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Time-Scale Analysis of Motor Unit Action Potentials

Constantinos S. PattichisMember, IEEE,and Marios S. PattichisAssociate Member, IEEE

Abstract—Quantitative analysis in clinical electromyography EMG motor unit action potentials (MUAP’s) are recorded
(EMG,) is very desirable because it allows a more standardized, ysing a needle electrode at slight voluntary contraction. The

sensitive and specific evaluation of the neurophysiological find- \;yap reflects the electrical activity of a single anatomical
ings, especially for the assessment of neuromuscular disorders.

Following the recent development of computer-aided EMG equip- motor unit. It _fepfes?”t_s the comppund action potential of
ment, different methodologies in the time domain and frequency those muscle fibers within the recording range of the electrode.
domain have been followed for quantitative analysis. In this Features of MUAP’s extracted in the time domain such as
study, the usefulness of the wavelet transform (WT), that provides quration, amplitude, and phases proved to be very valuable
a linear time-scale representation is investigated, for describing ;, itterentiating between muscle and nerve diseases [1] with
motor unit action potential (MUAP) morphology. The motivation . . . .
behind the use of the WT is that it provides localized statistical the duration measure being the key parameter used in clinical
measures (the scalogram) for nonstationary signal analysis. The practice. However, the measurement of the duration parameter
following four WT's were investigated in analyzing a total of 800 s a difficult task depending on the neurophysiologist and/or

MUAP’s recorded from 12 normal subjects, 15 subjects suffering he computer-aided method used. The definition of widely

with motor neuron disease, and 13 from myopathy: Daubechies N . .
with four and 20 coefficients, Chui (CH), and Battle—Lemarie accepted criteria that will allow the computer-aided measure-

(BL). The results are summarized as follows: 1) most of the Ment of this parameter are still lacking [2]. On the other
energy of the MUAP signal is distributed among a small number hand, frequency domain features of MUAP’s like the mean,

of well-localized (in time) WT coefficients in the region of the or median frequency, bandwidth, and quality factor provide
main spike, 2) for MUAP signals, we look to the low-frequency 4qqitional information in the assessment of neuromuscular

coefficients for capturing the average waveshape of the MUAP . . L
signal over long durations, and we look to the high-frequency disorders and it has recently been shown that the discriminative

coefficients for locating MUAP spike changes, 3) the Daubechies power of the MUAP mean or median frequency is comparable
4 wavelet, is effective in tracking the transient components of the to the duration measure [3] or the spike duration measure [4].
MUAP signal, 4) the linear spline CH (semiorthogonal) wavelet Fyrthermore, earlier EMG frequency analysis studies showed a

provides the best MUAP signal approximation by capturing most o1 cement toward lower frequencies for neurogenic lesions,
of the energy in the lowest resolution approximation coefficients,

and 5) neural network DY (DY) of Daubechies 4 and BL WT With th‘? olpposite being true'for myogenic lesions [5]-[9].
coefficients was in the region of 66%, whereas DY for the These findings were also confirmed by Larsson and coworkers
empirically determined time domain feature set was 78%. In [10], [11] who devised a method for the automated measure-
conclusion, wavelet analysis provides a new way in describing ment of the EMG power content of four octave band filters

MUAP morphology in the time-frequency plane. This method . .
allows for the fast extraction of localized frequency components, with center frequencies at 50, 200, 800, and 1600 Hz. Even

which when combined with time domain analysis into a modular  though frequency-domain techniques describe the frequencies
neural network decision support system enhances further the DY present in the signal, information about their occurrence in

to 82.5% aiding the neurophysiologist in the early and accurate time is missing. The objective of this paper is to investigate
diagnosis of neuromuscular disorders. the analysis of MUAP signal characteristics in both the time
Index Terms—Electromyography (EMG), motor unit action and frequency domains using the wavelet transform (WT). The

potentials (MUAP's), time-scale analysis, wavelet analysis. usefulness of wavelet analysis in EMG data was presented in
a recent pilot study by our group [12].
I. INTRODUCTION In this study four different wavelets were investigated:

Daubechies with four (DAU4) and 20 (DAUZ20) coefficients
X , 3], Chui (CH) [14] and Battle—Lemarie (BL) [15]. The
f I f I k I b
> st unct|on.a umt_ of muscle, takes place because Qin characteristics of these wavelets which motivated their
disorders affecting peripheral nerve and muscle. Motor u'?:{bplication on MUAP analysis are outlined below
morphology can be studied by recording its electrical activity, 1) The orthogonal WT decomposes a si naI- into a set
the procedure known as electromyography (EMG). In clinical of orthogo%al basis functionps Unlike t%e short time
Manuscript received December 5, 1997; revised May 7, 1999. This work Fo_urier tranSform (STFT) WhiCh uses_orthoggnal sinu-
was supported in part by the Cyprus Institute of Neurology and Genetics. soids over the window, while the basis functions from
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duration windows for capturing the Iow-frequencysgl, sl_l, 52_1, .... Similarly, the original discrete signal is
components and short duration windows for capturingighpass filtered byjg, g1, g2, - .. and downsampled by two
the high-frequency components. This means thtd produce the high-frequency content signal (detail signal)
for MUAP signals we look at the high-frequencydgl, drt, dyt, .... In our notation, the superscriptl of
coefficients for locating abrupt signal changes, while~! and d—! denotes the first decomposition stage. For the
we look at the low-frequency coefficients for capturingth stage, wherg is the highest resolution scale, the output
the average behavior of the signal over long durationsignals are denoted by 7 andd—7. It is important to note
In contrast, the STFT uses a fixed window and dodbkat different WT's can be defined in terms of different sets
not provide a varying time-frequency resolution. (Foof decomposition filterg. and g.
the STFT, the use of a short window results in low For the Daubechies family of wavelets, the decomposition
spectral resolution, whereas the use of a longer windawefficients are computed via the use of circular convolutions,
improves the-frequency resolution but results in a lossiitable for nonsymmetric decomposition filters. For the CH
of time-resolution.) and BL families of wavelets, the decomposition filters are
3) For the case of the DAU4, the WT coefficients at theymmetric, and the signal is mirror extended before filter-
highest-frequency scales provide high time-resolutidng. To describe the extracted signal frequency content, the
of only four signal samples. This allows the DAU4decomposition coefficients are plotted in the time-frequency
wavelet to effectively track the MUAP main spikeplane as illustrated in Fig. 1(a). In Fig. 1(afs denotes
transient signal at a time resolution that the STFihe sampling frequency. The high-frequency content signal
simply cannot match. dyt, dit, dyt, ... is plotted in the upper half-plane, while
4) The energy in the MUAP signal is distributed among the low-frequency content signagl, s7t syt ... is plotted
small number of well localized in time WT coefficients.in the lower half-plane. Due to the down sampling operation,
In addition to the time-frequency features, the WTEach decomposition coefficient occupies two sampling periods.
supports multiresolution analysis of the MUAP signaldt is important to recognize that the time-frequency plot
Briefly, at each stage (scale) the WT provides two seté Fig. 1 is only an approximation of the extracted time-
of coefficients: the scaling function coefficients, anfrequency content. Clearly, no linear filter can extract signal
the wavelet function coefficients. Each successive staggormation that is of finite duration in both the time and the
replaces the scaling function coefficients by anothémrequency domains, since this would violate the uncertainty
two sets of scaling function and wavelet coefficientselation [17]. This point will be re-examined in the scalogram
In terms of analyzing MUAP signals, we compare theection.
difference between the two sets of scaling function co- For computing the two-stage WT, we re-compute the
efficients, coming from successive scales, to recognidecomposition stage using the low-pass content signal
the signal features that the set of wavelet coefficiem’sgl, sl_l, 52_1, ... as the new input. For the second-stage,
represents. the extracted time-frequency content is shown in Fig. 1(b)

Wavelet analysis was carried out on MUAP's recorded froiihere only the lower-half of the time-frequency plane is
normal subjects and subjects suffering with motor neurd@ifected by the second decomposition phase. It is clear that
disease and myopathy. The performance of wavelet analygg&sh decomposition phase uses half as many input coefficients
is compared to traditional time and frequency analysis. In ti@ the previous stage. In terms of the time-frequency content
next section, wavelet analysis is briefly introduced, and tif&tracted, the time-spread of each stage is double the spread of
advantages and disadvantages of the four wavelets investigdt@@revious stage, whereas the frequency-spread of each stage
are discussed. In Sections Ill and IV, EMG experimenté$ half the spread of its previous stage. This is demonstrated
procedure and material are given, respectively. Results are ileFig. 1(2) and (b). For the third stage, the decomposition

scribed in Section V and discussion is presented in Section Yhase is recomputed for the second stage low-pass signal:
5o, 57, 552, ... Similarly, as long as the number of

low-pass signal samples is comparable to the size of the

decomposition filters, the procedure is repeated. For the

reconstruction stage of the algorithm, first, the decomposition

A. The Wavelet Transform phase signalss—* and d—! are up-sampled by two. The
In this section, the WT is presented as a time-scale andP-sampled signals are then convolved with the appropriate

ysis tool [16]. Along with the algorithm, we analyze thgeconstruction filters, and added to reproduceFor two-

relationship between the wavelet coefficients and the time{agess~> andd~> are used to reconstruet™*. Then, s~

frequency plane. The WT algorithm consists of the decordnd d—* are used to reconstruat Similarly, the procedure

position and the reconstruction phases. For our purposisrepeated for multiple stages.

we focus on describing the decomposition phase. In the

decomposition phase the original signalis decomposed . ) .

into its high-frequency and low-frequency components [s& Multiresolution Analysis

