N
N

N

HAL

open science

Stability Analysis of an Ultrasonic Motor for a New
Wave Amplitude Control

Frédéric Giraud, Betty Lemaire-Semail, Julien Aragones, Jacques Robineau,

Jean-Thierry Audren

» To cite this version:

Frédéric Giraud, Betty Lemaire-Semail, Julien Aragones, Jacques Robineau, Jean-Thierry Audren.
Stability Analysis of an Ultrasonic Motor for a New Wave Amplitude Control. IEEE Transactions on

Industry Applications, 2009, 45 (4), pp.1343-1350. 10.1109/07IAS.2007.73 . hal-01110762

HAL Id: hal-01110762
https://hal.science/hal-01110762
Submitted on 29 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01110762
https://hal.archives-ouvertes.fr

Stability Analysis of an Ultrasonic Motor for a new
wave amplitude control

Frédéric Giraud, Betty Lemaire-Semail Laboratory of electrotechnics and power electronics of Lille
Avenue Paul Langevin
59655 Villeneuve d’Ascq Cedex
Email: first name.name @polytech-Lille.fr Julien Aragones, Jacques Robineau
Jean-Thierry Audren SAGEM SA defence and security
Le Ponant de Paris
27 rue Leblanc
75512 Paris Cedex 15, France

Abstract—Using Piezo electric actuators can reduce the bulk
size of servomechanisms; they are thus very useful in avionics
applications. However, mechanical overload on the shaft of a
Traveling Wave Ultrasonic Motor often results in the motor
suddenly stalling. To avoid this drawback, one can increase the
supply voltage or add a control loop in the rotating reference
frame of the traveling wave. The consequences are extra power
losses or lower dynamic performances.

The proposed method combines the advantages of classical
controls and controls in a rotating frame: both stability and
dynamic performances are obtained at low supply voltage levels.
Experimental runs are presented.

I. INTRODUCTION

Traveling Wave Ultrasonic Motors (TWUM) exploit a
piezoelectrically generated flexural wave which propagates
at the surface of a stator. This wave is able to propel by
contact a rotor strongly pressed on it. Friction produced by the
contact mechanism is at the origin of numerous advantages,
among which we can find: braking without supplying voltages,
a high torque to mass ratio and high torque - low speed
characteristics. Thus, while a speed reducer is often needed
with an electromagnetic motor, it becomes useless in applica-
tions using TWUM: this leads to lightweight and compact
applications. These features greatly increase the interest of
these motors for servo applications in the avionics industry.
Unfortunately, they are very difficult to control. First, since
torque generation is non linear, it is difficult to precisely
drive a load. However, solutions have been provided to solve
that problem [1] and achieve precise position control in
optoelectronic applications[2]. Secondly, the resonant behavior
of the stator is very sensitive to different external conditions:
temperature, load torque or mounting conditions. For example,
the motor may stall if a mechanical overload is applied to
the shaft, and this seriously decreases the reliability of servo
mechanisms actuated by TWUM. Reducing the motor’s sensi-
tivity to external torque variations is thus a key issue for their
use in avionic applications. In fact, bumps are typical of this
kind of environment, where random disturbances are applied
to the load and extremely accurate position or speed controls
are needed. To solve this problem, one can increase the supply
voltage. This displaces the torque limit which makes the motor

stall, but does not remove the problem completely. Moreover, it
increases the power losses and thus decreases the efficiency of
the motor. Other solutions are proposed in [3][4]; [4] is based
on a control of the motor in a rotating reference frame fixed to
the traveling wave. By controlling the phase shift between the
supply voltage and the traveling wave, it is possible to ensure
operation for any load conditions. However, this solution slows
down the traveling wave’s dynamic. When implemented in a
position control, this leads to lower dynamic performances
compared to a classical frequency control. The aim of this
article is to describe a new control method which helps to
improve the reliability of the motor’s operation at low supply
voltage levels while maintaining good dynamic performances
during transitory operations. For that purpose, an overview
of method used to model these motors is given. Then the
proposed control is detailed. Experimental results are given in
the final section for an industrial optoelectronic application.

