
 1

OS-aware Tuning: Improving Instruction Cache
Energy Efficiency on System Workloads

Tao Li

Department of Electrical and Computer Engineering
University of Florida, Gainesville, Florida, 32611

taoli@ece.ufl.edu

Lizy Kurian John
Department of Electrical and Computer Engineering
University of Texas at Austin, Austin, Texas, 78712

ljohn@ece.utexas.edu

Abstract
Low power has been considered as an important issue in

instruction cache (I-cache) designs. Several studies have
shown that the I-cache can be tuned to reduce power. These
techniques, however, exclusively focus on user-level
applications, even though there is evidence that many
commercial and emerging workloads often involve heavy use
of the operating system (OS). This study goes beyond previous
work to explore the opportunities to design energy-efficient I-
cache for system workloads. Employing a full-system
experimental framework and a wide range of workloads, we
characterize user and OS I-cache accesses and motivate OS-
aware I-cache tuning to save power. We then present two
techniques (OS-aware cache way lookup and OS-aware cache
set drowsy mode) to reduce the dynamic and the static power
consumption of I-cache. The proposed OS-aware cache way
lookup reduces the number of parallel tag comparisons and
data array read-outs for cache accesses to save dynamic I-
cache power in a given operation mode. The proposed OS-
aware cache set drowsy mode puts I-cache regions that are
only heavily used by another operation mode to reduce
leakage power. The proposed mechanisms require minimal
hardware modification and addition. Simulation based
experiments show that with no or negligible impact on
performance, applying OS-aware tuning techniques yields
significant dynamic and static power savings across the
experimented applications. To our knowledge, this is the first
work to explore cache power optimization by considering the
interactions of application-OS-hardware. It is our belief that
the proposed techniques can be applied to improve the I-cache
energy efficiency on server processors mostly targeting on
modern and commercial applications that heavily invoke OS
activities.

1. Introduction
Power dissipation is considered as a major impediment in

today’s high performance microprocessor designs. Caches
account for a sizeable fraction of the total power consumption
of microprocessors. High performance cache accesses
dissipate significant dynamic power due to charging and
discharging highly capacitive bit lines and sense amps [2].
Moreover, on-chip caches constitute a significant portion of
the transistor budget of current microprocessors. With the
continued scaling down of threshold voltages, static power due
to leakage current in caches grows rapidly. Clearly, with the
increasingly constrained power budget of today’s high
performance microprocessors, low power has been considered
as an important issue in cache designs. In this paper, we focus
on techniques to reduce both dynamic and static power of
instruction cache (I-cache).

In general, processor I-cache is designed to accommodate a
wide range of applications. Nevertheless, it has been observed
that the performance of a given I-cache architecture is largely
determined by the behavior of the application using that cache
[4, 5]. To reduce power, previous studies [6, 7, 8, 9, 10, 1, 11,
12, 13, 14, 4, 15, 16] proposed adapting I-cache to the need of
application’s demand. These techniques, however, exclusively
focus on user-level applications, even though there is
evidence that many system workloads (e.g., database, web
and file/e-mail servers) often involve heavy use of the
operating system (OS) [3, 18, 33].

During system workload execution, both user applications
and OS contribute to power dissipation. Previous studies [17,
18, 33] shown that without considering the impact of OS,
performance evaluations on system workloads can only
capture incomplete scenarios. To understand the impact of OS
on the I-cache power dissipation, we run fifteen benchmarks
with various OS activity (see Section 2 for benchmarks
description) on a full-system power simulation framework [18]
and breakdown the I-cache (32KB, 4-way set associative and
32-byte cache line) power into user applications and OS
components.

0

20

40

60

80

100

pmak
e

gcc
vo

rte
x

se
ndm

ail

file
man db

jes
s

jav
ac jac

k
mtrt

co
mpres

s

postg
re

s.s
ele

ct

postg
re

s.u
pd

ate

postg
re

s.j
oin

osb
oot

AVERAGE

%
 o

f
I-C

ac
he

 P
ow

er

User OS

Figure 1. I-Cache Power Breakdown: User vs. OS
Figure 1 shows that OS can highly impact processor I-cache

power on modern and emerging applications, such as e-mail
(sendmail), file (fileman), Java (db, jess) and database
(postgres.select, postgres.update) programs. On the average,
OS accounts for 30% of total I-cache power on the 15
experimented workloads. The proportion of OS energy
overhead is likely to continuously grow in the future due to
other emerging system administrative activities, such as
thermal sensor reading, energy accounting and power mode
control for memory and I/O devices [19, 20]. Therefore, it is
necessary to consider the OS for I-cache power modeling and
optimization.

Adhering to this philosophy, this paper explores the
opportunities to design low power I-cache by considering the
interactions of application-OS-hardware. We start from

 2

characterizing user and OS I-cache access behavior to identify
power saving opportunities. We observe that in a system that
frequently invokes OS activity, instruction blocks from user
applications and OS often interleave and co-exist within I-
cache that is shared by all processes.

To ensure proper operation and protect the OS from errant
users, modern processors and operating systems provide two
separate modes of operation: user mode and privileged mode.
Processor executes user processes in user mode. Whenever the
OS is invoked (by a trap or an interrupt/exception), the
hardware switches to privileged mode. The OS always
switches back to user mode before passing control to a user
program.

The semantics of dual mode operation provides
opportunities to save the dynamic power of I-cache access:
without affecting the performance and the correctness of
program execution, I-cache lookups for user applications can
bypass caches lines that store OS code and vice-versa.
Therefore, the number of parallel tag comparisons and data
array read-outs needed to fulfill a set-associative I-cache
access can be reduced, implying less dynamic power
dissipation per access. Moreover, we find that a significant
fraction of I-cache regions are only heavily accessed in one
operation mode. This characteristic can be exploited to reduce
I-cache leakage power: when processor executes in one mode,
cache regions that are only frequently accessed in another
mode can be put into lower power state.

To explore these power saving opportunities, we propose
two OS-aware tuning techniques - OS-aware cache way
lookup and OS-aware cache set drowsy mode - to improve the
I-cache energy efficiency for system workloads. We show in
this paper that with very simple hardware modification and
addition, OS-aware I-cache tuning exhibits promising dynamic
and static power reduction. More attractively, the OS-aware
tuning yields no or negligible impacts on performance. Since
system performance is sensitive to that of the OS, the
proposed techniques preserve merits especially valuable for
the energy-efficient, high performance server processor I-
cache designs.

