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Time-Scale Analysis of Motor Unit Action Potentials
Constantinos S. Pattichis,*Member, IEEE,and Marios S. Pattichis,Associate Member, IEEE

Abstract—Quantitative analysis in clinical electromyography
(EMG) is very desirable because it allows a more standardized,
sensitive and specific evaluation of the neurophysiological find-
ings, especially for the assessment of neuromuscular disorders.
Following the recent development of computer-aided EMG equip-
ment, different methodologies in the time domain and frequency
domain have been followed for quantitative analysis. In this
study, the usefulness of the wavelet transform (WT), that provides
a linear time-scale representation is investigated, for describing
motor unit action potential (MUAP) morphology. The motivation
behind the use of the WT is that it provides localized statistical
measures (the scalogram) for nonstationary signal analysis. The
following four WT’s were investigated in analyzing a total of 800
MUAP’s recorded from 12 normal subjects, 15 subjects suffering
with motor neuron disease, and 13 from myopathy: Daubechies
with four and 20 coefficients, Chui (CH), and Battle–Lemarie
(BL). The results are summarized as follows: 1) most of the
energy of the MUAP signal is distributed among a small number
of well-localized (in time) WT coefficients in the region of the
main spike, 2) for MUAP signals, we look to the low-frequency
coefficients for capturing the average waveshape of the MUAP
signal over long durations, and we look to the high-frequency
coefficients for locating MUAP spike changes, 3) the Daubechies
4 wavelet, is effective in tracking the transient components of the
MUAP signal, 4) the linear spline CH (semiorthogonal) wavelet
provides the best MUAP signal approximation by capturing most
of the energy in the lowest resolution approximation coefficients,
and 5) neural network DY (DY) of Daubechies 4 and BL WT
coefficients was in the region of 66%, whereas DY for the
empirically determined time domain feature set was 78%. In
conclusion, wavelet analysis provides a new way in describing
MUAP morphology in the time-frequency plane. This method
allows for the fast extraction of localized frequency components,
which when combined with time domain analysis into a modular
neural network decision support system enhances further the DY
to 82.5% aiding the neurophysiologist in the early and accurate
diagnosis of neuromuscular disorders.

Index Terms—Electromyography (EMG), motor unit action
potentials (MUAP’s), time-scale analysis, wavelet analysis.

I. INTRODUCTION

STRUCTURAL reorganization of the motor unit, the small-
est functional unit of muscle, takes place because of

disorders affecting peripheral nerve and muscle. Motor unit
morphology can be studied by recording its electrical activity,
the procedure known as electromyography (EMG). In clinical
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EMG motor unit action potentials (MUAP’s) are recorded
using a needle electrode at slight voluntary contraction. The
MUAP reflects the electrical activity of a single anatomical
motor unit. It represents the compound action potential of
those muscle fibers within the recording range of the electrode.
Features of MUAP’s extracted in the time domain such as
duration, amplitude, and phases proved to be very valuable
in differentiating between muscle and nerve diseases [1] with
the duration measure being the key parameter used in clinical
practice. However, the measurement of the duration parameter
is a difficult task depending on the neurophysiologist and/or
the computer-aided method used. The definition of widely
accepted criteria that will allow the computer-aided measure-
ment of this parameter are still lacking [2]. On the other
hand, frequency domain features of MUAP’s like the mean,
or median frequency, bandwidth, and quality factor provide
additional information in the assessment of neuromuscular
disorders and it has recently been shown that the discriminative
power of the MUAP mean or median frequency is comparable
to the duration measure [3] or the spike duration measure [4].
Furthermore, earlier EMG frequency analysis studies showed a
displacement toward lower frequencies for neurogenic lesions,
with the opposite being true for myogenic lesions [5]–[9].
These findings were also confirmed by Larsson and coworkers
[10], [11] who devised a method for the automated measure-
ment of the EMG power content of four octave band filters
with center frequencies at 50, 200, 800, and 1600 Hz. Even
though frequency-domain techniques describe the frequencies
present in the signal, information about their occurrence in
time is missing. The objective of this paper is to investigate
the analysis of MUAP signal characteristics in both the time
and frequency domains using the wavelet transform (WT). The
usefulness of wavelet analysis in EMG data was presented in
a recent pilot study by our group [12].