II. MODELLING OVERVIEW
A. Modelling in the o frame.

A TWUM is made up of a ring shaped stator on which
piezo-electric elements are bonded. If these elements are
supplied close to the resonant frequency of this mechanical
set, a bending wave is propagated in the stator. This travelling
wave is able to propel by friction a rotor pressed on it (figure
1).

Different authors [5][6] have described the energy conver-
sion process for TWUM. This process can be divided into
three stages. In the first stage, the supply voltages named v,,
and vg create forces via the inverse piezoelectric effect. In the
second stage, the stator vibrates because of these forces. The
deformation w along the z axis can be written as 1

w(6,t) = wq(t) cos(6) + wg(t) sin(h) (1)
where the w, and wg are the stationary wave’s amplitudes,
which occur if v, and vg are supplied alone respectively, and
k is the mode number. In figure 1 the stator is in contact with
the rotor at one contact point along the wavelength. The wave
crest location 6. can be deduced from w, and wg by [7]:

kO, = tan_l% 2)
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Fig. 1. Vibrating stator and the rotor pressed on it.

The relationship between w, , wg and v, ,v3 can be
described using a 2"? order equation

mwg + dswg + cwg = Nvg — fr (@))

where m,c, ds; and N are parameters of the stator; [7]and
[8] describe the protocol to identify these parameters. The
resonant fr.equency of the stator is given by wo = /5--

In equation 3, f,., and f, take into account the external
forces acting on the stator which are:

« the normal force pressing the rotor on the stator Fly
o the load torque T'

Under the assumption of ideal contact (no sliding and
conditions of ideal punctual contact), it is possible to deduce
a relationship between f,q, frg, Fiv, and 1%

fra \ _ F.
(5)-m( )

where h is the thickness of the stator and b is the radius of
the stator. R(k6.) is the well known rotational matrix, often
used when modelling electromagnetic motors:

_( cos(f) —sin(h)
R(6) = ( sin(0)  cos(6) ) ©)

The third stage of the energy conversion process is the
friction between the stator and the rotor which produces the
torque appearing on the shaft as a function of the wave’s
amplitude which is then the key variable controlling the motor.

B. Complex phasors.

It is quite common to use complex phasors in Electromag-
netic machines with a rotating magnetic flux[9]; they are useful
in obtaining simple representations of electrical variables (
voltage or current) of the machine at steady state conditions,
and in finding their values. With complex phasors, we focus
our attention on RMS or average values of the key variables.

In this section, we apply concept of complex phasors to
TWUM. We attempt to construct a simple representation
which will help to deduce the wave’s amplitude as a function
of the supply voltage’s amplitude and frequency. Complex

phasors rely on the concept of rotating reference frames. In
fact, instant values of w, and wg can be respectively deduced
from the imaginary part and the real part of a complex number
w. And because w, and wg are sinusoidal functions of time,
the edge of w appears to rotate in the complex plane. The
same is true for v, and vg which can be deduced from v.
This concept of a rotating reference frame is summarized in
figure 2 As such, we define the following complex variables:

Fig. 2. Instant values of the stationary waves and voltages and the equivalent
complex phasors w and v.

W = Wy + Jjwg @

V= o + jug 3

At this stage, we can deduce from 2 that:

w= /w2 + w%eﬂf‘gC 9)

and define
W=\ Ju2 +w} (10)
where W is the wave’s amplitude; 10 leads to:
w = Welkbe (an
Moreover, defining f , and using 5 and 6 we can write:
= ifr5 = (F, 'khT ghkOe 12
ir*fra‘i’jfrﬁf(N‘i’jbj )6 ( )

The relationship between the complex phasors presented in
this section is deduced from 3 and 4. In fact, (3) 4+ j x (4)
leads to:

mi + dsw + cw = Nv — f

Lr

13)

To calculate the first and second derivatives of w, we use 11
which gives:

w = %(We]k(’“) = Welkbe 1 jkf, W ko
When using complex phasors, we consider steady state only.
Given this condition, W is obviously equal to 0, since it is the
amplitude of the wave in the stator. Moreover, for a perfect
travelling wave propagating in the stator, the velocity of the
contact point is given by the frequency w of the two voltages,