The rest of this paper is organized as follows: Section 2
describes the experimental framework, methodology and
benchmarks. Section 3 characterizes user applications and OS
I-cache access behavior to identify power saving opportunities.
Section 4 proposes two OS-aware tuning techniques to
improve I-cache energy efficiency. Section 5 evaluates the
impact of proposed techniques on power and performance.
Section 6 discusses related work. Finally, Section 7 concludes
with some final remarks.

2. Experimental Methodology
In this study, we use energy-aware, full-system simulation

driven by a wide range of applications with various OS
activity. This section describes the simulation framework, the
machine architecture modeled and the workloads executed.

2.1 Framework and System Configuration
We use a modified version of the complete system power

simulator SoftWatt [18] that models the power dissipation of

the CPU, memory hierarchy and I/O subsystems. The
SoftWatt framework, built on top of the SimOS [21]
infrastructure, integrating energy models similar to Wattch
[34] into the full-system simulator. By leveraging the SimOS
cycle-accurate, full-system simulation capability, the
framework captures complete performance and power
characteristics on system workload execution. The simulated
OS is a commercial version of the SGI IRIX 5.3 (a modern
UNIX variant).

The simulated architectural model is an 8-issue superscalar
processor with instruction latencies as in the MIPS R10000.
The memory subsystem consists of a split L1 instruction and
data caches, a unified L2 cache and main memory. The
simulated machine also includes a scaled SCSI HP97560 disk
model. The described architecture is simulated cycle by cycle.
The execution and power dissipation of both user applications
and operating system are modeled. The detailed configuration
of the simulated machine architecture can be found in [18].

2.2 Benchmarks
We use fifteen applications that have different

characteristics. This section provides a brief overview of the
selected applications. Pmake is a parallel program
development workload that is a variant of the compiled phase
of the modified Andrew benchmark employed in [22]. Vortex
is a database manipulation code and gcc is a compiler code
from the SPECint95 benchmark suite. The sendmail
benchmark forwards emails messages to local accounts on the
system using the Simple Mail Transport Protocol (SMTP).
The sizes of the messages vary from 1KB to 1.5MB. The
fileman program performs file management activities, such as
copy, remove, chmod, tar -cvf and tar -xvf. A set of six Java
applications (db, jess, javac, jack, mtrt and compress) from
the SPECjvm98 [23] suite is executed using a commercial
JDK from Sun Microsystems. We also use three benchmarks
that run on a relational database management system (DBMS)
engine- PostgreSQL [24]. The database is populated with
relational tables for the TPC-C benchmark [25]. We evaluate
the execution of three specific queries on this data set. The
postgres.select performs a sequential table scan of a table with
1 million rows and a selectivity of 3%. The postgres.update
updates to a field of a 300,000 row table and the postgres.join
executes a nested loop join query involving two tables of sizes
11MB and 24KB. The osboot executes a complete OS booting
sequence form the root disk image and then generates a shell
for the root user. The postgres.select, postgres.update,
postgres.join benchmarks are simulated for billion-instruction
execution. All other applications are all executed to
completion. The OS activity in the selected benchmarks
ranges from 6% in compress to as high as 92% in fileman.

3. User/OS I-Cache Accesses Characterization
During system workload execution, instructions from user

applications and OS are fetched into I-cache and exercise on
the processor alternately, as shown in Figure 2(a). OS is
activated either voluntarily by a system call from the
application, or from a call by some other application, or

 3

implicitly by some underlying periodic/asynchronous
(timer/device interrupt) mechanism. Among multiple
processes that must all share the same I-cache, instruction
blocks from the OS co-exist with those from user processes.
Previous studies analyzed the impact of inter-mingling of user
and OS instructions in the I-cache and found that interferences
between the two degrade performance. The interest of our
characterization in this study, however, is to identify the
power saving opportunities.

User

OS

User

User

OS
 … …. …. ….

 … …. …. ….

Cache Set 0

Cache Set 1

Cache Set i

Cache Set i+1

Cache Set n-1

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

(a) Dynamically
Executed Inst. Stream

on Processor

(b) User/OS Instruction Blocks
Residency in I-Cache (4-Way)

User(2)+OS(2)

User(0)+OS(4)

User(4)+OS(0)

User(1)+OS(3)

User(3)+OS(1)

Figure 2. I-Cache Set Categories based on
User/OS Instruction Blocks Residency

(Assuming a 4-way I-Cache)

To achieve low miss rates for typical applications, modern
microprocessors employ set-associative I-Caches. In a system
that frequently invokes OS, there is a high possibility that user
and OS code simultaneously reside within the same cache set.
As illustrated in Figure 2(b), in a 4-way set-associative I-
cache, based on user/OS residency, cache sets can be
classified as: (1) user code occupies all of the four cache lines
(User(4)+OS(0)); (2) user occupies three cache lines and OS
resides in one cache line (User(3)+OS(1)); (3) user and OS
each occupy two cache lines (User(2)+OS(2)); (4) user
resides in one cache line and OS occupies three cache lines
(User(1)+OS(3)); and (5) OS dominates all of the four cache
lines (User(0)+OS(4)).

To protect OS from malfunctioning programs, modern
processor architectures support user and privileged mode
operations. Processor executes user applications in user mode
and OS instructions can only be exercised in privileged mode.
At any time, processor runs in one of the two modes.
Therefore, OS instructions in I-cache will not be selected
when processor runs in user mode and vice versa. The
semantic of dual-mode operation implies opportunities to save
the dynamic power of set-associative I-cache accesses: when
processor runs in one mode, the number of parallel cache way
lookups can be reduced by filtering out accesses to cache lines
holding instruction blocks that are only executed in another
mode. For example, to access cache sets in the User(2)+OS(2)
category, processor really needs to only perform two parallel
cache way lookups. Similarly, in the OS mode, if the
processor is aware of user/OS instruction block residency,

75% of parallel cache way lookups can be reduced when the
processor accesses cache sets in the User(3)+OS(1) category.

