I-Cache Dynamic Power Savings by 
Incorporating OS-aware Cache Way Lookup 

 

Table 4 summarizes the I-cache leakage power savings as 
well as the run-time increases due to the OS-aware cache 
leakage control. One can see that both policies (i.e., 
residency-based and access-based) lead to a significant 
leakage power reduction. The residency-based drowsy mode 
scheme is more conservative, resulting in 5% - 50% of 
leakage power saving on the experimented applications. 
Access-based drowsy mode scheme, on the other hand, yields 
greater leakage power reduction by putting larger fraction of 
cache regions in to drowsy state, resulting in an average of 
37% of overall leakage power reduction.  

Table 4 also shows that both OS-aware cache set drowsy 
policies incur negligible (<1% in most case) run-time increase. 
This is because: (1) the cost of wrongly-putting a cache set 
into drowsy mode that is accessed thereafter is relatively 
small, and (2) using the proposed cache set drowsy policies 
makes the possibilities of accessing drowsy cache sets 
become extremely low. Therefore, the proposed leakage 
control techniques again preserve merits especially valuable 
for designing the power efficient, high performance server 
processor I-cache targeting on modern and commercial 
applications that heavily invoke OS activities. 

 
Table 4. Normalized Leakage Power and Run-time Increase 

by Using the OS-aware Cache Set Drowsy Mode 
 

Residency-based Access-based 
Normalized Leakage 

Power 
Increased Execution 

Cycle 
Normalized Leakage 

Power 
Increased Execution 

Cycle  
User OS Over-all User OS Over-all User OS Over-all User OS Over-all

pmake 0.96 0.34 0.90 0.03% 0.19% 0.04% 0.89 0.21 0.84 0.15% 1.15% 0.23%
gcc 1.00 0.20 0.95 0.02% 0.32% 0.04% 0.98 0.12 0.93 0.09% 1.22% 0.15%
vortex 0.99 0.38 0.94 0.03% 0.11% 0.04% 0.97 0.14 0.90 0.08% 0.84% 0.14%
sendmail 0.67 0.98 0.82 0.21% 0.05% 0.14% 0.41 0.70 0.55 0.71% 1.23% 0.95%
fileman 0.35 1.00 0.93 0.45% 0.04% 0.09% 0.24 0.89 0.81 4.95% 0.47% 0.98%
db 0.93 0.85 0.91 0.12% 0.23% 0.16% 0.72 0.40 0.61 1.06% 2.48% 1.54%
jess 0.97 0.62 0.86 0.09% 0.12% 0.10% 0.81 0.30 0.65 0.97% 2.05% 1.31%
javac 0.98 0.69 0.93 0.07% 0.19% 0.09% 0.87 0.25 0.76 0.61% 1.97% 0.85%
jack 0.99 0.74 0.95 0.03% 0.36% 0.08% 0.90 0.21 0.79 0.45% 2.08% 0.72%
mtrt 0.97 0.64 0.95 0.02% 0.24% 0.03% 0.92 0.20 0.88 0.11% 1.42% 0.19%
compress 0.47 0.99 0.50 0.05% 0.09% 0.05% 0.45 0.70 0.46 0.42% 4.09% 0.61%
postgres.select 0.96 0.79 0.92 0.07% 0.35% 0.14% 0.85 0.26 0.70 0.24% 0.70% 0.36%
postgres.update 0.97 0.53 0.74 0.49% 0.33% 0.41% 0.90 0.20 0.53 0.99% 0.65% 0.81%
postgres.join 0.99 0.56 0.95 0.05% 0.13% 0.06% 0.97 0.13 0.89 0.12% 0.76% 0.18%
osboot 0.52 0.99 0.95 0.98% 0.03% 0.11% 0.30 0.82 0.78 2.46% 0.34% 0.52%
AVERAGE 0.85 0.69 0.80 0.18% 0.19% 0.18% 0.75 0.37 0.63 0.89% 1.43% 1.05%
 

6. Related Work 
Selective cache ways [6] reduce cache access energy by 

turning off unneeded ways in a set-associative cache. Recently, 
Zhang [4] proposed a reconfigurable cache architecture using 
way concatenation to adapt cache associativity for embedded 
applications. To use these techniques, the designers have to 
determine the appropriate configurations for a given program 
by exhaustively searching all possible configurations. The 
caches are reconfigured for the entire program execution. In 
contrast, OS-aware cache way lookups decide at run-time 

whether cache line lookups are necessary for a given 
operation mode. 

