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Efficient Computation of Amplitude and Phase Maps in
Nuclear Medicine Equilibrium-Gated Cardiac Studies
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Abstract—The Goertzel algorithm is proposed as a method to obtain
the first harmonic coefficient of time activity curves from equilibrium
gated cardiac studies. The coefficients are used to produce functional
images. The algorithm achieves an important reduction in the number of
operations and memory accesses needed to compute the coefficients.

Index Terms—Cardiovascular system, discrete Fourier transforms,
discrete time filters, functional analysis, nuclear cardiography, nuclear
imaging.

I. INTRODUCTION
Equilibrium-gated blood pool imaging of the heart is used to

visualize and quantify cardiac function [1]. Quantificatio of global
ventricular function is usually based on the determination of a time-
activity curve (TAC) over the left ventricle, from which parameters
such as ejection fraction, stroke volume, and fillin rate can be
obtained [2]. The complexity of the cardiac cycle can be presented
in a more comprehensive way with functional images: images where
each pixel represents the parameter of interest obtained after Fourier
analysis of every individual TAC [3]. The main parameters are
the amplitude and phase of the firs harmonic, from which three
functional images are generated: the amplitude and phase maps, and
the phase histogram.
1) The amplitude image shows the change of activity in each pixel,

without regard to the timimg of these variations within the
cardiac cycle. It is useful to show abnormalities of the wall
movement [4].

2) The phase image represents approximately the relative vari-
ations in the timing of the movement of the heart regions.
Delays of the blood circulation in different parts of the heart
can be easily seen. This image may be used to detect delays in
contraction and shows areas working asynchronously [5].

3) The phase histogram has two peaks in a healthy heart: the
higher one arises from the activity of the ventricles; the smaller
one from the atria. Between the two peaks exists a difference
of approximately 180�. The width of each peak shows the
synchronization of the contractions.

The computation of the firs harmonic coefficien of every pixel’s
TAC requires a number of operations, proportional to the number
of time samples. The number of images per cardiac cycle is a
compromise between temporal resolution and acquisition time: as
the signal-to-noise ratio (SNR) depends on the Poisson statistics of
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Telecomunicación, Universidad Politécnica de Madrid, Madrid 28040 Spain
(e-mail: jjvl@teb.upm.es).
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the nuclear data acquisition for a given time, increasing the number
of images per cardiac cycle means reducing the number of counts
per image and the SNR accordingly. A typical study has between
16 and 32 (64� 64 pixels) images per cycle; this represents a good
compromise between spatial resolution and acquisition time. Then,
4096 TAC’s have to be analyzed.
In this Communication we present an efficien method to estimate

the firs TAC Fourier coefficient Several methods are available to
compute the fast Fourier transform (FFT) when a limited number of
coefficient are needed [6], but they are efficien only for a large
number of time points. Here, however, we need to compute many
FFT’s with a few time points at the input; then, the reduction in the
number of operations provided by fast algorithms is not significant
and simpler algorithms can be more efficient as will be shown.

II. METHOD

Using a commercial gamma camera, images are acquired syn-
chronously with the R wave and stored in the LIST mode (in this
mode, acquisition coordinate pairs x and y for each scintillation
are stored together with a time reference in a list format [7],
[8]). After cine-sequence reconstruction, a TAC is obtained for
every pixel. To minimize the quantization noise, and due to the
finit number of points obtained (one from each image) in typical
studies, temporal interpolation or smoothing is needed for good
representation of the TAC’s. From the different interpolation methods
available, cubic spline interpolation is chosen due to its global
smoothness, that produces a function continuous up to its second
derivative. The smoothing step is needed only to display the TAC’s
prior to computation of the functional images, since the coefficient
themselves generate the smoothest version of the TAC’s.
The amplitude and phase of the firs harmonic is the firs Fourier

coefficien of each raw TAC, and can be obtained by different
methods: directly from the discrete Fourier transform (DFT) formula

X(k) =

N�1

n=0

x(n)W kn
N (1)

where WN = e�j2�=N , or with any algorithm that computes the
FFT. We propose to use the Goertzel algorithm because it has several
advantages, as will be shown.
Once the coefficient have been calculated, the amplitude and

phase maps can be produced. The generation of the amplitude map
is straightforward, but for the phase maps two observations can be
made.
1) Points with negligible amplitude should not be represented in

the phase map as these points are usually static (extracardiac)
structures. A mask that includes the points with amplitude less
than 10% of the maximum value in the image can be used to
skip such points.

