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Clustering ECG Complexes Using Hermite Functions
and Self-Organizing Maps

Martin Lagerholm, Carsten Peterson*, Guido Braccini, Lars Edenbrandt, and Leif Sörnmo, Member, IEEE

Abstract—An integrated method for clustering of QRS com-
plexes is presented which includes basis function representation
and self-organizing neural networks (NN’s). Each QRS complex
is decomposed into Hermite basis functions and the resulting co-
efficients and width parameter are used to represent the complex.
By means of this representation, unsupervised self-organizing
NN’s are employed to cluster the data into 25 groups. Using the
MIT-BIH arrhythmia database, the resulting clusters are found
to exhibit a very low degree of misclassification (1.5%). The
integrated method outperforms, on the MIT-BIH database, both
a published supervised learning method as well as a conventional
template cross-correlation clustering method.

Index Terms—Clustering, Hermite functions, QRS complex,
self-organizing networks.

I. INTRODUCTION

COMPUTER-BASED methods for analysis and interpreta-
tion of electrocardiograms (ECG’s) have been subject to

intense research for nearly four decades. Electrocardiographs
that perform sophisticated signal processing and diagnostic
interpretation of signals are today wide-spread [1]. Artificial
neural networks (ANN’s) are one of the most recent techniques
in this field and have primarily been considered for classifica-
tion of ECG’s into different diagnostic groups [1], [2]. It has
been shown that ANN’s for specific issues can perform better
than both experienced cardiologists and ruled-based criteria,
e.g., in detecting acute myocardial infarction from the ECG
[3]. A first generation of ANN’s have also been implemented
in commercial electrocardiographs [4].

Visual analysis of long-term (24 h) ECG is tedious and op-
erator dependent. Computer techniques have been developed in
order to facilitate visual analysis, e.g., by condensed print-outs
of various signals and trends. With this type of presentation the
operator usually can analyze a 24-h recording in 20–40 min pro-
vided that no complex arrhythmias exist. It is obvious that au-
tomated systems for detection of arrhythmias considerably re-
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duces the amount of time the operator needs to spend. Several
commercial systems are available for long-term ECG analysis.
However, their performance deteriorate markedly when noise
and artifacts are present and, as a consequence, an excessive
number of beat classes is created which require considerable
manual editing.

Beat clustering based on ANN requires that a set of descrip-
tive measurements first is extracted from the ECG. The most
commonly used approaches taken to this problem is to use a
set of heuristic features e.g., measurements of QRS wave am-
plitudes and durations [5], or time samples selected from the
QRS interval [6]–[8]. While these approaches are likely to per-
form well in recordings acquired during favorable conditions,
it is well-known that classification based on heuristic features
or the unprocessed signal itself are more vulnerable to noise
than are basis function representations [9]–[11]. Electrocardio-
graphic feature extraction by basis function representation was
suggested already in the 1960’s when Laguerre orthogonal func-
tions were proposed [12]. Later, the Karhunen–Loeve (KL) ex-
pansion, which provides an optimal signal representation in the
mean square error sense, was found to be suitable for this pur-
pose, e.g., [13] and [14]. It is well-known that the KL basis
functions constitute an orthonormal set and, therefore, each co-
efficient in the expansion represents independent information.
Inspired by the shape of the most significant KL basis func-
tions, the orthogonal Hermite functions were later proposed as
a useful parametric model of the QRS complex [15]. The main
advantage with the Hermite model is that it includes a width pa-
rameter which provides an efficient representation of beats with
large differences in QRS duration, e.g., normal beats and PVC’s;
the KL approach cannot as easily handle such differences. The
Hermite model was later studied within the context of real-time
monitoring [16] with application to e.g., data compression [17].
In that study, a multiple-input adaptive linear combiner was de-
veloped for the purpose of jointly estimating the Hermite model
parameters, including the width.