In this study four different wavelets were investigated:
Daubechies with four (DAU4) and 20 (DAU20) coefficients
[13], Chui (CH) [14] and Battle–Lemarie (BL) [15]. The
main characteristics of these wavelets which motivated their
application on MUAP analysis are outlined below.

1) The orthogonal WT decomposes a signal into a set
of orthogonal basis functions. Unlike the short time
Fourier transform (STFT) which uses orthogonal sinu-
soids over the window, while the basis functions from
overlapping windows are not orthogonal, the WT basis
functions are always orthogonal. This means that every
WT coefficient represents an entirely different signal
component.

2) Assuming that high frequencies change rapidly, while
low frequencies change slowly, the WT uses long

0018–9294/99$10.00 1999 IEEE
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duration windows for capturing the low-frequency
components and short duration windows for capturing
the high-frequency components. This means that
for MUAP signals we look at the high-frequency
coefficients for locating abrupt signal changes, while
we look at the low-frequency coefficients for capturing
the average behavior of the signal over long durations.
In contrast, the STFT uses a fixed window and does
not provide a varying time-frequency resolution. (For
the STFT, the use of a short window results in low
spectral resolution, whereas the use of a longer window
improves the-frequency resolution but results in a loss
of time-resolution.)

3) For the case of the DAU4, the WT coefficients at the
highest-frequency scales provide high time-resolution
of only four signal samples. This allows the DAU4
wavelet to effectively track the MUAP main spike
transient signal at a time resolution that the STFT
simply cannot match.

4) The energy in the MUAP signal is distributed among a
small number of well localized in time WT coefficients.
In addition to the time-frequency features, the WT
supports multiresolution analysis of the MUAP signals.
Briefly, at each stage (scale) the WT provides two sets
of coefficients: the scaling function coefficients, and
the wavelet function coefficients. Each successive stage
replaces the scaling function coefficients by another
two sets of scaling function and wavelet coefficients.
In terms of analyzing MUAP signals, we compare the
difference between the two sets of scaling function co-
efficients, coming from successive scales, to recognize
the signal features that the set of wavelet coefficients
represents.

Wavelet analysis was carried out on MUAP’s recorded from
normal subjects and subjects suffering with motor neuron
disease and myopathy. The performance of wavelet analysis
is compared to traditional time and frequency analysis. In the
next section, wavelet analysis is briefly introduced, and the
advantages and disadvantages of the four wavelets investigated
are discussed. In Sections III and IV, EMG experimental
procedure and material are given, respectively. Results are de-
scribed in Section V and discussion is presented in Section VI.

II. WAVELET ANALYSIS

A. The Wavelet Transform

In this section, the WT is presented as a time-scale anal-
ysis tool [16]. Along with the algorithm, we analyze the
relationship between the wavelet coefficients and the time-
frequency plane. The WT algorithm consists of the decom-
position and the reconstruction phases. For our purposes,
we focus on describing the decomposition phase. In the
decomposition phase the original signal is decomposed
into its high-frequency and low-frequency components [see
Fig. 1(a)]. The original discrete signal is low-
pass filtered by and downsampled by two to
produce the low-frequency component signal (smooth signal)

. Similarly, the original discrete signal is
highpass filtered by and downsampled by two
to produce the high-frequency content signal (detail signal)

. In our notation, the superscript 1 of
and denotes the first decomposition stage. For the

th stage, where is the highest resolution scale, the output
signals are denoted by and . It is important to note
that different WT’s can be defined in terms of different sets
of decomposition filters and .