Fig. 1(a)]. The original discrete signa, =1, x2, ... iS low- The WT is also used to analyze signals at different resolution

pass filtered byhg, h1, he, ... and downsampled by two to levels. The process of analyzing signals at different resolution

produce the low-frequency component signal (smooth signéyels (scales) is known as multiresolution analysis. In this

Il. WAVELET ANALYSIS
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Fig. 1. Time-scale distribution of the WT decomposition phase outputs: (a) a single-stage WT and (b) a two-stage WT.

section, we briefly outline how the output coefficients from After applying the decomposition phase, the signal approx-
each stage of the WT can be used to construct functionadation is decomposed in two separate signals
approximations to the original signal. We limit our discussion

to the spline based wavelets, CH and the BL. As before/ (1) = V2 Z s o2t — k) + V2 d (2t — k) (2)
we begin with the decomposition phase of the first stage k
of the WT. Given the signal samplesy, 1, z2, ..., the \herey(.) denotes the wavelet function. The scaled wavelet
corresponding continuous time signal is given by function v/21/(2t) represents the time-domain representation
of the highpass filter at the first stage. To recognize the purpose
) = Z 2Rt — k) (1) of the wavelet function, we rewrite (2) as
* PPO- =V dilteet—k) 3)
k

where ¢(.) is called a scaling function. In writing (1), we _ ]
assume that the signal samples are weighted averages of'thg® /"~ *(.) is formally defined by
continuous time signal. The scaling function is the time domain — 3 Z
representation of the low-pass filter at the zeroth stage. For

the CH and BL families of WT'’s, the scaling functions are

the familiar spline functions [14] where the original signal i$n (4), f~*(.) denotes the new signal approximation at the first
approximated by a piecewise-polynomial representation. stage. Here, is an approximation of the original sigfi&(.)

P(2t — 4)
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using spline functions(.) centered about the even integershe power scales, the CH and BL WT'’s provide the familiar
Thus, thef~1(.) approximation is ideal whenever the signapiecewise-polynomial approximation to the signal [16], [18].
is nice and smooth, and well approximated by piecewisBiecewise polynomial wavelets are important because they
polynomials over twice the support of the splines used fatlow us to better characterize the wavelet coefficients in the
the £9(.) approximation. For rapidly changing signals, likaime domain. The wavelet coefficients describe how the sharp
MUAP’s, the f ~1(.) approximation is significantly worse thansignal discontinuities translate into derivative discontinuities at
the f°(.) approximation, and the approximation differencelifferent scales. No such intuitive time domain characterization
f°() — f71(.) is captured in the wavelet expansion (3)is possible for the Daubechies wavelets that are very irregular.
Thus, the highpass filter coefficienis? capture the rapidly (For the CH and BL wavelet coefficients refer to [14, Appendix
changing features of the signal. When such features akgand [15, Appendix A], respectively. For reconstruction, for
captured in an early stagg = 1, 2), the location of such DAU4, DAU20, and BL, the relationships between the high-
features can be determined with accuracy (see Fig. 1).  pass and low-pass coefficients as described in [13, Fig. 5.10
and Fig. 5.11] were used).

C. Scalogram

In this section scalograms are introduced for analyzing lll. EXPERIMENTAL PROCEDURE