In this paper, we develop a method for unsupervised charac-
terization of ECG signals. The aim is to partition the beats into
clusters that represent central features of the data such that sim-
ilarity structures between clusters are preserved. Our approach
involves Hermite function representation of the QRS complexes
in combination with self-organized clustering. In contrast to
feedforward supervised ANN learning algorithms, which are
trained to identify predefined features in the data, self-orga-
nizing networks (SOM) organize themselves according to the
natural structure of the data—no external teacher is called for
[18]. Here, we use a variant of an SOM where neighbors are
updated according to a soft-max (Potts) prescription. The input
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Fig. 1. A flow-chart of our method.

data vector consists of the Hermite coefficients, the width pa-
rameter and two measures related to the length of the RR in-
terval. It should be stressed that the primary objective is to per-
form clustering; the final beat classification is performed by an
expert.

Both our key algorithmic ingredients, Hermite function
representation of the beats and self-organizing networks for
the clustering, represent powerful generalizations of more con-
ventional approaches, KL basis representations and standard
K-means clustering, respectively. These methods, which each
can be viewed as special cases from our approaches, in general
have inferior performance. Hence, we did not explore these
less powerful methods on factorized parts of the problem. In
Fig. 1 a flow-chart of our integrated method with its different
components is shown.

Recently, an ANN-based method for beat classification was
presented, which uses the “mixture-of-expert” (MOE) principle
[19]. The present work differs distinctly in several respects to
that work, e.g., whereas our approach handles all steps from
QRS detection to beat clustering, the work in [19] is focused
on patient-adaptable techniques that require initial labeling of
beats. To the extent it is feasible, our results are compared to
those in [19] using the MIT-BIH Arrhythmia database [20].

This paper is organized as follows. In Section II, we briefly
describe the MIT-BIH arrhythmia database. Our preprocessing
technique based on the Hermite function decomposition is de-
veloped in Section III. Section IV describes the essentials of the
self-organizing map and Section V presents the results and com-
parisons with a mixture-of-expert model and a correlation-based
method. Finally, a discussion and conclusions are found in Sec-
tion VI.

II. ECG DATABASE

A total of 48 ECG recordings were studied from the
MIT-BIH arrhythmia database [20]. Each recording has a
duration of 30 min and includes two leads, denoted A and B,
respectively, which are chosen among the modified limb lead
II and the modified leads V1, V2, V4, or V5. All beats in the
database were annotated by two cardiologists: approximately
70% of the beats were classified as normals while the
remaining types of beats were divided into 16 different kinds
of abnormal beats. Since we focus on the QRS part of the
signal, the “p” beats only containing the P wave are omitted.
Hence, we only use 15 abnormal beat types (see Table I).
When comparing our procedure to MOE [19], we utilize all
the 15 different categories rather than lumping them together
as normal/abnormal beats.

The ECG signals were resampled from the original 360-Hz
sampling rate to 1 kHz in order to be compatible with our ex-
isting software for high-resolution ECG analysis, including an

TABLE I
THE 16 DIFFERENTTYPES OFBEATS FROM THEMIT-BIH A RRHYTHMIA

DATABASE WITH ANNOTATIONS. ALSO SHOWN IS HOW THESE ARE

IDENTIFIED WITH “OUR METHOD” (THE ECG SIGNAL-DETECTION METHOD

DESCRIBED IN THETEXT) AND THE DIFFERENCES(�) WITH THE DATABASE

ANNOTATION. THE POOR DETECTION RATE OF THE a-BEATS WAS DUE TO

THE FACT THAT SEVERAL VERY LOW AMPLITUDE PVC’s IN RECORD

201 WERE MISSED BY THEQRS DETECTOR

algorithm for QRS detection [21]. The resampling was done
by functions available in the Matlab software (Mathworks Inc.,
Nattick, MA) for which suitable interpolation and decimation
factors were selected. Obviously, this increase in sampling rate
does not affect the spectral content of the signal but implies that
a fiducial point with better time resolution can be determined
for the QRS morphology.

III. PREPROCESSING

The coefficients of the Hermite basis function representation
are determined from a high-pass filtered ECG signal in order to
avoid poor fits due to the presence of very low-frequency com-
ponents. The baseline filter was implemented as a linear-phase,
finite impulse response low-pass filter which estimates the base-
line wander followed by subtraction of this estimate from the
original ECG. The filter complies with the American Heart As-
sociation (AHA) recommendations in terms of cutoff frequency
for baseline filtering [22]. The fiducial point of each detected



840 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 47, NO. 7, JULY 2000

Fig. 2. The first six Hermite functions (2, 3) plotted as a functions oft (same scale in all figures) and for the same�.