For the Daubechies family of wavelets, the decomposition
coefficients are computed via the use of circular convolutions,
suitable for nonsymmetric decomposition filters. For the CH
and BL families of wavelets, the decomposition filters are
symmetric, and the signal is mirror extended before filter-
ing. To describe the extracted signal frequency content, the
decomposition coefficients are plotted in the time-frequency
plane as illustrated in Fig. 1(a). In Fig. 1(a), denotes
the sampling frequency. The high-frequency content signal

is plotted in the upper half-plane, while
the low-frequency content signal is plotted
in the lower half-plane. Due to the down sampling operation,
each decomposition coefficient occupies two sampling periods.
It is important to recognize that the time-frequency plot
of Fig. 1 is only an approximation of the extracted time-
frequency content. Clearly, no linear filter can extract signal
information that is of finite duration in both the time and the
frequency domains, since this would violate the uncertainty
relation [17]. This point will be re-examined in the scalogram
section.

For computing the two-stage WT, we re-compute the
decomposition stage using the low-pass content signal

as the new input. For the second-stage,
the extracted time-frequency content is shown in Fig. 1(b)
where only the lower-half of the time-frequency plane is
affected by the second decomposition phase. It is clear that
each decomposition phase uses half as many input coefficients
as the previous stage. In terms of the time-frequency content
extracted, the time-spread of each stage is double the spread of
its previous stage, whereas the frequency-spread of each stage
is half the spread of its previous stage. This is demonstrated
in Fig. 1(a) and (b). For the third stage, the decomposition
phase is recomputed for the second stage low-pass signal:

. Similarly, as long as the number of
low-pass signal samples is comparable to the size of the
decomposition filters, the procedure is repeated. For the
reconstruction stage of the algorithm, first, the decomposition
phase signals and are up-sampled by two. The
up-sampled signals are then convolved with the appropriate
reconstruction filters, and added to reproduce. For two-
stages, and are used to reconstruct . Then,
and are used to reconstruct. Similarly, the procedure
is repeated for multiple stages.

B. Multiresolution Analysis

The WT is also used to analyze signals at different resolution
levels. The process of analyzing signals at different resolution
levels (scales) is known as multiresolution analysis. In this
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(a)

(b)

Fig. 1. Time-scale distribution of the WT decomposition phase outputs: (a) a single-stage WT and (b) a two-stage WT.

section, we briefly outline how the output coefficients from
each stage of the WT can be used to construct functional
approximations to the original signal. We limit our discussion
to the spline based wavelets, CH and the BL. As before,
we begin with the decomposition phase of the first stage
of the WT. Given the signal samples , the
corresponding continuous time signal is given by

(1)

where is called a scaling function. In writing (1), we
assume that the signal samples are weighted averages of the
continuous time signal. The scaling function is the time domain
representation of the low-pass filter at the zeroth stage. For
the CH and BL families of WT’s, the scaling functions are
the familiar spline functions [14] where the original signal is
approximated by a piecewise-polynomial representation.

After applying the decomposition phase, the signal approx-
imation is decomposed in two separate signals

(2)

where denotes the wavelet function. The scaled wavelet
function represents the time-domain representation
of the highpass filter at the first stage. To recognize the purpose
of the wavelet function, we rewrite (2) as

(3)

where is formally defined by

(4)

In (4), denotes the new signal approximation at the first
stage. Here, is an approximation of the original signal
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using spline functions centered about the even integers.
Thus, the approximation is ideal whenever the signal
is nice and smooth, and well approximated by piecewise-
polynomials over twice the support of the splines used for
the approximation. For rapidly changing signals, like
MUAP’s, the approximation is significantly worse than
the approximation, and the approximation difference

is captured in the wavelet expansion (3).
Thus, the highpass filter coefficients capture the rapidly
changing features of the signal. When such features are
captured in an early stage , the location of such
features can be determined with accuracy (see Fig. 1).