nonstationary signals. First, the scalogram is defined in termsThe EMG signal was acquired from the biceps brachii
of the WT. Then, we briefly describe how it can be used tmuscle using a concentric needle electrode. The signal was
analyze stochastic processes and outline how the scalogfzand-pass filtered at 3 Hz to 10 kHz and sampled at 20 kHz
results depend on the wavelet used for computing the WfDr 5 s with 12-b resolution. The signal was then lowpass
The (discrete) scalogram is defined in terms of the squarefidfered at 8 kHz. An automatic parametric pattern recognition
the decomposition phase coefficients [18]. For a single-sta@PR) algorithm was used to identify MUAP’s recorded from
WT, the scalogram is identical to the time-frequency plot ghe same motor unit [19], [20]. The PPR algorithm is given in
Fig. 1(a), but with each of the coefficients squared. Similarlynore detail in Appendix A. The PPR algorithm was designed
for a two-stage WT, the scalogram is identical to the timi® identify at least three MUAP’s, which belong to the same
frequency plot of Fig. 1(b), with each coefficient squared@roup. The classification was based on the MUAP features:
Scalograms are used in analyzing nonstationary signals. Bbases, amplitude, spike duration, and duration examined
our purposes, we view a MUAP signal as a sample function iof sequence. MUAP’s belonging to the same group were
a stochastic process. Then, the sample scalogram is comp@e¢graged to obtain the averaged MUAP envelope, simply
for each MUAP. Each coefficient in the sample scalograreferred to as MUAP. A MUAP waveform consisted of 512
represents a random variable. The scalogram captures plénts (25.6 ms), having the maximum peak in the region of
smoothness of the MUAP in the lower scale coefficien00 points (10 ms). For each MUAP, the sample mean was
(at reduced time resolution), while the nonsmooth, transies@mputed for the whole signal epoch. The sample mean was
variations are captured in the higher scale coefficients (hen subtracted from the MUAP waveform, resulting in a zero-
higher time resolution). An estimate of the MUAP scalograrmmean signal epoch [21]. A total of 20 MUAP’s were recorded
for each subject is computed by ensemble averaging thiem each muscle for analysis. The MUAP’s were analyzed
sample scalograms of 20 aligned MUAP's as will be explaindd the time, frequency, and time-frequency domains. For time
in the following section. domain analysis, the following MUAP features were extracted
For any given ensemble of signals, the estimated scalogra@ssdescribed in Appendix A: 1) duration, 2) spike duration, 3)
are a function of the wavelet that was used to compugnplitude, 4) area, 5) spike area, 6) phases, and 7) turns (see
them. In this study, four different wavelets were investigateéfig. 2). For frequency domain analysis the following measures
DAU4, DAU20, CH, and BL. The DAU4 and DAU20 canwere derived from the autoregressive (AR) power spectrum as
be represented exactly using a finite number of coefficiertigscribed in Appendix A: 1) spectral moments of order zero,
(FIR), unlike the CH and BL WT's that are only approximate@ne, and two, 2) median frequency, 3) maximum frequency,
using a finite number of coefficients (IIR). For the Daubechigd bandwidth, and 5) quality factor.
family of wavelets, the DAU4 is defined in terms of only four
coefficients, while the DAU20 is defined in terms of twenty
coefficients. (For the values of low-pass coefficients for DAU4
and DAU20 refer to [13, Table VI.AIV = 2 andN = 10, re- Neuromuscular diseases are a group of disorders whose
spectively.) Since the DAU4 is affected by much fewer signahain characteristic is that they cause muscular weakness
samples than the DAUZ20, it is clear that the DAU4 has a bettend/or muscle tissue wasting. These disorders affect the motor
time-resolution than the DAU20. On the other hand, by desigmclei of the cranial nerves, the anterior horn cells of the spinal
the DAU20 provides a much better approximation to theord, the nerve roots and spinal nerves, the peripheral nerves,
ideal low-pass/high-pass decomposition filters. This tradedffe neuromuscular junction, and the muscle itself. In this
between the time and scale, resolutions obey the uncertaistydy, the following three groups of subjects were investigated:
principle. For rapidly changing signals, like MUAP’s, in thel2 normal (NOR), 15 motor neuron disease (MND), and 13
region of the main spike time-resolution is preferred to scaleryopathy (MYO). The time domain and frequency domain
resolution. From the multiresolution analysis perspective fgatures for the three groups are given in Table I. The same

IV. MATERIAL
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Fig. 2. lllustration of MUAP signal decomposition using the BL wavelet: (a) coarse wavefostys .., s=5), (b) detail waveformgd—1t, ..., d~9),

and (c) MUAP scalogram. (The MUAP waveform was normalized for unit energy). (For the scalogram plot,=blawkximum energy and white=
minimum energy.)

TABLE |
MEAN (mn) AND STANDARD DEeviaTION (sd) oF TIME DOMAIN AND FREQUENCY DoMAIN MUAP PARAMETERS FOR THENOR, MND, aAND MYO GRoupPs

Time domain
Duration Spike Duration Amplitude Area Spike Area Phases Turns
ms ms mV mVvms mVms
mn sd mn sd mn sd mn sd mn sd mn sd mn sd
NOR 9.60 2.75 540 246 | 0376 0306 | 0370 0198 | 0232 0.118 2.6 08 | 30 2.0

MND 13.42 3.86 6.86 4.09 0.614 0426 | 0832 059 | 0520 0.369 4.0 1.8 4.7 25
MYO 715 234 421 1.83 0314 0250 [ 0234 0.193 | 0.163 0.132 27 1.0 3.1 12

Frequency domain

Mo*2 M, M, Median Maximum Bandwidth Quality
mV mV7/s*10° mvY/s™*10° frequency frequency Hz factor
Hz Hz
mn sd mn sd mn sd mn sd mn sd mn sd mn sd

NOR 2071 15.02 1534 2306 | 2452  51.95 413 285 215 278 525 432 | 047 057
MND 15.30 11.80 9.54 17.59 | 1412 3970 339 241 213 240 381 349 | 071 0.98
MYO 29.70 16.88 2768 27.18 | 4541 2174 629 344 411 389 767 539 | 0.63 0.78

"My, M;, and M, represent spectral moments of order 0, 1 and 2 respectively.