To evaluate the opportunities to reduce cache way lookups
by exploiting the information of user/OS cache blocks
residency within cache sets, we count the frequencies of I-
cache accesses to each cache set category during program
execution. The results are summarized in Table 1. Not
surprisingly, during system workload execution, a significant
fraction of I-cache accesses encounters cache sets in which
both user and OS instruction blocks reside (marked with
categories II, III, IV and shown by the shaded columns in
Table 1). On benchmarks gcc and vortex, user mode
dominates execution cycles. Still, more than 25% of I-cache
references access cache sets in categories II, III, and IV.
Interestingly, on benchmark compress, 97% of I-cache
accesses encounter OS cache lines, even though OS accounts
for only 6% of program execution time. This is because
compress has small I-cache footprint and a few most
frequently accessed cache sets (hot-spot) are mapped by
codes from both user and kernel spaces. On benchmarks
fileman and osboot where OS mode dominates, there are still
35% and 16% of I-cache references that touch user blocks.
Table 1 shows that on the average, 56% of program I-cache
references access cache sets in categories II, III and IV,
indicating there are abundant opportunities to reduce the
number of parallel cache way lookups (and associated
dynamic power) by incorporating user/OS operation mode in
I-cache designs.

Table 1. I-Cache (32KB, 4-Way and 32Byte Block)
Accesses Categorized by User/OS Residency

% in Program I-Cache Accesses
I II III IV V Benchmarks

User(4)
+OS(0)

User(3)
+OS(1)

User(2)
+OS(2)

User(1)
+OS(3)

User(0)
+OS(4)

pmake 33 26 25 11 5
gcc 73 17 7 2 1
vortex 72 20 6 1 0
sendmail 1 8 28 33 30
fileman 0 0 2 33 65
db 19 17 28 27 10
jess 32 21 23 20 5
javac 32 22 24 18 4
jack 26 34 26 14 1
mtrt 27 17 11 44 1
compress 2 8 25 64 1
postgres.select 25 27 21 22 4
postgres.update 28 19 17 20 17
postgres.join 55 18 13 12 1
osboot 0 2 4 9 84
AVERAGE 28 17 17 22 16

Previous research [15, 16] found that during program

execution, not all cache regions are accessed frequently. To
save energy, the less frequently accessed cache regions can be
put into lower power state with tolerable performance loss.
The dual-mode operation provides yet another opportunity: if
cache regions are heavily accessed by processor in only one
operation mode, then those cache regions can be put into
lower power state when the processor runs in another mode.

 4

To identify cache regions heavily accessed only in one of the
two operation modes, we further breakdown the
characterization shown in Table 1 into user and OS parts. The
results are shown by Figure 3 (a) and (b).

Figure 3 (a) and (b) show both user and OS access cache
sets in the categories II, III and IV frequently. Interestingly,
we find that cache sets in the category User(4)+OS(0) are
heavily accessed only in user mode. In contrast, cache sets in
the category User(0)+OS(4) are heavily accessed in OS mode
but they are rarely accessed in user mode. On the average,
only 0.08% of user I-cache accesses touch cache sets in the
category User(0)+OS(4). The percentile of OS I-cache
accesses that encounter cache sets in the category
User(4)+OS(0) is merely 0.11%. The above characterization
implies that during user execution, cache sets in the category
User(0)+OS(4) can be put into lower power state. On the
other hand, when processor runs in OS, cache sets in the
category User(4)+OS(0) can remain in lower power state.

To summarize, in this section, we characterize system
workload user/OS I-cache accesses categorized by the
user/OS residency. We find that dual-mode operation opens
additional opportunities to save processor I-cache power. We
discuss how I-cache design can explore these opportunities to
achieve low power in the following sections.

0
20
40
60
80

100

pmake gcc

vorte
x

sendmail

file
man db

jess
javac

jack
mtrt

compress

postgres.select

postgres.update

postgres.join
osboot

AVERAGE%
 o

f L
1

I-C
ac

he
 A

cc
es

s

V: User(0)+OS(4)
IV: User(1)+OS(3)
III: User(2)+OS(2)
II: User(3)+OS(1)
I: User(4)+OS(0)

(a) User I-Cache Accesses

0
20
40
60
80

100

pmake gcc

vorte
x

sendmail

file
man db

jess
javac

jack
mtrt

compress

postgres.select

postgres.update

postgres.join
osboot

AVERAGE%
 o

f L
1

I-C
ac

he
 A

cc
es

s

V: User(0)+OS(4)
IV: User(1)+OS(3)
III: User(2)+OS(2)
II: User(3)+OS(1)
I: User(4)+OS(0)

(b) OS I-Cache Accesses
Figure 3. User and OS I-Cache Accesses Categorized

by User/OS Residency

4. OS-aware I-Cache Tuning
This section proposes two simple mechanisms to improve

I-cache energy efficiency for system workloads.

4.1 OS-aware Cache Way Lookup
In a set associative cache, the number of cache way

lookups largely determines the dynamic power of a cache
access. A conventional 4-way set associative cache requires
four tag comparisons and four data array read-outs for a cache
access. Nevertheless, during user execution, performing tag
comparisons and data array read-outs for OS cache lines are
unnecessary and waste extra dynamic power. Therefore,
processor operation mode can be integrated with I-cache
design to reduce the number of cache way lookups (and hence
dynamic power) on cache accesses.

Figure 4 illustrates architectural modifications to support
OS-aware cache way lookup. A bit called cache way mode bit
is added to each cache line. With the cache way mode bit (e.g.,
0 for OS and 1 for user), we are able to differentiate between
cache way stores instructions on behalf of the operating
system, and of one that stores instructions on behalf of the
user applications. When a cache line is uploaded to I-cache
the first time, its cache way mode bit is generated, depending
on the processor operation mode. The cache way mode bit
will keep unchanged unless the associated cache line is
replaced. The current machine execution mode in processor
status register (PSR) is used to compare with cache way mode
bit to decide whether a cache way needs to be accessed in a
given operation mode. The results of comparisons are used to
generate enable signals (assuming active low) to circuitry
such as tag and data array access logic, tag comparators, data
array sense amps and output drivers. As can be seen from
Figure 4, the hardware modification and addition needed to
support OS-aware cache way lookup is simple.

C
ac

he
 w

ay
 m

od
e

bi
t Tag Data

execution mode bit

Cache line (way 0)
Cache line (way 1)
Cache line (way 2)
Cache line (way 3)

Way selcection
 logic

Hit/Miss

Data

Address (Tag)

Enable signals for tag
comparators, data array
sense amps and output
drivers

C
ache Set

Enable signals for tag and
data array access

Processor Status Register (PSR)

Figure 4. Hardware Modification/Addition Required
to Implement OS-aware Cache Way Lookup

The generation of above enable signals is not in the critical
path of I-cache access because once generated, they remain
unchanged (due to the one-to-one hard-wired mapping
between each cache way mode bit and each cache block)
unless a cache line replacement (due to a cache miss) occurs
or the processor switches mode. When a cache miss occurs,
the requested cache line is retrieved from the next level of
memory hierarchy and is immediately forwarded to processor
for execution. The corresponding cache mode bit needs to be
accessed and then updated. The latency to access and update
cache way mode bit array and regenerate cache way access

 5

enable signals can be overlapped with processor execution.
Similarly, the latency of regenerating cache way access enable
signals due to processor mode changes can be easily hidden as
well due to the inherent cost and the low frequency of user/OS
context switches.