C. Scalogram

In this section scalograms are introduced for analyzing
nonstationary signals. First, the scalogram is defined in terms
of the WT. Then, we briefly describe how it can be used to
analyze stochastic processes and outline how the scalogram
results depend on the wavelet used for computing the WT.
The (discrete) scalogram is defined in terms of the square of
the decomposition phase coefficients [18]. For a single-stage
WT, the scalogram is identical to the time-frequency plot of
Fig. 1(a), but with each of the coefficients squared. Similarly,
for a two-stage WT, the scalogram is identical to the time
frequency plot of Fig. 1(b), with each coefficient squared.
Scalograms are used in analyzing nonstationary signals. For
our purposes, we view a MUAP signal as a sample function of
a stochastic process. Then, the sample scalogram is computed
for each MUAP. Each coefficient in the sample scalogram
represents a random variable. The scalogram captures the
smoothness of the MUAP in the lower scale coefficients
(at reduced time resolution), while the nonsmooth, transient
variations are captured in the higher scale coefficients (at
higher time resolution). An estimate of the MUAP scalogram
for each subject is computed by ensemble averaging the
sample scalograms of 20 aligned MUAP’s as will be explained
in the following section.

For any given ensemble of signals, the estimated scalograms
are a function of the wavelet that was used to compute
them. In this study, four different wavelets were investigated:
DAU4, DAU20, CH, and BL. The DAU4 and DAU20 can
be represented exactly using a finite number of coefficients
(FIR), unlike the CH and BL WT’s that are only approximated
using a finite number of coefficients (IIR). For the Daubechies
family of wavelets, the DAU4 is defined in terms of only four
coefficients, while the DAU20 is defined in terms of twenty
coefficients. (For the values of low-pass coefficients for DAU4
and DAU20 refer to [13, Table VI.A] 2 and 10, re-
spectively.) Since the DAU4 is affected by much fewer signal
samples than the DAU20, it is clear that the DAU4 has a better
time-resolution than the DAU20. On the other hand, by design,
the DAU20 provides a much better approximation to the
ideal low-pass/high-pass decomposition filters. This tradeoff
between the time and scale, resolutions obey the uncertainty
principle. For rapidly changing signals, like MUAP’s, in the
region of the main spike time-resolution is preferred to scale-
resolution. From the multiresolution analysis perspective at

the power scales, the CH and BL WT’s provide the familiar
piecewise-polynomial approximation to the signal [16], [18].
Piecewise polynomial wavelets are important because they
allow us to better characterize the wavelet coefficients in the
time domain. The wavelet coefficients describe how the sharp
signal discontinuities translate into derivative discontinuities at
different scales. No such intuitive time domain characterization
is possible for the Daubechies wavelets that are very irregular.
(For the CH and BL wavelet coefficients refer to [14, Appendix
A] and [15, Appendix A], respectively. For reconstruction, for
DAU4, DAU20, and BL, the relationships between the high-
pass and low-pass coefficients as described in [13, Fig. 5.10
and Fig. 5.11] were used).

III. EXPERIMENTAL PROCEDURE

The EMG signal was acquired from the biceps brachii
muscle using a concentric needle electrode. The signal was
band-pass filtered at 3 Hz to 10 kHz and sampled at 20 kHz
for 5 s with 12-b resolution. The signal was then lowpass
filtered at 8 kHz. An automatic parametric pattern recognition
(PPR) algorithm was used to identify MUAP’s recorded from
the same motor unit [19], [20]. The PPR algorithm is given in
more detail in Appendix A. The PPR algorithm was designed
to identify at least three MUAP’s, which belong to the same
group. The classification was based on the MUAP features:
phases, amplitude, spike duration, and duration examined
in sequence. MUAP’s belonging to the same group were
averaged to obtain the averaged MUAP envelope, simply
referred to as MUAP. A MUAP waveform consisted of 512
points (25.6 ms), having the maximum peak in the region of
200 points (10 ms). For each MUAP, the sample mean was
computed for the whole signal epoch. The sample mean was
then subtracted from the MUAP waveform, resulting in a zero-
mean signal epoch [21]. A total of 20 MUAP’s were recorded
from each muscle for analysis. The MUAP’s were analyzed
in the time, frequency, and time-frequency domains. For time
domain analysis, the following MUAP features were extracted
as described in Appendix A: 1) duration, 2) spike duration, 3)
amplitude, 4) area, 5) spike area, 6) phases, and 7) turns (see
Fig. 2). For frequency domain analysis the following measures
were derived from the autoregressive (AR) power spectrum as
described in Appendix A: 1) spectral moments of order zero,
one, and two, 2) median frequency, 3) maximum frequency,
4) bandwidth, and 5) quality factor.