data were also used in the studies by Elia [3] and Patticlis 20 kHz, making the total analysis epoch of 25.6 ms.
[19], [20]. For each MUAP, the sample mean was computed and then
subtracted. Furthermore, each MUAP signal was normalized
to be of unit energy. For nonstationary analysis, the ensemble
V. REsuLTS of MUAP’s for each subject also had to be aligned so that all
A total of 800 MUAP’s were analyzed using the DAU4the sampled MUAP’s were on the same (estimated) time axis.
DAUZ20, linear spline CH, and cubic spline BL waveletsTo this end, the maximum positive peak from each MUAP
The software used for wavelet analysis was developed at thias shifted to the 200th sample £ 10 ms). Following the
University of Texas at Austin, and the University of Cyprustiime scale plots of Fig. 1, the scalogram parameters are listed
Each MUAP was represented with 512 samples, samplied Table Il. As explained earlier, time-frequency resolution
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TABLE I
SCALOGRAM PARAMETERS (ANALYSIS WiNDow: N = 512, T = 50 us, Epoch= 25.6 ms)

No. of Points Frequency Time Resolution

Hz ms
d’ 2356 5000-10000 0.1
d’ 128 2500-5000 0.2
d’ _ 64 1250-2500 0.4
d* 32 625-1250 0.8
&’ 16 312.5-625 1.6
e 8 156.25-312.5 32
5° 8 0-156.25 32

Ao —

al (@ paus NOR | ,‘} {5} DAUZO NOR

(o2 NOR } 9[ m) BL NOR l

Frequency KHz

b (e) DAU4 MND o (h) DAU20 MND J ®)CH MND - 4 n) 8L MND
: o
8 al *

Frequency KHz

E
@) DAUZO MYo

B
() DAL MYO
8

1oe
ncH MYO [CEN MYO
I

Frequency KHz

Time ms Time ms Time ms Time ms

Fig. 3. Average scalograms of 20 MUAP’s for NOR, MND, and MYO subjects. MUAP waveforms: (a) NOR, (b) MND, and (c) MYO. DAU4 scalograms
for: (d) NOR, (e) MND, and (f) MYO. DAU20 scalograms for: (g) NOR, (h) MND, and (i) MYO. CHUI scalograms for: (j) NOR, (k) MND, and (I) MYO.
BL scalograms for: (m) NOR, (n) MND and (0) MYO. (For the scalogram plot, blacknaximum energy and whites minimum energy.)

is limited by the uncertainty principle. Thus, the scalogramstage s—%, s~2 and s~2 look very similar to the original

parameters of Table Il provide a general approximation faoefficientss”. However, as we move toward ™, the signal

all wavelets. Wavelets with short time-domain spread haeg@proximation decreases significantly, looking drastically

long frequency domain spread, whereas wavelets with lodiferent froms°. Thus, significant signal features have been

time-domain spread have short frequency domain spread. extracted at this stage. The extracted signal features, given

as the difference signgi—3(.) — f~*(.) are described by the

) . S wavelet coefficientsi=* as given in (3). In particular, the

A. An Example of MUAP Multiresolution Analysis, Fig. 2 peaks in thed—* coefficients correspond to the main spike
For this example, the cubic spline BL waveletocations of the MUAP. The location of the coefficient maxima

was used. In Fig.2, the signal approximatioorresponds to the location of the MUAP spikes, while the

coefficients s, s7%, ..., 576, and the detail coefficients magnitude of each coefficient measures the abruptness in

d° d=t ...,d=5, are plotted. The wave-shapes of théhe spike. Fig. 3(c) illustrates the MUAP scalogram where
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TABLE I
NoRrMALIZED PERCENTAGE MUAP WAVELET ENERGY DISTRIBUTION PER BAND FOR THE NOR, MND, aND MYO GRoOuPS

DAU4 DAU20 CH BL
NOR_MND MYO [NOR MNO MYO | NOR MND MYO |NOR MND MYO
' | 056 039 0761 0.13  0.07 0.18 079 023 0.5 0.14  0.07 0.19
&t 170 119 3601 2.14 1.66 325 330 212 4.78 1.08 0.78 1.70
| 516 322 872 729  4.09 1493 | 10.6 7.98 1726 | 8.12 439 14.56
d* | 281 1628 4228|102 6.51 16.78 | 142 10.01 2393 | 153 8.98 24 .39
d° | 176 1731 2045|264 2176 3181 | 134 1209 19.04 ;282 2586 30.77
d | 164 2153 1026|197 2333 1445 | 150 16.94 928 | 271 3200 14.73
s 1303 3871 1538 {350 4110 1973 [424 5111 2521 {202 2541 1248

the magnitude square of the coefficient$ d—*, ... d=¢, (or higher) derivatives, which prohibits a good approximation
and s~% shown in Fig. 2(a) and (b) are plotted (as given iby cubic splines. Thus, these derivative discontinuities are
Fig. 1 and Table II). detected in the wavelet coefficients [as given in (3)].