(14)



and we have k6, = w; w is supposed to be constant for steady-
state operation. Finally, 14 can be revised to take into account
the steady-state assumption:

W= jwWelvt (15)
This gives 4
i = —w?Wel*t (16)
Using 12, 15 and 16 to rewrite 13 gives
, h ,
(—mw?W + jdswW + cW)elwt = Nv — (Fy —l—jkb—QT)eJ‘”t
a7
In order to simplify (17), we let
v=(Vag+jVg)e" (18)

We can see that Vd2 + Vq2 =V, where V is the voltage’s

amplitude. Finally, 17 can be rewritten as:

—mw?W + jdswW + W = N(Vy+ jV,) — (Fy —|—jkbﬁ2T)

(19)
Equation (19) is of prime importance because it allows us to
find the amplitude of the vibration of the stator, as a function
of external conditions (load torque T" and normal preload Fy)
and of the supply conditions (V' and w). It can be divided into
real and imaginary parts, leading to two new equations:

(c —mw*)W = NV, — Fy (20)
h
duwW = NV, = k5T 1)
This can be summarized as shown in figure 3.
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Fig. 3. Vector representation of steady-state operations in the rotating

reference frame; 17" = 0.

In this figure, the d — axis is the real axis, the ¢ — azis is
the imaginary one. Moreover, we assume that the amplitude
of the supply voltages is constant, but the frequency varies.
So the edge of underlinev moves along a circle of radius V.

Under no-load conditions (I'" = 0), and according to
equation (21), W can be deduced from the projection of phasor
v on the ¢ — axis, while Vy satisfies (20). As w approaches
the resonant frequency of the motor, V; decreases and V
increases: W thus increases. The maximum value for W is
thus attained if the phasor V is fully projected on the ¢ —azis.
For this operating point V; = 0.

If the motor is supplied below its resonant frequency, the
motor stalls. This is well described in [4] and [10]. However,
the stability of the motor under no-load conditions is not
detailed in this article.

We can measure W, the angle between v and W. One can see
that ¥ decreases as the motor approaches resonance, reaching
¥ = 7 for that point.

It is possible to measure ¥ during experiments. In fact,
as is the case for complex phasors, the angle measured in
a complex plane is equivalent to a delay measured using a
scope. In the case of TWUM, we have to measure the delay
between the supply voltage v, and w, (or between vg and wg
). In this article, we give experimental results obtained with
a Shinsei USR60 [11] A sensor is glued to the stator of the
TWUM, which provides a voltage proportional to the stator’s
deformation which we call vg 4. Unfortunately, the sensor is
not at the right place, and an additional delay of 254° has to
be taken into account between the sensor’s voltage and w,, .

Figure 4 shows values for v, , vg and vg 4 for steady state
conditions, with W = 2um. A phase shift of 98° is measured,
leading to W = 156° when taking into account the location of
the sensor. The corresponding complex phasors are depicted
in figure 5.
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Fig. 4. Values of the motor’s supply voltages and the output produced by
the sensor for W = 2um.
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Fig. 5. Complex phasors for W = 2um.

Figure 6 presents other values at 3um. We now measure
a phase shift of 114°, which gives ¥ = 140°. These results
are consistent with the analysis given in figure 3, because ¥
decreases as W decreases. They show that complex phasors
are useful to describe the motor’s operating point. In the next
section, we use them to analyze stability of the motor when
we vary the external load torque.



| W
VN 11427 5/’7V(h_m
/AN /
/- \ | 1/
./“': -k \\"Z ZZ”ZZ f’ \\"
\ £
\\ I /
E:
\;/
4ps
——

Fig. 6. Values of motor’s supply voltages and the output produced by the
sensor for W = 3um.
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Fig. 7. Complex phasors for W = 3um.

III. STABILITY ANALYSIS AS A FUNCTION OF EXTERNAL
LOAD TORQUE

A. Effect of a load torque

If a load torque is applied on the shaft as depicted in figure
8, V, - the projection of v onto the ¢ — axis - is divided into
two parts: one part for the wave propagation and one part for
the load torque T'. For a given wave amplitude W, if the load
torque increases, then v gradually approaches the ¢ — axis.