IV. M ATERIAL

Neuromuscular diseases are a group of disorders whose
main characteristic is that they cause muscular weakness
and/or muscle tissue wasting. These disorders affect the motor
nuclei of the cranial nerves, the anterior horn cells of the spinal
cord, the nerve roots and spinal nerves, the peripheral nerves,
the neuromuscular junction, and the muscle itself. In this
study, the following three groups of subjects were investigated:
12 normal (NOR), 15 motor neuron disease (MND), and 13
myopathy (MYO). The time domain and frequency domain
features for the three groups are given in Table I. The same
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(a) (b) (c)

Fig. 2. Illustration of MUAP signal decomposition using the BL wavelet: (a) coarse waveforms(s0; . . . ; s�6), (b) detail waveforms(d�1; . . . ; d�6),
and (c) MUAP scalogram. (The MUAP waveform was normalized for unit energy). (For the scalogram plot, black= maximum energy and white=
minimum energy.)

TABLE I
MEAN (mn) AND STANDARD DEVIATION (sd) OF TIME DOMAIN AND FREQUENCY DOMAIN MUAP PARAMETERS FOR THENOR, MND, AND MYO GROUPS

data were also used in the studies by Elia [3] and Pattichis
[19], [20].

V. RESULTS

A total of 800 MUAP’s were analyzed using the DAU4,
DAU20, linear spline CH, and cubic spline BL wavelets.
The software used for wavelet analysis was developed at the
University of Texas at Austin, and the University of Cyprus.
Each MUAP was represented with 512 samples, sampled

at 20 kHz, making the total analysis epoch of 25.6 ms.
For each MUAP, the sample mean was computed and then
subtracted. Furthermore, each MUAP signal was normalized
to be of unit energy. For nonstationary analysis, the ensemble
of MUAP’s for each subject also had to be aligned so that all
the sampled MUAP’s were on the same (estimated) time axis.
To this end, the maximum positive peak from each MUAP
was shifted to the 200th sample ( 10 ms). Following the
time scale plots of Fig. 1, the scalogram parameters are listed
in Table II. As explained earlier, time-frequency resolution
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TABLE II
SCALOGRAM PARAMETERS (ANALYSIS WINDOW: N = 512, T = 50 �s, Epoch= 25.6 ms)

Fig. 3. Average scalograms of 20 MUAP’s for NOR, MND, and MYO subjects. MUAP waveforms: (a) NOR, (b) MND, and (c) MYO. DAU4 scalograms
for: (d) NOR, (e) MND, and (f) MYO. DAU20 scalograms for: (g) NOR, (h) MND, and (i) MYO. CHUI scalograms for: (j) NOR, (k) MND, and (l) MYO.
BL scalograms for: (m) NOR, (n) MND and (o) MYO. (For the scalogram plot, black= maximum energy and white= minimum energy.)

is limited by the uncertainty principle. Thus, the scalogram
parameters of Table II provide a general approximation for
all wavelets. Wavelets with short time-domain spread have
long frequency domain spread, whereas wavelets with long
time-domain spread have short frequency domain spread.

A. An Example of MUAP Multiresolution Analysis, Fig. 2

For this example, the cubic spline BL wavelet
was used. In Fig. 2, the signal approximation
coefficients , and the detail coefficients

, are plotted. The wave-shapes of the

stage and look very similar to the original
coefficients . However, as we move toward , the signal
approximation decreases significantly, looking drastically
different from . Thus, significant signal features have been
extracted at this stage. The extracted signal features, given
as the difference signal are described by the
wavelet coefficients as given in (3). In particular, the
peaks in the coefficients correspond to the main spike
locations of the MUAP. The location of the coefficient maxima
corresponds to the location of the MUAP spikes, while the
magnitude of each coefficient measures the abruptness in
the spike. Fig. 3(c) illustrates the MUAP scalogram where
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TABLE III
NORMALIZED PERCENTAGE MUAP WAVELET ENERGY DISTRIBUTION PER BAND FOR THE NOR, MND, AND MYO GROUPS

the magnitude square of the coefficients ,
and shown in Fig. 2(a) and (b) are plotted (as given in
Fig. 1 and Table II).