For discriminating among subject types, we look at the
B. Average Scalograms of 20 MUAP's for NOR, statistical distribution of each scalogr_am coeffi_cient separately.
MND, and MYO Subijects, Fig. 3 Fo_r _orthogongl Wavele_ts (and scaling _fur_1ct|ons), each co-

efficient describes an independent statistical measure. Both

Next, we examine the average scalograms computed for ié Daubechies and the BL wavelets provide such measures.
three types of subjects, using the four wavelets investigategr semiorthogonal wavelets, statistical independence is main-
For each subject, an ensemble of 20 MUAP’s is displayggined among the different scales, but not within translations
on the left column of Fig. 3 starting from the top, with theyf the basis function’s of the same scale. This is true for the
ensemble for the NOR subject, followed by the ensembles fgH wavelet.
the MND and MYO subjects. Moving from left to right, the
average scalograms for each ensemble for the DAU4, DAU28, MuaP Wavelet Energy Distribution per Band for the
CH, and BL wavelets are shown. For a particular subject typor, MND, and MYO Groups, Table Il
the average scalograms from different wavelets exhibit certain .
similar characteristics. We next focus on these similaritie 'Ta.ble.lll tabulates the normahzeq MUAP wavelet energy
which remain consistent within each subject type, to he sotnbutlon per baf‘d per group. It 'i Shf’;”” _‘Qat mor_eG than
differentiate among the different types. The scalograms f L;/O of the energy is concentrateddn™,\ d™°, d ,an(_js .
the MND subject have longer time-domain spreads (compare o, for all the wavelets, for the MND group there is a shift

to the scalograms for the NOR subject, see Fig. 3). On t%warc_i Iower frequency bands, whereas for the MYO group
other hand, the scalograms for the MYO subject have shorfdf'e Is @ shift toward higher frequency bands when compared

time-dornain spreads compared to the scalograms for the N the '_\IOR group. These fm_dmgs are in agreement with
subjects. conventional frequency analysis as given in Table Il for the

Next, we interpret the different scalograms produced for t edi"_’m freque_ncy parame'Fer for the same group of _subjects.
three subject types. The differences among these scalong & linear spl!ne CH (semy-orthogonal) wavglet provides the
are due to the wavelet type used to derive them. For t gst MQAP signal apprOX|me}t|on by captunpg most .O.f the
three subject types, the DAU4 scalograms have the shortB4froy In the Iow.es.t resolutlon apprommatlon. coeff|C|en.ts.
time spread in each band. This is due to the fact that DALﬁJskaI—Wallls statistical anaIyS|s_ (nonparametric alternative
uses the least number of finite impulse response Coeﬁicierﬁjpnsw_ay ANO\()A) (()jf ':che nr? rmﬁgﬁ?\ﬂmgAig’gai}e nergdy
being only four. Furthermore, due to the small number of filt ?\ltg ;\J/It'\(()g per band for the q i it was f . d th a?
coefficients, the DAU4 scalograms detect the sharp MUAM bt groups was carried out. It was found that for

spikes with high time-resolution (detected by coefficiem% and d~" there are significant differences at< 0.05
d-! and d-2). On the contrary, the scalograms of DAU20" etween the three groups for all the wavelets except for BL

with 20 filter coefficients, have a longer time-domain sprea nd CH. (The Kruskal-Wallis analysis was carried out using

However, the DAU20 scalograms when compared to ghe SYSTAT package [22]).
DAU4 scalograms, have a shorter frequency-domain spread.
The linear-spline CH scalograms show a large concentratiBn
of energy in the lowest bane~%. From the multiresolution  Artificial neural network (ANN) models were developed
analysis perspective, this shows that the MUAP spikes ctor the classification of WT coefficients, into three groups:
be well approximated by a piecewise linear approximatiolOR, MND, and MYO. Since most of the MUAP energy is
On the contrary, the scalograms for the cubic spline Btoncentrated in the lower four bands*, d—2, 6, ands—*,
wavelet are spread toward the upper frequency bands. Frimar coefficients from each of these bands in the region of
the multiresolution analysis perspective, this shows that ttiee MUAP main spike were extracted for the neural network
MUAP spikes exhibit strong discontinuities in the secondlassification. These coefficients carry on average more than

Neural Network Classification of WT Coefficients, Table IV
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TABLE IV
DIAGNOSTIC PERFORMANCE OF TIME DOMAIN, FREQUENCY DoMAIN, AND WAVELET CoEFFICIENTS DAU4, DAU20, CH, AND BL FEATURE
SeTs UsING THE BP, RBF,AND SOFM NeURAL NETWORKS THE MEAN AND STANDARD DEVIATION OF THE DIAGNOSTIC YIELD, DY %,
Is GIVEN FOR THE EVALUATION SET AFTER BOOTSTRAPPING THEAVAILABLE DATA FOR FIVE DIFFERENT SETS OF SUBJECTS

Feature set n BP RBF SOFM Average
DY% DY% DY% DY%
Time domain 7 812+ 118 72.5+8.5 81.2+55 783+8.6
Frequency domain 5 63.7+25 60.0+6.3 63.7+10.1 62.5+63
Wavelet DAU4 16 68.7+55 60.0+5.0 70.0+6.1 66255
Wavelet DAU20 16 575+83 55.0+46 662+63 596+64
Wavelet CH 16 65.0+63 562+118 68.7+£39 633+73
Wavelet BL 16 65.0+10.1 662+ 85 66.2+50 658+79

"feature set vector size representing the average of 20 MUAPs per subject.