Phased-lookup cache [28] uses a two-phase lookup, where 
all tag arrays are accessed in the first phase, but then only the 
one hit data way is accessed in the second phase. The 
employing of phased-lookup cache results in less data-way 
access energy at the expense of longer access time. Way 
prediction [10, 12] speculatively selects a way to access 
initially, and only access the other arrays if that initial array 
did not result in a match. To support way prediction, 
processor branch prediction mechanism has to be extended. 
Adding way-prediction to the branch prediction mechanism 
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may affect the processor cycle time because the branch 
prediction access is often on one of the critical path. Way 
prediction scheme incurs a performance penalty by spending 
an extra cycle to access the other ways when a prediction fails. 
Moreover, way predicting of all I-cache accesses is non-trivial. 
In [12], Powell reported that even an elegant way predictor 
could make no prediction for a sizable fraction of I-cache 
accesses. We expect that the fraction of no prediction and 
misprediction on way prediction could even increase on 
system workloads due to their larger I-cache footprints and the 
effects of exception-driven, non-deterministic OS execution 
[3]. Compared with way prediction, the proposed OS-aware 
cache way lookups do not cause performance degradation and 
is easier to implement because no predictor is involved. 
Moreover, way prediction still needs full tag comparisons to 
verify the correctness of a prediction while OS-aware cache 
way lookups only probe selected cache tags. In [14], Lee et al. 
proposed region-based caching by re-organizing the first level 
cache to more efficiently exploit memory region (stack, global, 
heap) reference characteristics produced by programming 
language semantics. In [30], Kim et al. investigated ways of 
splitting the cache into several smaller units, each of which is 
a cache by itself (called a sub-cache). However, implementing 
region-based caching or sub-caching scheme requires 
substantial amount of modifications to be made in cache and 
other structures (e.g. TLB).  

Approaches for reducing static power consumption of 
caches by turning off cache lines using the gated-Vdd 
technique have been described in [16, 27]. The drawback of 
this approach is that the state of the cache line is lost when it 
is turned off and reloading it from the L2 cache has a 
significant impact on performance. Because system 
performance largely depends on the performance of OS, the 
inherently high penalty gated-Vdd technique become less to 
control I-cache leakage for the OS. In [29], the using of 
compiler to insert power mode instructions to control cache 
leakage power was proposed. However, this approach requires 
the re-compilation of program source code, which is not 
generally applicable to the OS as well as many commercial 
applications. To reduce leakage energy dissipation, Yang [35] 
proposed a dynamically resizing I-cache. Compared with 
resizable cache, the proposed OS-aware cache tuning reduces 
power while still utilizing the full cache capacity. The drowsy 
instruction cache [32] uses dynamic voltage scaling and cache 
sub-bank prediction to achieve leakage power reduction. Like 
way prediction, a misprediction on cache sub-bank incurs a 
performance penalty. When applied to large, set-associative 
cache, an aggressive cache sub-bank predictor yields mediocre 
prediction accuracies [32]. The area as well as power 
overhead of the memory sub-bank prediction buffers, which 
yield better prediction accuracies, can be significant. 
7. Conclusions 

Many modern applications result in a significant operating 
system (OS) component. This trend is likely to continue in the 
near future and it is very important to consider the OS not 
only for performance evaluations, but also when attempting to 
optimize the performance and power of hardware. Adhering to 

this philosophy, this paper explores the opportunities of 
employing the three subsystems – application, OS and 
hardware – to improve I-cache energy efficiency. We start 
from characterizing user/OS I-cache accesses on system 
workloads to identify power saving opportunities due to dual-
mode operation. We then propose two simple OS-aware 
techniques incorporating processor operation mode to 
improve I-cache energy efficiency on system workloads. The 
proposed OS-aware cache way lookup reduces the number of 
parallel tag comparisons and data array read-outs for cache 
accesses and saves dynamic power. Integrating with a state-
preserving, leakage control mechanism, OS-aware tuning 
effectively reduces static power, which is gaining in 
importance due to CMOS technology scaling. Unlike other 
proposed schemes, OS-aware tuning achieves both dynamic 
and static power savings but requires minimal hardware 
modification and addition. To our knowledge, this work is the 
first step to explore cache power optimization on system 
workloads including the OS. The proposed techniques can be 
implanted into server processor I-caches mostly targeting on 
OS-intensive commercial applications. 
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