B. Average Scalograms of 20 MUAP’s for NOR,
MND, and MYO Subjects, Fig. 3

Next, we examine the average scalograms computed for the
three types of subjects, using the four wavelets investigated.
For each subject, an ensemble of 20 MUAP’s is displayed
on the left column of Fig. 3 starting from the top, with the
ensemble for the NOR subject, followed by the ensembles for
the MND and MYO subjects. Moving from left to right, the
average scalograms for each ensemble for the DAU4, DAU20,
CH, and BL wavelets are shown. For a particular subject type,
the average scalograms from different wavelets exhibit certain
similar characteristics. We next focus on these similarities,
which remain consistent within each subject type, to help
differentiate among the different types. The scalograms for
the MND subject have longer time-domain spreads (compared
to the scalograms for the NOR subject, see Fig. 3). On the
other hand, the scalograms for the MYO subject have shorter
time-dornain spreads compared to the scalograms for the NOR
subjects.

Next, we interpret the different scalograms produced for the
three subject types. The differences among these scalograms
are due to the wavelet type used to derive them. For the
three subject types, the DAU4 scalograms have the shortest
time spread in each band. This is due to the fact that DAU4
uses the least number of finite impulse response coefficients,
being only four. Furthermore, due to the small number of filter
coefficients, the DAU4 scalograms detect the sharp MUAP
spikes with high time-resolution (detected by coefficients

and ). On the contrary, the scalograms of DAU20,
with 20 filter coefficients, have a longer time-domain spread.
However, the DAU20 scalograms when compared to the
DAU4 scalograms, have a shorter frequency-domain spread.
The linear-spline CH scalograms show a large concentration
of energy in the lowest band . From the multiresolution
analysis perspective, this shows that the MUAP spikes can
be well approximated by a piecewise linear approximation.
On the contrary, the scalograms for the cubic spline BL
wavelet are spread toward the upper frequency bands. From
the multiresolution analysis perspective, this shows that the
MUAP spikes exhibit strong discontinuities in the second

(or higher) derivatives, which prohibits a good approximation
by cubic splines. Thus, these derivative discontinuities are
detected in the wavelet coefficients [as given in (3)].

For discriminating among subject types, we look at the
statistical distribution of each scalogram coefficient separately.
For orthogonal wavelets (and scaling functions), each co-
efficient describes an independent statistical measure. Both
the Daubechies and the BL wavelets provide such measures.
For semiorthogonal wavelets, statistical independence is main-
tained among the different scales, but not within translations
of the basis function’s of the same scale. This is true for the
CH wavelet.

C. MUAP Wavelet Energy Distribution per Band for the
NOR, MND, and MYO Groups, Table III

Table III tabulates the normalized MUAP wavelet energy
distribution per band per group. It is shown that more than
77% of the energy is concentrated in ,\ , , and .
Also, for all the wavelets, for the MND group there is a shift
toward lower frequency bands, whereas for the MYO group
there is a shift toward higher frequency bands when compared
to the NOR group. These findings are in agreement with
conventional frequency analysis as given in Table II for the
median frequency parameter for the same group of subjects.
The linear spline CH (semi-orthogonal) wavelet provides the
best MUAP signal approximation by capturing most of the
energy in the lowest resolution approximation coefficients.
Kuskal–Wallis statistical analysis (nonparametric alternative
to oneway ANOVA) of the normalized MUAP wavelet energy
distribution per band for the NOR-MND, NOR-MYO, and
MND-MYO groups was carried out. It was found that for

and there are significant differences at 0.05
between the three groups for all the wavelets except for BL
and CH. (The Kruskal–Wallis analysis was carried out using
the SYSTAT package [22]).