Note that the correctness of OS-aware cache way lookup is
ensured by the dual-mode operation semantic and the precise
exception handling mechanism. Processor switches mode to
OS upon handing an exception or interrupt or upon handling a
TRAP instruction (usually used to implement all system calls
by OS), which all raises an exception. To handle precise
exceptions, the processor pipeline must drain before OS code
execution can begin. To return the processor to
user/unprivileged mode, most architectures use a privileged
instruction (return-from-exception) that performs this step in
an atomic manner. Therefore, even on processors with out-of-
order and speculative execution, instructions from user and
OS will not be fetched from I-cache and executed in pipeline
simultaneously.

For some systems, there could be certain circumstances
where user-defined signal handlers were performed within the
OS. Also, it is possible that certain runtime actions/exceptions
of user code, may be trapped by the hardware, given to the OS,
and the OS executes the user code in OS mode. For user code
that dedicatedly runs in OS mode, OS-aware cache way
lookups treat it as if it was OS code. However, for user code
that can run in both user and OS mode, additional attention is
required to ensure correctness. For example, a special purpose
register (1 bit) can be added to enable/disable OS-aware cache
way lookup by gating the cache way lookup enable signals.
An instruction writes to that special purpose register to set (or
reset) OS-aware cache way lookup. Two such instructions are
placed at the boundaries of the above code region so that OS-
aware cache way lookups are disabled before the code region
execution starts and are resumed after the code region
execution completes. During the above code region execution,
full cache way lookups are required and no power saving is
achieved. Because this situation happens infrequently, its
impact on performance as well as energy saving is negligible.
We never encountered this situation during all applications
simulation on the OS we studied in this paper.

We measure the reduction of cache way accesses on a 4-
way set-associative I-cache by employing OS-aware cache
way lookup, as shown in Figure 5. The results are shown for
user, OS and the aggregated cache accesses on each
benchmark. On benchmarks gcc and vortex where the OS
frequently accesses cache sets in the category User(3)+OS(1),
OS-aware cache way lookup reduces the number of cache way
accesses in OS significantly. On the other hand, the number of
cache way lookups during the user execution on benchmark
sendmail is largely reduced due to its high access frequencies
to cache sets in the categories User(1)+OS(3) and
User(2)+OS(2). On the average, the proposed technique
reduces cache way lookups in user, OS and aggregated I-
cache accesses by 34%, 35% and 35% respectively, implying
significant I-cache dynamic power saving.

0
10
20
30
40
50
60
70
80

pmak
e

gcc
vo

rte
x

se
ndm

ail

file
man db

jess
java

c
jac

k
mtrt

co
mpress

postg
res

.se
lect

postg
res

.upd
ate

postg
res

.jo
in

osbo
ot

AVERAGE%
 o

f R
ed

uc
ed

 I-
C

ac
he

W
ay

 A
cc

es
s

User
OS
Overall

Figure 5. % of Reduced I-Cache Way Accesses by
OS-aware Cache Way Lookup

4.2 OS-aware Cache Set Drowsy Mode
Caches comprise a large portion of the on-chip transistor

budget. Due to CMOS technology scaling, static power due to
leakage current is gaining in importance in I-cache power
dissipation. For example, Agarwal et al. [26] report that
leakage energy accounts for 30% of L1 cache energy for a
0.13-micro process technology. In a 0.07 micron process,
ITRS predicts leakage may constitute as much as 50% of total
power budget [31]. These make efforts at leakage control
essential to maintain control of I-cache power on current and
next generations of processors.

To reduce cache leakage power, researchers [16, 27] have
proposed turning off the unlikely used cache lines using
gated-Vdd technique [11]. While the gated-Vdd technique is
efficient in saving leakage, the disconnected cache line loses
its state and needs to be fetched from L2 cache, causing
performance penalty and dynamic power consumption due to
an extra L2 access. Alternatively, cache lines can be put into a
low-leakage drowsy mode to save power by exploiting the
short-channel effects on dynamic voltage scaling [15]. Unlike
the gated-Vdd, in drowsy mode, the information in the cache
line is preserved. However, the cache line in drowsy mode
must be reinstated to a high-power mode before its contents
can be accessed. The performance penalty of accessing a
drowsy cache line is an extra cycle to restore the full voltage
for that cache line.

Recent studies show that state-preserving drowsy cache
techniques are preferable for leakage control in L1 caches
where high performance is a must. Since system performance
is sensitive to that of the OS, our objective here is to reduce
power yet preserve high performance. Therefore, in this paper,
we explore the opportunity of integrating OS-aware cache
tuning with a state-preserving, leakage control mechanism.
The rationale is to put cache regions that heavily accessed in
only one operation mode into drowsy state when processor
runs in another mode. A key issue is to classify or identify
which cache regions are “hot” in one operation mode but stay
“cool” in another operation mode.

The user/OS I-cache accesses on system workloads show
that the intra-cache set user/OS residency can be used as
proximity for the above classification. During OS execution,
cache sets in the category User(4)+OS(0) are infrequency

 6

accessed and can be put into drowsy state. Similarly, during
user mode execution, cache sets in the category User(0)+OS(4)
can remain in drowsy state.

C
ac

he
 w

ay
 m

od
e

bi
t

drw

 !drw

Vdd Low
(0.3V)

Vdd (1V)

worldline

power supply

word line
Cache line (Way 0)

power supply

word line
Cache line (Way 1)

power supply

word line
Cache line (Way 2)

power supply

word line
Cache line (Way 3)

worldline gate

drowsy bit

voltage
controller

Processor Status Register (PSR)
execution mode bit

Cache Set

set / wake-up

Figure 6. Control Circuitry to Implement OS-aware
Cache Set Drowsy Mode

Figure 6 illustrates the control circuitry to implement OS-
aware cache set drowsy mode. To control memory cells
leakage power, we use circuit technique proposed in [15]. A
drowsy bit is used to control the supply voltages to the
memory cells within a cache set. For a 0.07 micron process
with normal supply voltage (Vdd) of 1.0V, the threshold
voltage (Vdd Low) needed to preserve the state of memory
cells is about 0.3V [15]. Depending on the state of the drowsy
bit, all cache lines within a cache set can be put into either the
high power active state or the low leakage drowsy state.