QRS complex was defined by the peak location in an envelope
signal obtained by summing the envelopes of each individual
lead; further details on the envelope computation can be found
in [21]. Next, the ECG signal is extracted from a -ms
window centered around the fiducial point. The window length
is selected to ensure that also very wide duration PVC’s were in-
cluded in the analysis window. A window of size 150 ms would
cover the QRS complex of normal beats but are not long enough
for all the types of artifacts, 250 ms seems to be unnecessarily
long. The overall accuracy of this detect-extract QRS-detection
procedure when comparing with the database annotation file is
high 99.7%. The 0.3% discrepancy is broken down into beat
types in Table I.

Each QRS complex is represented by a-dimensional
vector . The extra ms is used to enforce that the
encoded beats are close to zero outside the QRS complex. This
is done by adding a 100-ms zero signal on each side of the
original beat. The QRS complexesare expanded onto a linear
combination of Hermite basis

(1)

where

(2)

and are the Hermite polynomials. The widthapprox-
imates the half-power duration. With and

, the Hermite polynomials are recursively given by

(3)

Hence, each complex is represented by parameters;
and ( ). The first six Hermite functions
are shown in Fig. 2. The Hermite functions form an orthonormal
basis

(4)

for any fixed value of , which allows for a cost-effective cal-
culation of in in (1).

For a finite window size, does not obey (4). However,
if is close to zero outside the window it is still a good
approximation. In particular, this problem occurs for largeand

, (see Fig. 2); for a given window size, imposes an upper
limit on . On the other hand, for a good representation of,

should not be too small. Fortunately, fairly small values of,
i.e., 3 or 4, allow for good beat representation. A window size of

ms, including the 100-ms zero padding on each side
of the QRS complex, is in this respect a suitable choice. Defining

as being close enough to zero outside the window if

(5)

and

for all (6)

one obtains for and the maximum widths
and ms, respectively. These numbers are suffi-

ciently large for good representation of the beats as is evident
from Table II.
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TABLE II
THE RELATIVE ERROR� AND THE AVERAGE WIDTH OF THE HERMITE

FUNCTION, h�i AVERAGED FORALL BEATS AND OVER BOTH LEADS.
RESULTS SHOWN ARE FORN = 3, 4, 5AND 6 HERMITE FUNCTIONS,

RESPECTIVELY. ALSO SHOWN ARE THE MAXIMAL ALLOWED WIDTHS �

ACCORDING TO(5) AND (6)

For a given , the coefficients are determined by min-
imizing the summed square error

(7)

The minimum of (7), for a fix , is conveniently evaluated by
means of the orthogonality property (4), given by

(8)

The optimal combination of and the coefficients is deter-
mined by stepwise increments ofup to and then recompu-
tation of (8) rather than fitting all parameters simultaneously in
order to have a fast decomposition. The use of (8) significantly
reduces the computational demand when decomposing the sig-
nals in Hermite functions. This represents an asset in real-time
clustering.

As a relative error measure we use

(9)

In general, beats are well represented even with a small
number of Hermite functions. This is confirmed both by visual
inspection and by the fact thatis low (see Table II). The P and f
beat types, which are pacemaker related, and Q (unclassifiable)
are less suitable for representing with a few Hermite functions.
However, the variance of between different types of beats is
clearly acceptable when five Hermite functions are used (see
Table III). Fig. 3 exemplifies the representation of a normal
beat with 3, 4, 5, and 6 Hermite functions.

Apart from the above parameters related to the Hermite func-
tion representation, local rhythm information will also be used
as input to the SOM. The following two features are considered:

(10)

where is the occurrence time for the; the beat, if
, otherwise . In this way does not depend

on the heart rate, because it is significantly different from zero
only if the :th beat is premature. This is an important feature
for atrial beats.