Fig. 8.

Vector representation at resonance with two load torque values.

Once again, this can be experimentally verified as shown
by the values in figure 9. For this run, W is equal to 2um as
in figure 4, but now, an external load torque of 7' = 0.5Nm
is applied to the shaft. As a consequence, the measured phase

shift between vga and v, is equal to 120°, leading to ¥ =
126° : v approaches the ¢ — axis as T' increases.

SAps:
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Fig. 9. Values for motor’s supply voltages and the output produced by the
sensor for W = 2pum and a load torque 7" = 0, 5Nm.

Fig. 10. Complex phasors for W = 2um and T" = 0, 5Nm.

From figure 8, we can deduce that the maximum load torque
which allows a stable operation of the motor is then given in
the case when v is aligned on the ¢ — axis. At this point, if
T becomes larger, the motor stalls, because it is not able to
develop a higher torque: equation (21) has no solution. So,
stable operations are ensured if

<l

2 (22)

is verifed.

B. Safe operating area.

The safe operating area of a TWUM is a zone delimited by
three boundaries defined as follows:

o W must be lower than a mechanical limit beyond which
the bond layer would be destroyed. We call this limit
WM axs

o T cannot be larger than a limit defined by tribological
contact conditions between the stator and the rotor. We
call this limit Thsq,

e The motor should not stall. This defines the maximum
operating torque, called 7j;,,.

Tiim is a function of V and W. In fact, starting from
equation (21) we can deduce that the maximum available



torque is given when V, =V, leading to:

h
k=Tiim = NV — dswW

b2
In figure 11, we have drawn the boundary conditions of the
safe operating area in the (T,W) plane, which seems to be more
appropriate, for two values of the supply voltage V (V1 >

V2).

(23)
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Fig. 11. Safe Operating Area for TWUM in the (7,WW) plane for V = V'1
and V =V2, V1> V2.

Figure 11 explains why, during operation, the motor may
stall if extra load torque is applied to the shaft of the motor.
The maximum load torque depends on the operating point
itself: the bigger W is, the less torque we have available.
Moreover, we also understand why increasing the motor’s
voltage is a solution to the problem: in fact, this increases
the maximum available torque for each travelling wave’s
amplitude. However, this solution is not effective because
it leads to additional power losses in the motor and the
production of heat.

C. Experimental measurement of the safe operating area.

It is possible to measure 7j;,, as a function of W and V.
To do so, we increase the load torque on the shaft, by using
a powder brake for example, and w is adjusted so as to keep
W constant. During this test, we also measure the phase shift
between v, and vg4, so as to estimate W. All the variables
were recorded. We noted the values of 7" and ¥ when the
motor suddenly stalled (W failed to zero then) even though it
was previously rotating normally. Runs depicted in figure 12
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Fig. 12.  Safe Operating Area for a Shinsei USR60 at V' =
V =110V.

150V and

show that the maximum available torque 7;;,, actually depends
on W and V. However, we have found curves which are not

equal to the modelling presented in this article. Of course,
errors may be due to measurement errors of the load torque,
or to the protocol (it is difficult to know exactly whether
the motor has stalled or not). It may however be due to the
modelling process which does not accurately take into account
the specific contact conditions between the stator and the rotor.

Moreover, we do not verify in figure 13 that ¥ = g when
the motor stalls; at present, we cannot find a reason why such
a difference occurs.
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Fig. 13.  Value of ¥ when the motor stalls for V' = 150V and V' = 110V.

However, because ¥ can be easily measured for the motor,
while we do not plan to measure the load torque in our
application, keeping ¥ > 120° seems to be a good solution
to avoid the motor stalling at any voltage. This method will
be exploited in a control detailed in the next section.

IV. WAVE AMPLITUDE CONTROLS OF TWUM.

In TWUM, the key variable controlling the torque and the
speed of the motor is W. This is why we should always find
a Wave amplitude control loop in control schemes of TWUM.
This section describes classical and new control strategies.