In Figure 6, if all cache way mode bits within a cache set
are identical (e.g., 0000 or 1111) and they are different with
the current processor mode, the whole cache set is put into
drowsy mode. This control logic puts cache sets in the
category User(4)+OS(0) to drowsy mode during OS execution.
When context switches back to user, cache sets in the category
User(4)+OS(0) are waken up and cache sets in the category
User(0)+OS(4) are then put into drowsy state. Moreover, if an
OS (or a user) cache miss occurs on a cache set in the
category User(4)+OS(0) (or User(0)+OS(4)), the cache set is
waken up due to the change of intra-cache set user/OS
residency.

Whenever a cache set is accessed, the drowsy bit
associated with it is checked. If the cache set stays in active
mode, the ongoing cache access acts normally. Otherwise, if a
drowsy cache set is encountered, the drowsy bit is cleared;
causing the supply voltage resorted back to the normal Vdd
during the next cycle. The data can be accessed during
consecutive cycles. The wordline gating circuit is used to
prevent unchecked accesses to a drowsy set which could
destroy the memory’s contents.

In Figure 6, OS-aware cache set drowsy mode uses a
shared source (cache way mode bit) to control leakage,
reducing the cost of drowsy I-cache implementation. We
count the percentile of cache sets can be put into drowsy state
on user, OS and aggregated execution by employing the
leakage control method described. The results are shown in
Figure 7. On the average, 17% of I-cache sets can be put into
drowsy mode during user execution while the percentage of I-

cache sets remain in drowsy state during OS execution is 35%.
Overall, 22% of I-cache sets can be put into drowsy mode
during program execution. On most benchmarks, we observed
that larger fraction of cache regions can remain in drowsy
mode during OS execution. This is because that although OS
is large and sophisticated software, OS execution is usually
dominated by a small fraction of highly invoked service
routines [18]. Therefore, a sizeable fraction of the I-cache is
not accessed by the OS during its execution.

0
10
20
30
40
50
60

pmake gcc
vorte

x

sendmail

file
man db

jess
javac

jack
mtrt

compress

postg
res.s

elect

postg
res.u

pdate

postg
res.jo

in
osboot

AVERAGE

%
 o

f I
-C

ac
he

 S
et

s
pu

t i
nt

o
D

ro
w

sy
 M

od
e

User Exec. OS Exec. Overall Exec.

74% 89% 69% 73%

Figure 7. % of I-cache Sets can be put into Drowsy
State by Using Leakage Control Illustrated in Fig. 6

Table 2. % of I-Cache Accesses to Drowsy Sets and

Average Number of Reinstated Drowsy Sets

Benchmarks

% of User
Accesses to
Drowsy Sets
(in the
category
User(0)+OS(
4))

Avg. Num.
of Drowsy
Sets
Reinstated
in User

% of OS
Accesses to
Drowsy Sets
(in the
category
User(4)+OS(0
))

Avg.
Num. of
Drowsy
Sets
Reinstate
d in OS

pmake 0.01 0.18 0.10 0.16
gcc 0.00 0.01 0.21 0.04
vortex 0.00 0.00 0.05 0.01
sendmail 0.15 1.40 0.01 0.10
fileman 0.22 0.92 0.00 0.01
db 0.05 0.10 0.09 0.09
jess 0.04 0.04 0.09 0.04
javac 0.02 0.04 0.14 0.07
jack 0.01 0.01 0.28 0.06
mtrt 0.00 0.02 0.11 0.03
compress 0.00 0.01 0.03 0.01
postgres.select 0.04 0.15 0.23 0.26
postgres.update 0.20 0.30 0.20 0.33
postgres.join 0.01 0.03 0.08 0.04
osboot 0.47 2.17 0.00 0.11

As described earlier, an extra cycle is needed to access

cache sets in drowsy mode, implying a performance penalty.
To effectively save power while maintaining high
performance, both the number of accesses to the drowsy sets
and the number of drowsy cache sets reinstated to the high
power mode should be small. Table 2 summarizes the
percentage of I-cache accesses to the drowsy sets and the
average number of drowsy sets that are waken-up. The data
are shown for both user and OS execution. As can be seen
from Table 2, the possibilities to access a drowsy cache set in

 7

both operation modes are extremely low (< 0.1% in most
cases), indicating negligible performance lost due to drowsy
cache sets wake ups. Additionally, most of the drowsy sets
remain in the low power state during a given mode execution
by showing very small fraction of reinstated drowsy sets.

It should be noticed that although the intra-cache set
user/OS residency provides a good approximation on user/OS
access frequencies to that cache set, this heuristic may be too
conservative from the perspective of power saving. We further
explore the directly using of cache set access frequencies from
different operation mode as the metric to control cache set
drowsy mode.

00 01 1110

OS

User

UserUserUser

OSOSOS

OS Access
Biased

User Access
Biased

Figure 8. The 2-bit Counter and Finite State Machine
to Implement User/OS Access-biased Classification

This user/OS access-biased classification is similar to the
one that has been used in classifying the biases of branches.
To be more specific, a finite state machine formed by a 2-bit
saturating up/down counter is used by each cache set to keep
tracking the accesses from user and OS execution, as shown in
Figure 8. Whenever an access to that cache set comes from
user mode, the associated counter is increased by 1. On the
other hand, when an access to that cache set from the OS
mode occurs, the counter is decreased by 1. As a result, cache
sets with counter’s value equals to 3 indicate they are user
access-biased and cache sets with counter’s value equals to 0
are classified as OS access-biased. During user execution, the
OS access-biased cache sets are put into drowsy mode. On the
other hand, when processor runs in OS, the user access-biased
cache sets are put into drowsy mode.

0
20
40
60
80

100

pmake gcc
vorte

x

sendmail

file
man db

jess
javac

jack
mtrt

compress

postg
res.s

elect

postg
res.u

pdate

postg
res.jo

in
osboot

AVERAGE

%
 o

f I
-C

ac
he

 S
et

s
pu

t i
nt

o
D

ro
w

sy
 M

od
e

User Exec. OS Exec. Overall Exec.