TABLE III
THE RELATIVE ERROR� INTRODUCEDWHEN DECOMPOSING THEBEATS INTO

FIVE HERMITE BASIS FUNCTIONS. THE NUMBERSARE AVERAGED OVER BOTH

LEADS (A AND B) AND ALL BEATS IN THE DATABASE

Fig. 3. An example of Hermite function representation. The upper curve is
the original beat (lead A in beat #1 of record 100). The subsequent four curves
represent decomposition using 3, 4, 5, and 6 Hermite functions, respectively.

IV. SELF-ORGANIZING MAP

A. Self-Organizing Networks

Whereas feedforward supervised ANN learning algorithms
are aimed at identifying predefined features in the data, SOM’s
operate in a different way. The desired feature values are
not known beforehand and the network must organize itself
according to the natural structure of the data. Hence, this
approach falls within the family of clustering methods.

1) Topological Maps:The idea is to map a set of-dimen-
sional input vectors onto a discrete two-dimensional (2-D)
space with positions (see Fig. 4). Each position in the output
space is represented by an output node,( . For
each , a position in the input space is associated by. The
distance between and input vector is defined as

(11)

where the index labeling the different input vectors is sup-
pressed. In cases, where each input vector is normalized (each
input, , over all the beats) to zero mean and one, and unit
variance, this simple measure is sufficient. For each input
vector , a “winner” is chosen as the one closest to, i.e.,

(12)

Input vectors having as a winner are said to “belong” to
cluster (output node) . In what follows, a cluster will also be
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Fig. 4. The SOM mapping from a high-dimensional space to a discrete 2-D
space.

referred to as abox. The positions of in the input space
could be viewed as a weight in the mapping process. This is the
commonly used terminology in the ANN literature. In the sim-
plest form of self-organization, “winner-takes-all,” the weights

are updated such that will become more sensitive to
the presented pattern, similar to standard clustering algorithms.
This is accomplished by

if
if

(13)

where is the step size toward the input vector, (parameter
changing) which is changed during training.

It is often desirable to have a topological order among the
output units , such that neighboring units in the output space
will respond to adjacent points in the input space. A commonly
used technique to achieve such atopological mapis by updating
units close to the winner node in the same way as the winner
node [18] but with a step that in addition toalso depends upon
the distance to the winner,(in the output space). In this way
neighboring units will end up with similar weight vectors. We
do this usingPottsneurons, where the winner “shares” its step
with its neighbors. The Potts neuron, , encodes the relative
strengths according to

(14)

The distance (in the output space) between the output units
defines the topology of the network. The artificial “temperature”
or width is decreased (annealed) as learning proceeds. The
update rule (13) is then modified to

for all (15)

Note that

(16)

expressing the “share” philosophy. For (15) reduces
to the “winner-take-all” update rule (13). Suitable parameter
choices for our procedure are found below.

B. The QRS Map

1) Input Structure: We map our preprocessed QRS data, de-
noted by , onto maps using (11) and (12). The-repre-
sentation is shown in Table IV whereand refer to the Her-
mite decomposition for each lead. Since the components of the
input vector ( , , and ) have different origins one does

TABLE IV
DEFINITION OF THESOM INPUT COMPONENTS(� � � � � ) WHEN USING FIVE

HERMITE FUNCTIONS: c AND � DENOTE COEFFICIENTS ANDWIDTHS IN THE

HERMITE FUNCTION DECOMPOSITION ANDR AND R ARE DEFINED IN (10)

not a priori know their relative importance for distinguishing
between various types of beats. Hence, we transform the com-
ponents by subtracting the average and scaling to a common unit
variance.

We have a mapping from a 12-dimensional input space to a
2-D ( ) output space. This is in contrast to many applications
using SOM’s, where the key goal is to reduce the dimensionality
of the problem. In our case, that reduction has been achieved
with the Hermite function decomposition. One central reason
here for using SOM’s is to benefit from its topological structure
when interpreting the data.