D. Neural Network Classification of WT Coefficients, Table IV

Artificial neural network (ANN) models were developed
for the classification of WT coefficients, into three groups:
NOR, MND, and MYO. Since most of the MUAP energy is
concentrated in the lower four bands , , , and ,
four coefficients from each of these bands in the region of
the MUAP main spike were extracted for the neural network
classification. These coefficients carry on average more than
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TABLE IV
DIAGNOSTIC PERFORMANCE OFTIME DOMAIN, FREQUENCY DOMAIN, AND WAVELET COEFFICIENTSDAU4, DAU20, CH, AND BL FEATURE

SETS USING THE BP, RBF,AND SOFM NEURAL NETWORKS. THE MEAN AND STANDARD DEVIATION OF THE DIAGNOSTIC YIELD, DY%,
IS GIVEN FOR THE EVALUATION SET AFTER BOOTSTRAPPING THEAVAILABLE DATA FOR FIVE DIFFERENT SETS OF SUBJECTS

65% of the total MUAP energy and were the following: to
, to , and to . For for each coefficient

the mean for 20 MUAP’s was computed for each subject.
Three different neural networks were investigated, the back-
propagation (BP) [23], the radial-basis function network (RBF)
[24], and the self-organizing feature map (SOFM) [25]. These
algorithms were implemented as given in the MATLAB neural
network toolbox [26].

For training the ANN classifiers, a total of 480 MUAP’s
obtained from 24 subjects, eight NOR, eight MYO, and eight
MND, were used, whereas for evaluation, a total of 320
MUAP’s, obtained from 16 subjects, four NOR, five MYO,
and seven MND were used. The system was trained and
evaluated using five different bootstrap sets where in each
set 24 different subjects were selected at random for training
and 16 different subjects for evaluation as described above.
Table IV tabulates the mean and standard deviation of the
percentage of correct classifications, i.e., DY for the five
bootstrap sets for each classifier for the evaluation set. In
addition, the ANN classification performance of the mean
time domain parameters (duration, spike duration, amplitude,
area, spike area, number of phases, and number of turns)
and frequency domain parameters (spectral moments of order
zero, one, and two, median frequency, and quality factor) are
tabulated. The feature vector representing each subject was
computed by averaging the parameters of 20 MUAP’s for both
the time and frequency domain measures.

As shown in the average DY column of Table IV, the
highest yield was obtained for the time domain parameters,
followed by the DAU4, BL, and CH wavelet coefficients. The
frequency domain parameters gave even lower DY, followed
by the DAU20 wavelet coefficients.

VI. DISCUSSION

Quantitative analysis in clinical EMG is very desirable
because it allows a more standardized, sensitive and spe-
cific evaluation of the neurophysiological findings. With the
development of computer-aided EMG equipment different
methodologies in the time domain and frequency domain
have been followed for quantitative analysis. In this study,

the usefulness of the WT that provides a linear two di-
mensional time-scale representation of nonstationary signals
is investigated for describing MUAP morphology. For the
orthogonal WT, each scalogram coefficient provides an in-
dependent statistical measure and it is shown that MUAP
signals can be well represented using a small number of
significant coefficients that are located around the main spike.
High-frequency coefficients are highly localized in time and
capture the location of MUAP spike changes whereas low-
frequency coefficients provide lower time localization de-
scribing the average behavior of the signal. This multiscale
analysis would not have been possible with the STFT, since
the STFT uses a fixed size window. The DAU4 wavelet
provides good time-resolution, capable of tracking the rapid
changes in the MUAP’s. The linear-spline CH wavelet pro-
vides the best signal approximation, capturing the average
behavior of the MUAP’s, as given by the energy content
captured by the eight coefficients at the lowest frequency
band.

WT energy distribution per band findings are in agreement
with earlier frequency analysis studies that showed a displace-
ment toward lower frequencies for neurogenic lesions, with
the opposite being true for myogenic lesions [3]–[11]. Also, it
is shown that the WT total energy at and (frequency
bandwidth 156.25–312.5 Hz), with the exception of BL, was
significantly, different between the NOR-MND, NOR-MYO,
and MND-MYO groups.