Figure 9. % of I-cache Sets put into Drowsy State by
using User/OS Access-biased Classification

Figure 9 shows the percentile of cache sets can be put into

drowsy state on user, OS and aggregated execution by
employing the less restricted user/OS access-biased leakage

control mechanism. One can see that the access-based
classification has the capability of putting more cache sets
into drowsy state. This is because access-based scheme can
identify all cache sets that can be classified by the residency-
based scheme. Additionally, access-based scheme captures
more scenarios. For example, it could be possible that a cache
set has both user and OS blocks reside in it but are accessed
frequently only in one operation mode. On the average, 29%
of I-cache sets can be put into drowsy mode during user
execution while the percentage of I-cache sets can be put into
drowsy state during OS execution is 71%. Overall, 42% of I-
cache sets can remain in the drowsy state during program
execution.

Table 3 further summarizes the percentage of I-cache
accesses to the drowsy sets and the average number of
drowsy sets that are waken-up by using the access-based
classification. As can be seen, both numbers are higher than
the residency-based classification but are still low enough to
incur observable performance degradation.

Table 3. % of I-Cache Accesses to Drowsy Sets and
Average Number of Reinstated Drowsy Sets using

Access-Based Classification

Benchmarks

% of User
Accesses to
Drowsy Sets
(User(0)+O
S(4))

Avg. Num.
of Drowsy
Sets
Reinstated in
User

% of OS
Accesses to
Drowsy
Sets
(User(4)+O
S(0))

Avg. Num.
of Drowsy
Sets
Reinstated
in OS

pmake 0.06 1.06 0.69 1.07
gcc 0.05 0.17 0.81 0.16
vortex 0.03 0.04 0.32 0.04
sendmail 0.44 4.13 0.50 4.14
fileman 3.05 12.79 0.34 11.15
db 0.69 1.33 1.31 1.30
jess 0.68 0.70 1.44 0.67
javac 0.26 0.58 1.18 0.57
jack 0.26 0.28 1.26 0.26
mtrt 0.07 0.25 0.98 0.25
compress 0.15 0.54 2.59 0.53
postgres.select 0.24 0.82 0.70 0.82
postgres.update 0.45 0.67 0.41 0.68
postgres.join 0.04 0.20 0.42 0.21
osboot 1.18 5.45 0.11 5.42

5. Power and Performance Evaluation
This section provides results showing the I-cache power

savings as well as the performance impact due to the
proposed OS-aware I-cache tuning. By default, the power and
performance numbers are normalized to the base line I-cache
and machine configuration described in Section 2. In our
simulation, we account for the energy overhead due to
hardware modification and addition to implement the
proposed OS-aware tuning.

Figure 10 shows the normalized I-cache dynamic power
after employing the OS-aware cache way lookup scheme. On
the average, the OS-aware cache way lookup can save 29%
and 30% of I-cache dynamic power on user and OS execution
respectively. The aggregated dynamic power saving of this
technique is 30%. Looking at Figure 5 and Figure 10, one can

 8

see that dynamic power saving is largely correlated with the
reduced cache way accesses. It should be noticed that this
30% of dynamic power saving is achieved without any impact
on performance. This feature is especially valuable for the OS
since system performance is sensitive to that of the OS and the
processor energy overhead caused by performance
degradation can easily offset the benefit of power saving in I-
cache.

0.0
0.2
0.4
0.6
0.8
1.0

pmak
e

gcc
vo

rte
x

se
ndm

ail

file
man db

jes
s

jav
ac jac

k
mtrt

co
mpres

s

postg
re

s.s
ele

ct

postg
re

s.u
pd

ate

postg
re

s.j
oin

osb
oot

AVERAGE

N
or

m
al

iz
ed

 I-
C

ac
he

D
yn

am
ic

 P
ow

er

User
OS
Overall

Figure 10. % of I-Cache Dynamic Power Savings by
Incorporating OS-aware Cache Way Lookup

Table 4 summarizes the I-cache leakage power savings as
well as the run-time increases due to the OS-aware cache
leakage control. One can see that both policies (i.e.,
residency-based and access-based) lead to a significant
leakage power reduction. The residency-based drowsy mode
scheme is more conservative, resulting in 5% - 50% of
leakage power saving on the experimented applications.
Access-based drowsy mode scheme, on the other hand, yields
greater leakage power reduction by putting larger fraction of
cache regions in to drowsy state, resulting in an average of
37% of overall leakage power reduction.

Table 4 also shows that both OS-aware cache set drowsy
policies incur negligible (<1% in most case) run-time increase.
This is because: (1) the cost of wrongly-putting a cache set
into drowsy mode that is accessed thereafter is relatively
small, and (2) using the proposed cache set drowsy policies
makes the possibilities of accessing drowsy cache sets
become extremely low. Therefore, the proposed leakage
control techniques again preserve merits especially valuable
for designing the power efficient, high performance server
processor I-cache targeting on modern and commercial
applications that heavily invoke OS activities.

Table 4. Normalized Leakage Power and Run-time Increase

by Using the OS-aware Cache Set Drowsy Mode

Residency-based Access-based
Normalized Leakage

Power
Increased Execution

Cycle
Normalized Leakage

Power
Increased Execution

Cycle
User OS Over-all User OS Over-all User OS Over-all User OS Over-all

pmake 0.96 0.34 0.90 0.03% 0.19% 0.04% 0.89 0.21 0.84 0.15% 1.15% 0.23%
gcc 1.00 0.20 0.95 0.02% 0.32% 0.04% 0.98 0.12 0.93 0.09% 1.22% 0.15%
vortex 0.99 0.38 0.94 0.03% 0.11% 0.04% 0.97 0.14 0.90 0.08% 0.84% 0.14%
sendmail 0.67 0.98 0.82 0.21% 0.05% 0.14% 0.41 0.70 0.55 0.71% 1.23% 0.95%
fileman 0.35 1.00 0.93 0.45% 0.04% 0.09% 0.24 0.89 0.81 4.95% 0.47% 0.98%
db 0.93 0.85 0.91 0.12% 0.23% 0.16% 0.72 0.40 0.61 1.06% 2.48% 1.54%
jess 0.97 0.62 0.86 0.09% 0.12% 0.10% 0.81 0.30 0.65 0.97% 2.05% 1.31%
javac 0.98 0.69 0.93 0.07% 0.19% 0.09% 0.87 0.25 0.76 0.61% 1.97% 0.85%
jack 0.99 0.74 0.95 0.03% 0.36% 0.08% 0.90 0.21 0.79 0.45% 2.08% 0.72%
mtrt 0.97 0.64 0.95 0.02% 0.24% 0.03% 0.92 0.20 0.88 0.11% 1.42% 0.19%
compress 0.47 0.99 0.50 0.05% 0.09% 0.05% 0.45 0.70 0.46 0.42% 4.09% 0.61%
postgres.select 0.96 0.79 0.92 0.07% 0.35% 0.14% 0.85 0.26 0.70 0.24% 0.70% 0.36%
postgres.update 0.97 0.53 0.74 0.49% 0.33% 0.41% 0.90 0.20 0.53 0.99% 0.65% 0.81%
postgres.join 0.99 0.56 0.95 0.05% 0.13% 0.06% 0.97 0.13 0.89 0.12% 0.76% 0.18%
osboot 0.52 0.99 0.95 0.98% 0.03% 0.11% 0.30 0.82 0.78 2.46% 0.34% 0.52%
AVERAGE 0.85 0.69 0.80 0.18% 0.19% 0.18% 0.75 0.37 0.63 0.89% 1.43% 1.05%