65% of the total MUAP energy and were the foIIowim(_:fO4 to the usefulness of the WT that provides a linear two di-
di, ds® to dg®, andd; © to d; ©. For s, © for each coefficient mensional time-scale representation of nonstationary signals
the mean for 20 MUAP’s was computed for each subjeds investigated for describing MUAP morphology. For the
Three different neural networks were investigated, the badirthogonal WT, each scalogram coefficient provides an in-
propagation (BP) [23], the radial-basis function network (RBFgependent statistical measure and it is shown that MUAP
[24], and the self-organizing feature map (SOFM) [25]. Thesgignals can be well represented using a small number of
algorithms were implemented as given in the MATLAB neuralignificant coefficients that are located around the main spike.
network toolbox [26]. High-frequency coefficients are highly localized in time and
For training the ANN classifiers, a total of 480 MUAP’scapture the location of MUAP spike changes whereas low-
obtained from 24 subjects, eight NOR, eight MYO, and eighfequency coefficients provide lower time localization de-
MND, were used, whereas for evaluation, a total of 32&rihing the average behavior of the signal. This multiscale
MUAP’s, obtained from 16 subjects, four NOR, five MYO,analysis would not have been possible with the STFT, since
and seven MND were used. The system was trained ajih STFT uses a fixed size window. The DAU4 wavelet
evaluated using five different bootstrap sets where in eagyvides good time-resolution, capable of tracking the rapid
set 24 different subjects were selected at random for trainigganges in the MUAP’s. The linear-spline CH wavelet pro-
and 16 different subjects for evaluation as described aboygyes the best signal approximation, capturing the average
Table IV tabulates the mearll.anq stan.dard deviation Of_thhavior of the MUAP's, as given by the energy content
percentage of correct classifications, i.e., DY for the five,,y req by the eight coefficients at the lowest frequency
bootstrap sets for each classifier for the evaluation set. H8nd.
addition, the ANN classification performance of the mean WT energy distribution per band findings are in agreement

time domain parameters (duration, spike duration, amphtuqﬁ- h earlier frequency analysis studies that showed a displace-

area, spike area, m_meer of phases, and number of tur nt toward lower frequencies for neurogenic lesions, with
and frequency domain pgrameters (spectral mO’T‘e”tS of or i opposite being true for myogenic lesions [3]-[11]. Also, it
zero, one, and two, median frequency, and quality factor) A own that the WT total energy dt* andd—° (frequency
tabulated. The feature vector representing each subject was

! , andwidth 156.25-312.5 Hz), with the exception of BL, was
fﬁ;nt?#]figg ?rveeqrjg::gtggﬂg:irsmmeézggszo MUAPs for bOsignificantly, different between the NOR-MND, NOR-MYO,

As shown in the average DY column of Table IV, theand MNP'MYQ groups. -
The discriminative power of wavelet coefficients for the

highest yield was obtained for the time domain parameter

followed by the DAU4, BL, and CH wavelet coefficients. The‘ﬁf}lssmcmion of MUAP's recorded from, NOR, MND, and

frequency domain parameters gave even lower DY, followé\éY? subjectslwas |n\§sggart]edbusmg neural networks. At;m(_)ng d
by the DAU20 wavelet coefficients. the four wavelets studied, the best average DY was obtaine

for the DAU4 wavelet coefficients being 66.2%, followed by

the BL, CH, and DAU20 wavelet coefficients with yields equal
V1. DISCUSSION to 65.8%, 63.3%, and 59.6%, respectively. The time domain
Quantitative analysis in clinical EMG is very desirabl@oarameters, gave higher DY than the wavelet coefficients,
because it allows a more standardized, sensitive and speing 78.3%. It is interesting to note that although the 16
cific evaluation of the neurophysiological findings. With thavavelet coefficients used for neural network classification
development of computer-aided EMG equipment differesptured most of the energy of the MUAP signals (>65%), they
methodologies in the time domain and frequency domagave lower DY than the time domain parameters which were

have been followed for quantitative analysis. In this studgmpirically defined. A similar DY in the region of 78%—-80%
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for the time domain parameters was also obtained using neural7) Turns (T): Number of positive and negative peaks
network [19], [20], and genetics-based machine learning [27]. separated from the proceeding and following peak by
In a recent paper, we showed that MUAP time-domain 25 V.
and wavelet analysis can be combined into a modular neural
network decision support system in order to improve thg Spectral Analysis Parameters [3]
classification per_fgrmance of mQMduaI fgatures or classifiers For each MUAP, the AR coefficients;, were calculated
[28]. More specifically, a decision making system was de- . o ; . . :
. e using the modified covariance algorithm as given in [21]. The
veloped in [28] where BP, RBF, and SOFM classifiers WeCE . ;
. o : . o R power spectrum of each MUAP was estimated, and it was
trained with time domain, frequency domain, AR coefficients : o . :
- formalized with its maximum power value. The following
cepstral coefficients and DAU4, DAU20, CH, and BL Waveletarameters were comouted from the AR power spectrum
coefficients (as described in Section V-E). (It is noted that trli)(laJ v P P P
average DY'’s for the AR, and cepstral coefficients feature s&td _
were 63% and 51.2%, respectively [28].) The 24 output results 1) Moments of order zero, one, and two: A momeif