A. Frequency control

In classical controls, the frequency w of the supply voltages
is controlled so as to obtain a reference value of W, as shown
in figure 14. This frequency control is straightforward, but is
also very sensitive to the external conditions. In this control,
W is set independently of the load torque, and if a load larger
than 7j;,,, is applied, the motor stalls. To start up again, a long
and specific procedure has to be followed: this closed loop
control does not work in our case. In order to increase the
torque limit, increasing V' is useful, but does not completely
remove the problem. Moreover, it is difficult to precisely tune
the loop controler, because the relationship between W and w
is not linear. This control however is made up of a single loop,
leading to excellent performances if we consider the response
time obtained.

B. Control in a rotating reference frame

In addition to increasing the voltage, we could also adapt
the reference value W,..y shown in figure 14 when large load
torques are applied to the shaft as described in figure 11: from
the measurement of 7', W is adapted so as to ensure stable
operation at resonance.
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Fig. 14. Frequency control of a TWUM.

Howeyver, this solution is difficult since the measurement of
T requires space, extra weight and cost. This is why, instead of
measuring 7', it is better to measure W[4][12]; stable operation
of the TWUM above the resonant frequency will be ensured
if (22) is verified. This is why [4] advises us to control ¥
using an internal loop as shown in figure 15. This increases
reliability, but at the expense of a time delay for the control of
W due to the internal loop of W. This is why a hybrid control
is proposed, which benefits from both control strategies.
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Fig. 15. Control in a rotating reference frame.

C. Hybrid control strategy

This control depicted in figure 16 uses two controllers
running at the same time. One is using a frequency controller
Cw to control W with respect to the reference value of W,.;.
The other uses the controller in the rotating reference frame
Cy to control ¥ = 7. An additional strategy block switches
from one controller to the other, depending on their output.

w Peak
Detection

Phase
Detection

Fig. 16. Proposed strategy.

Under normal operating conditions, the motor is far from
its resonance. So wyy is larger than wyg . The frequency of the
motor is then controlled (point (1) in figure 17). If T increases,
U decreases because V, increases, as shown in section III. At
point (2), wy = wy because W = Wref and ¥ = 7. For
a larger load torque, W,..; cannot be obtained; the frequency
controller fails to control W; in this mode wy < wy, so Y is
controlled. Consequently, W automatically adapts to the load
torque: performances are diminished, but the motor does not
stall.

W

Wt e
1

Fig. 17. W as a function of 7" with hybrid control.

D. Experimental runs

The hybrid control was checked during experimental runs.
The TWUM used is a Shinsei USR60, driven by a linear power
amplifier. A specific electronic control was built and used for
controlling the motor in its rotating reference frame; details
can be found in[4]. An inertial load (10~*kgm?) is attached
to the shaft along with a powder brake (figure 18). Moreover,
the position of the motor is controlled as detailed in[13][2].
A response time of 200ms and a position error of 1,3mrad
— which is equivalent to 5000 dots/rev — are required. During
the experiment, ¥,.; is not equal to 7 but 120° as shown
in section III. We use a Dspace 1104 board to implement the
controller.

Fig. 18.

The experimental test bench.

During the first run depicted in figure 19, the powder brake
is off. Only load inertia is applying torque to the shaft. This
is the normal operating mode: the measured value of U is



larger than the reference, the frequency of the motor is fully
controlled. For the second run of figure 20, an additional

position step response: powder brake off
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Fig. 19. Position step response when powder brake off @150V.

load torque is applied using the powder brake. Since this
additional torque is too large, we should ensure that W is
smaller than its reference value in order to maintain stability.
This is automatically achieved by using the proposed method.
In fact, the motor operates close to its resonance, without
stalling, and we thus obtain the best possible performances for
this load condition. Of course, the response time is increased,
but reliability is ensured.

V. CONCLUSION

In this paper, we present a novel control method which
increases reliability of servo mechanisms using TWUM. This
method is a hybrid control between a classical frequency con-
trol and a control in a rotating reference frame. Experimental
results confirm performances at low supply voltage levels.
Moreover, the strategy adopted is included in a position control
loop.
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