6. Related Work
Selective cache ways [6] reduce cache access energy by

turning off unneeded ways in a set-associative cache. Recently,
Zhang [4] proposed a reconfigurable cache architecture using
way concatenation to adapt cache associativity for embedded
applications. To use these techniques, the designers have to
determine the appropriate configurations for a given program
by exhaustively searching all possible configurations. The
caches are reconfigured for the entire program execution. In
contrast, OS-aware cache way lookups decide at run-time

whether cache line lookups are necessary for a given
operation mode.

Phased-lookup cache [28] uses a two-phase lookup, where
all tag arrays are accessed in the first phase, but then only the
one hit data way is accessed in the second phase. The
employing of phased-lookup cache results in less data-way
access energy at the expense of longer access time. Way
prediction [10, 12] speculatively selects a way to access
initially, and only access the other arrays if that initial array
did not result in a match. To support way prediction,
processor branch prediction mechanism has to be extended.
Adding way-prediction to the branch prediction mechanism

 9

may affect the processor cycle time because the branch
prediction access is often on one of the critical path. Way
prediction scheme incurs a performance penalty by spending
an extra cycle to access the other ways when a prediction fails.
Moreover, way predicting of all I-cache accesses is non-trivial.
In [12], Powell reported that even an elegant way predictor
could make no prediction for a sizable fraction of I-cache
accesses. We expect that the fraction of no prediction and
misprediction on way prediction could even increase on
system workloads due to their larger I-cache footprints and the
effects of exception-driven, non-deterministic OS execution
[3]. Compared with way prediction, the proposed OS-aware
cache way lookups do not cause performance degradation and
is easier to implement because no predictor is involved.
Moreover, way prediction still needs full tag comparisons to
verify the correctness of a prediction while OS-aware cache
way lookups only probe selected cache tags. In [14], Lee et al.
proposed region-based caching by re-organizing the first level
cache to more efficiently exploit memory region (stack, global,
heap) reference characteristics produced by programming
language semantics. In [30], Kim et al. investigated ways of
splitting the cache into several smaller units, each of which is
a cache by itself (called a sub-cache). However, implementing
region-based caching or sub-caching scheme requires
substantial amount of modifications to be made in cache and
other structures (e.g. TLB).

Approaches for reducing static power consumption of
caches by turning off cache lines using the gated-Vdd
technique have been described in [16, 27]. The drawback of
this approach is that the state of the cache line is lost when it
is turned off and reloading it from the L2 cache has a
significant impact on performance. Because system
performance largely depends on the performance of OS, the
inherently high penalty gated-Vdd technique become less to
control I-cache leakage for the OS. In [29], the using of
compiler to insert power mode instructions to control cache
leakage power was proposed. However, this approach requires
the re-compilation of program source code, which is not
generally applicable to the OS as well as many commercial
applications. To reduce leakage energy dissipation, Yang [35]
proposed a dynamically resizing I-cache. Compared with
resizable cache, the proposed OS-aware cache tuning reduces
power while still utilizing the full cache capacity. The drowsy
instruction cache [32] uses dynamic voltage scaling and cache
sub-bank prediction to achieve leakage power reduction. Like
way prediction, a misprediction on cache sub-bank incurs a
performance penalty. When applied to large, set-associative
cache, an aggressive cache sub-bank predictor yields mediocre
prediction accuracies [32]. The area as well as power
overhead of the memory sub-bank prediction buffers, which
yield better prediction accuracies, can be significant.
7. Conclusions

Many modern applications result in a significant operating
system (OS) component. This trend is likely to continue in the
near future and it is very important to consider the OS not
only for performance evaluations, but also when attempting to
optimize the performance and power of hardware. Adhering to

this philosophy, this paper explores the opportunities of
employing the three subsystems – application, OS and
hardware – to improve I-cache energy efficiency. We start
from characterizing user/OS I-cache accesses on system
workloads to identify power saving opportunities due to dual-
mode operation. We then propose two simple OS-aware
techniques incorporating processor operation mode to
improve I-cache energy efficiency on system workloads. The
proposed OS-aware cache way lookup reduces the number of
parallel tag comparisons and data array read-outs for cache
accesses and saves dynamic power. Integrating with a state-
preserving, leakage control mechanism, OS-aware tuning
effectively reduces static power, which is gaining in
importance due to CMOS technology scaling. Unlike other
proposed schemes, OS-aware tuning achieves both dynamic
and static power savings but requires minimal hardware
modification and addition. To our knowledge, this work is the
first step to explore cache power optimization on system
workloads including the OS. The proposed techniques can be
implanted into server processor I-caches mostly targeting on
OS-intensive commercial applications.

References
[1] J. Kin, M. Gupta and W. H. Mangione-Smith, The Filter

Cache: An Energy Efficient Memory Structure, In
Proceedings of the International Symposium on
Microarchitecture, 1997.

[2] M. B. Kamble and K. Ghose, Energy-Efficiency of VLSI
Caches: A Comparative Study, In Proceedings of the
IEEE 10th International Conference on VLSI Design,
1997.

[3] Y. Luo, P. Seshadri, J. Rubio, L. K. John and A. Mericas,
A Case Study of 3 Internet Server Benchmarks on 3
Superscalar Machines, IEEE Computer, Feb. 2003.