of the eight feature sets applied to the three classifiers were ~ ©Of orderj was computed as given in [9]:

combined using majority voting, i.e., a subject was assigned N_1

to the class with the maximum number of votes. The DY M, = _2 2 : F(n)YPAR(f(n))
. . . . cp . J 2 )j+1 N

achieved with the combination of the 24 classification results, (2m

n=0
was 82.5%. This DY was higher than the DY of the best ] ) ]
feature set from the best classifier, which was 81.2% for the 2) Median frequency (FMED) is the frequency at which

time domain parameters and the SOFM and BP classifiers as the power spectrum is divided into two regions with

given in Table IV. equa_\l power. _ _
In conclusion, wavelet analysis provides a new way in 3) Maximum frequencyFy is the frequency with the
describing MUAP morphology in the time-frequency plane. maximum power.

This method allows for the fast extraction of localized fre- 4) Quality factor(Q) is the ratio of the dominant peak
quency components of MUAP’s that may prove to be valuable ~ frequencyfy divided by the bandwidtf{ W) and is

in the early and accurate diagnosis of neuromuscular disor- _ €Xpressed asy = Fo/BW. _

ders. Future work will integrate wavelet analysis to a hybrid ) Bandwidth(BW) is the difference of frequencies at the
diagnostic system for neuromuscular diseases where EMG, ~ UPPer(£2) and lower(F:) —3 dB points of the power
muscle biopsy, biochemical and molecular genetic findings, ~ SPectrum and is given a&i\V’ = I, — 1.

and clinical data are combined to provide a diagnosis [29].
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electrode recording site. [1] F. Buchthal,An Introduction to Electromyography.Copenhagen, Den-
mark: Gyldendal, 1957.
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APPENDIX Trojaborg, “Quantitative analysis of individual motor unit potentials: A
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[3] A. Elias, “Autoregressive spectral modeling of motor unit action poten-
. . tials,” M.Sc. dissertation, Dept. Elec. Eng., Queen Mary and Westfield
A. Time Domain Parameters [19], [20] College, Univ. London, London, U.K., 1994.
. . gl] G. Pfeiffer and K. Kunze, “Frequency analysis and duration of mo-
For each potentlal the fOHOW'ng seven parameters Were' (o, ynjt potentials: Reliability and diagnostic usefulness|éct. Clin.

measured. Neurophrol.,vol. 89, pp. 365-374, 1993.
. . N . . [5] J. N. Walton, “The electromyograph in myopathy: Analysis with the
1) ﬂurg‘t'gn (?&Jr) MUAP beginning adnd en?IPg al’ﬁ iden- audio frequency spectrometer]’ Neural Neurosurg. Psychvol. 15,
tified by sliding a measuring window of length 3 ms  pp. 219-226, 1952.
and width +10 nv [6] J.Fex _and C. E. T. Krakau, “Son:e experiences with Walton’s frequency
. . . analysis of the electromyogram]” Neural, Neurosurg. Psychuol. 20,
2) Spike Duration (SpDur)Measured from the first to the pp. 178-184, 1957.

last positive spike. [7] E.Kaiser and I. Petersen, “Muscle action potentials studied by frequency
3) Amplitude (Amp)'Difference between the minimum analysis and duration measuremerf¢ta Neural. Scandvol. 41, pp.
L. : . . 213-236, 1965.
positive peak and the maximum negative peaks. [8] J. Kopec and L. Hausmanowa-Petrusewicz, “Application of harmonic
4) Area: Sum of the rectified MUAP integrated over the analysis to the electromyogram’s evaluatioAéta Physiol. Polonica,

. vol. 17, pp. 597-608, 1966.
duration measure. [9] L. Lindstrom and I. Petersen, “Power spectrum analysis of EMG signals

5) Spike Area (SpAreaBum of the rectified MUAP inte- and its application in computer-aided electromyography, Pingress
grated over the spike duration. in Clinical NeurophysiologyJ. E. Desmed, Ed. Brussels, Belgium:

. . Karger, 1983, vol. 10, pp. 1-51.
6) Phases (Ph)Number of baseline crossings that exceeﬂO] S. Johansson, L. E. Larsson, and R. Ortengren, “An automated method

25 uVv plus one. for the frequency analysis of myoelectric signals evaluated by an inves-
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