2) Training: The training, which is divided into two phases,
requires setting a few parameters. However, these turn out to be
rather insensitive, i.e., no fine tuning is needed. In phase I, the
output vectors evolve with a strong neighborhood dependence,
whereas phase II proceeds with a weaker dependence. The latter
allows for outliers to be identified, which are important for di-
agnosis. Below we describe in more detail the parameters and
procedures we use.

a) Initializing the weights:The input data typically oc-
cupies a very small subspace of the total input space. Ideally,
one wants the output nodes to focus on this subspace from the
start. Since the input vector components have been normalized
to zero mean, this is accomplished initializing using a uni-
form distribution on the interval , , where is chosen small
as compared to the standard deviation ( ).

b) Local neighborhood:In order to produce a good
topological map, one should start with a wide neighborhood
( large), compared to the size of the network. This will force
all units to become more or less similar. This will force all
the cluster centers to the same region of the input space. The
neighborhood is then decreased during training, allowing the
units to focus on local regions of the input space. For a too
small , the coupling between the units is broken and no
ordering will emerge. On the other hand, if is large all the
time, all units in the network will end up pointing in the same
direction. We decrease the neighborhood according to

(17)

where is the iteration number and . The initial is
estimated from the size of the output map as

(18)

where denotes the diagonal distance of the map (with square
boxes with unit length and a map, would be ). This
implies that a output vector at distancefrom the winner will
be updated with half the strength of the winner.
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Fig. 5. Beats from a typical 30-min record (# 233 lead B) assigned to the different clusters (output nodes). For the notations N, A, V, and F see Table I. The colors
denote the different beats according to the expert annotation; N (yellow), A (red), V (blue), and F (black).

With a large neighborhood the cluster centers tend to stick
to dense regions, whereas with a lower one it is easier for a
cluster centers to leave the neighbors and go far from the dense
regions. The choice of is, thus, a tradeoff between having a
well-structured output map and the risk of mixing outliers with
the relevant beats.

In phase I, should not be too low. Hence, is chosen as

(19)

where . In phase II there is no lower bound for
.

c) Learning rate: The learning rate is in phase I an-
nealed (decreased) according to

(20)

with = 1 and = 0.96. In order for the convergence to be
reasonable fast, is chosen as

(21)

with . In phase II, is fixed to .

The weights are updated for every pattern. Other updating
rates have been pursued with less efficient training as results.

d) Termination criteria: The energy of the system is
defined as

(22)

where runs over all the input vectors. The fractional change
in from the last block of ten iterations to the previous block
defines . Both phases are terminated when .

V. RESULTS

A. Resulting Maps

Depending upon the random number initialization, different
features will settle in different parts of the plane. However,
the topological relations should be preserved. In Fig. 5, we show
the beat assignments of the map of output nodes, for one of
the 30-min records in the database. Each box represents a cluster
of beats. Also indicated is the contents in terms of four kinds of
beats; normal beats (N), atrial premature beat (A), ventricular
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TABLE V
MISCLASSIFICATIONS INPERCENTAGEAVERAGED OVER ALL THE AVAILABLE

BEATS FORDIFFERENTNUMBER OF HERMITE FUNCTIONS

premature beats (V), and fusion of ventricular and normal beats
(F). In this case, all seven A and 11 F beats end up in clusters
where their kind are not dominant. Note that the beats plotted
in the boxes are the original beats of lead B, whereas the input
to the SOM are composed of the Hermite representation and the
R-measures of both leads.

B. Evaluation of Results

The results above indeed look very good. With only a few ex-
ceptions the different types of beats ends up in separate boxes.
We next turn to a more quantitative evaluation of the results.
First, we do this without benchmarking against other unsuper-
vised approaches. Then, we compare with the results of [19]. In
Section VI, we will make comparisons with a cross-correlation
clustering method.

A beat is defined as misclassified if it ends up in a cluster
where the dominant beat is a different one. The resulting total
percentage of misclassified beats for all ECG recordings is equal
to 1.5%. This number should be compared with a worst total
misclassification percentage of 12%, which would be obtained
if all beats of each record were classified in a single box.