[4] C. Zhang, F. Vahid and W. Najjar, A Highly
Configurable Cache Architecture for Embedded Systems,
In Proceedings of the International Symposium on
Computer Architecture, 2003.

[5] P. Ranganathan, S. Adve and N.P. Jouppi, Reconfigurable
Caches and their Application to Media Processing, In
Proceedings of the International Symposium on
Computer Architecture, 2000.

[6] D. H. Albonesi, Selective Cache Ways: On-Demand
Cache Resource Allocation, Journal of Instruction Level
Parallelism, May 2000.

[7] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu,
and S. Dwarkadas, Memory Hierarchy Reconfiguration
for Energy and Performance in General-Purpose
Processor Architectures, In Proceedings of the
International Symposium on Microarchitecture, 2000.

[8] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D.
H. Albonesi, S. Dwarkadas, G. Semeraro, G. Magklis,
and M.L. Scott, Integrating Adaptive On-Chip Storage
Structures for Reduced Dynamic Power, In Proceedings
of the International Conference on Parallel Architectures
and Compilation Techniques, 2002.

 10

[9] M. Huang, J. Renau, S. M. Yoo, and J. Torrellas, L1 Data
Cache Decomposition for Energy Efficiency, In
Proceedings of the International Symposium on Low
Power Electronics and Design, 2001.

[10] K. Inoue, T. Ishihara, and K. Murakami, Way-Predictive
Set-Associative Cache for High Performance and Low
Energy Consumption, In Proceedings of the International
Symposium on Low Power Electronics and Design, 1999.

[11] M. Powell, S. H. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar, Gated-Vdd: A Circuit Technique to Reduce
Leakage in Deep-Submicron Cache Memories, In
Proceedings of the International Symposium on Low
Power Electronics and Design, 2000.

[12] M. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and
K. Roy, Reducing Set-Associative Cache Energy via
Way-Prediction and Selective Direct-Mapping, In
Proceedings of the International Symposium on
Microarchitecture, 2001.

[13] J. Yang and R. Gupta, Energy Efficient Frequent Value
Data Cache Design, In Proceedings of the International
Symposium on Microarchitecture, 2002.

[14] H.-H. S. Lee, G. S. Tyson, Region-Based Caching: An
Energy-Delay Efficient Memory Architecture for
Embedded Processors, In Proceedings of the International
Conference on Compilers, Architecture and Synthesis for
Embedded Systems, 2000.

[15] K. Flautner, N. S. Kim, S. Martin, D. Blaauw and T.
Mudge, Drowsy Caches: Simple Techniques for
Reducing Leakage Power, In Proceedings of the
International Symposium on Computer Architecture,
2002.

[16] S. Kaxiras, Z. G. Hu and M. Martonosi, Cache Decay:
Exploiting Generational Behavior to Reduce Cache
Leakage Power, In Proceedings of the International
Symposium on Computer Architecture, 2001.

[17] N. Gloy, C. Young, J. B. Chen and M. D. Smith, An
Analysis of Dynamic Branch Prediction Schemes on
System Workloads, In Proceedings of the International
Symposium on Computer Architecture, 1996.

[18] T. Li and L. K. John, Run-time Modeling and Estimation
of Operating System Power Consumption, International
Conference on Measurement and Modeling of Computer
Systems, 2003.

[19] H. Zeng, X. B. Fan, C. Ellis, A. Lebeck and A. Vahdat,
ECOSystem: Managing Energy as a First Class Operating
System Resource, In Proceedings of the International
Symposium on Architecture Support for Program
Language and Operating System, 2002.

[20] F. Bellosa, The Benefit of Event-driven Energy
Accounting in Power-sensitive Systems, In Proceedings
of 9th ACM SIGOPS European Workshop, 2000.

[21] M. Rosenblum, S. A. Herrod, E. Witchel and A. Gupta,
Complete Computer System Simulation: the SimOS

Approach, IEEE Parallel and Distributed Technology:
Systems and Applications, vol.3, no.4, Winter 1995.

[22] J. Ousterhout, Why aren’t Operating Systems Getting
Faster and Fast as Hardware?, In Proceedings of the
Summer 1990 USENIX Conference, 1990.

[23] SPEC JVM98 Benchmarks,
http://www.spec.org/osg/jvm98/.

[24] PostgreSQL, http://www.us.postgresql.org/
[25] Transaction Processing Council, The TPC-C Benchmark,

http://www.tpc.org/tpcc/
[26] A. Agarwal, H. Li, and K. Roy, DRG-Cache: A Data

Retention Gated-Ground Cache for Low Power, In
Proceedings of the International Design Automation
Conference, 2002.

[27] H. Y. Zhou, M. C. Toburen, E. Rotenberg and T. M.
Conte, Adaptive Mode Control: a Static Power-Efficient
Cache Design, In Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques, 2001.

[28] A. Hasegawa, I.Kawasaki, K.Yamada, S.Yoshioka, S.
Kawasaki, and P. Biswas, SH3: High Code Density, Low
Power, IEEE Micro, Dec. 1995.

[29] W. Zhang, J. S. Hu, V. Degalahal, M. Kandemir, N.
Vijaykrishnan, M. J. Irwin, Compiler-Directed Instruction
Cache Leakage Optimization, In Proceedings of the
International symposium on Microarchitecture, 2002.

[30] S. Kim, N. Vijaykrishnan, M. Kandemir, A.
Sivasubramaniam and M. J. Irwin, Partitioned Instruction
Cache Architecture for Energy Efficiency, ACM
Transactions on Embedded Computing Systems, Vol. 2,
Issue 2, May 2003.

[31] SIA. International Technology Roadmap for
Semiconductors, 2001.

[32] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge,
Drowsy Instruction Caches, In Proceedings of the
International Symposium on Microarchitecture, 2002.

[33] J. A. Redstone, S. J. Eggers and H. M. Levy, An Analysis
of Operating System Behavior on a Simultaneous
Multithreaded Architecture, In Proceedings of the
International Conference on Architectural Support for
Program Languages and Operating Systems, 2000.

[34] D. Brooks, V. Tiwari, and M Martonosi, Wattch: A
Framework for Architectural Level Power Analysis and
Optimization, In Proceedings of the International
Symposium on Computer Architecture, 2000.

[35] S. H. Yang, M. Powell, B. Falsafi and T. N. Vijay,
Exploiting Choice in Resizable Cache Design to Optimize
Deep-submicron Processor Energy-delay, In Proceedings
of the International Symposium on High-Performance
Computer Architecture, 2002.