The discriminative power of wavelet coefficients for the
classification of MUAP’s recorded from, NOR, MND, and
MYO subjects was investigated using neural networks. Among
the four wavelets studied, the best average DY was obtained
for the DAU4 wavelet coefficients being 66.2%, followed by
the BL, CH, and DAU20 wavelet coefficients with yields equal
to 65.8%, 63.3%, and 59.6%, respectively. The time domain
parameters, gave higher DY than the wavelet coefficients,
being 78.3%. It is interesting to note that although the 16
wavelet coefficients used for neural network classification
captured most of the energy of the MUAP signals (>65%), they
gave lower DY than the time domain parameters which were
empirically defined. A similar DY in the region of 78%–80%
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for the time domain parameters was also obtained using neural
network [19], [20], and genetics-based machine learning [27].

In a recent paper, we showed that MUAP time-domain
and wavelet analysis can be combined into a modular neural
network decision support system in order to improve the
classification performance of individual features or classifiers
[28]. More specifically, a decision making system was de-
veloped in [28] where BP, RBF, and SOFM classifiers were
trained with time domain, frequency domain, AR coefficients,
cepstral coefficients and DAU4, DAU20, CH, and BL wavelet
coefficients (as described in Section V-E). (It is noted that the
average DY’s for the AR, and cepstral coefficients feature sets
were 63% and 51.2%, respectively [28].) The 24 output results
of the eight feature sets applied to the three classifiers were
combined using majority voting, i.e., a subject was assigned
to the class with the maximum number of votes. The DY
achieved with the combination of the 24 classification results,
was 82.5%. This DY was higher than the DY of the best
feature set from the best classifier, which was 81.2% for the
time domain parameters and the SOFM and BP classifiers as
given in Table IV.

In conclusion, wavelet analysis provides a new way in
describing MUAP morphology in the time-frequency plane.
This method allows for the fast extraction of localized fre-
quency components of MUAP’s that may prove to be valuable
in the early and accurate diagnosis of neuromuscular disor-
ders. Future work will integrate wavelet analysis to a hybrid
diagnostic system for neuromuscular diseases where EMG,
muscle biopsy, biochemical and molecular genetic findings,
and clinical data are combined to provide a diagnosis [29].
Furthermore, the interpretation of wavelet analysis coefficient
changes in relation to muscle pathophysiology can be investi-
gated. More specifically, the following factors that have been
proven to affect conventional spectral analysis can be studied
[9]: MUAP propagation velocity, velocity dispersion, size of
innervation zone, number of fibers in the motor unit, and
electrode recording site.

APPENDIX

TIME DOMAIN AND FREQUENCYDOMAIN MUAP PARAMETERS

A. Time Domain Parameters [19], [20]

For each potential the following seven parameters were
measured.

1) Duration (Dur): MUAP beginning and ending are iden-
tified by sliding a measuring window of length 3 ms
and width 10 V.

2) Spike Duration (SpDur):Measured from the first to the
last positive spike.

3) Amplitude (Amp):Difference between the minimum
positive peak and the maximum negative peaks.

4) Area: Sum of the rectified MUAP integrated over the
duration measure.

5) Spike Area (SpArea):Sum of the rectified MUAP inte-
grated over the spike duration.

6) Phases (Ph):Number of baseline crossings that exceed
25 V plus one.

7) Turns (T): Number of positive and negative peaks
separated from the proceeding and following peak by
25 V.

B. Spectral Analysis Parameters [3]

For each MUAP, the AR coefficients were calculated
using the modified covariance algorithm as given in [21]. The
AR power spectrum of each MUAP was estimated, and it was
normalized with its maximum power value. The following
parameters were computed from the AR power spectrum
curve.

1) Moments of order zero, one, and two: A moment
of order was computed as given in [9]:

PAR

2) Median frequency (FMED) is the frequency at which
the power spectrum is divided into two regions with
equal power.

3) Maximum frequency is the frequency with the
maximum power.

4) Quality factor is the ratio of the dominant peak
frequency divided by the bandwidth and is
expressed as: .

5) Bandwidth is the difference of frequencies at the
upper and lower dB points of the power
spectrum and is given as: .
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