2) The phase image should preserve the periodic nature of the
phase values, thus, a cyclic color scale has to be used. There
should be also the possibility to shift this scale when the
boundary between two colors is near a peak in the phase
histogram: a more meaningful representation can be obtained
if similar values are represented in the same color.
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Fig. 1. Implementation of the Goertzel algorithm as a linear filter

A. The Goertzel Algorithm
The Goertzel algorithm is an efficien way to compute a reduced

number of DFT values [9]. It can be implemented as a linear filterin
operation with only two complex coefficients To derive it, (1) can
be expressed as

X(k) =

N�1

n=0

x(n)W
�k(N�n)

N
(2)

where the second term has been multiplied by W�kN

N
(which is

always equal to one). Equation (2) can also be seen as the N th value
of convolution of the N samples of x(n) with a filte that has the
impulse response

hk(n) =W
�kn

N u(n): (3)

Then X(k) is simply the output of this filte at time N , when its
input is x(n)

X(k) = x(n)
 hk(n)jn=N : (4)

Thus, to compute the DFT parameters, a filte could be implemented
with the system function expressed as

Hk(z) =
1

1�W�k

N
z�1

=
1�W k

Nz
�1

1� 2 cos(2�k=N)z�1 + z�2
:

(5)

The direct form implementation of the filte is shown in Fig. 1. As
can be seen, only one real coefficien and one complex coefficien are
needed. As just the N th value of the output is needed, the forward
branch of the filte has to be computed only at time N .

III. RESULTS
Tables I–III show the number of real operations (noncomplex

multiplications or additions) needed to compute the DFT coefficient
from a noncomplex input signal. The split-radix algorithm [10] is the
best among nine different ways to compute the DFT [11]. Except
for the FFT algorithm, the tables reflec the number of operations
performed on the computation of a single (complex) coefficien
(as needed in this application to produce the amplitude and phase
maps). The split-radix algorithm produces the N FFT coefficients
and thus in this case the figure given are the number of operations
needed to compute the N coefficients Table I shows the number of
nontrivial real multiplications (multiplications by 1, �1, j, and �j
are excluded). Table II shows the number of real additions.
Table III shows one of the main advantages of the Goertzel

algorithm: it needs just one real and one complex coefficien while
the computation of the DFT needs N complex coefficient (this table
excludes again the trivial coefficients)

TABLE I
NUMBER OF NONTRIVIAL REAL MULTIPLICATIONS FOR
DIFFERENT ALGORITHMS (N/A: NOT APPLICABLE)

N
Split-radix

FFT
DFT

(per coef.)
Goertzel
(per coef.)

16 10 24 14
24 N/A 40 22
32 34 56 30

TABLE II
NUMBER OF REAL ADDITIONS FOR DIFFERENT ALGORITHMS

N
Split-radix

FFT
DFT

(per coef.)
Goertzel
(per coef.)

16 60 30 32
24 N/A 46 48
32 164 62 64

TABLE III
NUMBER OF REAL COEFFICIENTS NEEDED FOR EACH ALGORITHM

N DFT Goertzel
(per coef.)

16 24 3
24 40 3
32 56 3

IV. DISCUSSION AND CONCLUSIONS
From the previous tables, it can be seen that the Goertzel algorithm

is an efficien way to compute the amplitude and phase maps. Time
savings are 34% with a 486 central processing unit (CPU), and
go up to 40% with a Pentium. When these savings are applied
to the computation of the individual time-activity curves (4096 for
64� 64 pixels images; 16 384 for 128� 128 images), the reduction
in the number of operations becomes significant For example,
for a sequence with 24 images (64� 64 pixels), the direct DFT
method needs 163 840 real-number multiplications while with the
Goertzel algorithm this figur is reduced to 90 112. This reduction
of CPU cycles together with the reduction of memory access allows
implementation of functional image analysis on smaller computers
with reasonable execution times. The Goertzel algorithm has the
additional advantage of being efficien for any N (time points), while
FFT-based methods lose efficienc when N is not an integral power
of two.
In a practical clinical case, we have measured that our algorithm

takes 3 s for a 32-image sequence, 128� 128 pixels per image, on a
Sun 4/370 system, while the same process in our standard equipment
used in clinical routine needs between 15 and 30 s, depending on
the CPU used. In both cases, the coefficient obtained are exactly
the same.
The proposed method will be more useful with functional maps

obtained from magnetic resonance images. In that case, the number
of individual TAC’s will be in the order of 256� 256, and hence the
reduction in the number of operations will be very significant
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