Results for four, five, and six Hermite functions decomposi-
tion are shown in Table V. Table VI shows the result in terms
of a “confusion matrix” divided into the different beat types.
The majority of beats are normal (68.3%) and, consequently, the
likelihood that normal beats will dominate the clusters is high.
Most of the normal beats (99.8%) are assigned to clusters in
which they represent the dominant fraction. The most common
type of misclassification (45.7% of the misclassified beats) is
that nonnormal beats are assigned to clusters dominated by the
normal ones. Another common type of misclassification is be-
tween classes that by definition are very close to each other. The
f beats are a mixture between P (paced) and N (normal) beats
and the F beats are a mixture between V (ventricular) and N
beats. P beats classified as f or vice versa and V beats classified
as F or vice versa account for 21.4% of all misclassifications.
The unclassifiable beats (Q beats) constitute a very heteroge-
neous group and, not surprisingly, most of these beats are mis-
classified.

C. Comparison with a Mixture-of-Expert Model

As mentioned in Section I, in [19] the MIT-BIH arrhythmia
database [20] was used for classifying beats using ANN
methods. The approach differs from ours both with respect
to the overall objectives and the methods employed. The
QRS complexes are not automatically identified— rather the
database annotations are used. Also, initial labeling of the beats
is required. This is contrast to our approach, which handles
all the three steps, QRS detection, compact representation and

classification, in an integrated manner. The representation of
each beat is also different. Whereas the nine largest principal
components computed from 14 samples (180 Hz) are used
on each side of the R-peak, we decompose the beats into
Hermite functions. Another difference is that we use all 48
records in contrast to [19], where only 33 records (20 for the
evaluation), in which premature ventricular contraction can be
identified, are kept. Also, the authors of [19] limit their study
to two compressed classes, V and non-V, respectively. For the
classification, a MOE variant of learning vector quantization is
used, whereas in this work we are consistently employing un-
supervised learning (clustering). Despite these differences we
find it meaningful to make a comparison for the classification
part by processing the same records on a map.

In order to make comparisons, we need to define a proper
error measure. In [19], a performance measure is defined as

of true negative and true positive beats
total of beats

(23)

For comparison, we define a similar measure, noting that V
beats in [19] correspond to our V and E

number of correctly clustered V and E beats
total of beats

(24)

The comparison between our SOM and the results from MOE
[19] are found in Table VII. If an expert were to annotate one
typical beat for each of the 25 clusters in our output map while
agreeing with the database annotation, one could consider the
beats in that cluster as classified to that type, i.e., one could
change the word “clustered” in (24) to “classified.” As can be
seen from Table VII, within this scenario our method outper-
forms their method. As a reference a column with the result ob-
tained if all beats where classified as the dominating one (worst
case for the SOM approach) is included.

D. Comparison with a Crosscorrelation-Based Method

We also gauge our self-organizing approach against a con-
ventional method based on crosscorrelation (CC) and a set of
template beats which has been extensively used in our labora-
tory [26]. This method can, similar to the SOM, be categorized
as unsupervised classification. Due to memory constraints when
implementing the CC method, each of the 48 records in the data-
base is divided into three 10-min-long records.

The CC method is initiated by using the first beat as a
template beat. Each beat is subjected to linear-phase, bandpass
filtering in order to remove frequencies which are judged to
be less essential for classification (the3-dB filter cutoff
frequencies were at 1 and 35 Hz), cf. [27]. Subsequently, each
beat is compared to the set of template beats by computing the
corresponding CC coefficients: the coefficient is computed by
shifting each beat in time until the best correlation is found. A
new template beat is created whenever the CC coefficient drops
below a noise-dependent threshold value. The threshold is set
to 0.94 for low to moderate noise levels and is then gradually
decreased to 0.75 for high noise levels (the threshold values
were determined from a database not used in this study). This
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TABLE VI
THE SOM CLUSTERING OF THEDIFFERENTTYPES OFBEATS USING FIVE HERMITE FUNCTIONS FOR THEREPRESENTATION AND A5� 5 OUTPUT MAP. THE

RESULT FROM THEINDIVIDUAL FILES ARE ADDED TOGETHER. THE ANNOTATION FILE TYPESARE DEPICTED ON THEVERTICAL AXIS, WHEREAS THECLUSTERS

DOMINATED BY THE DIFFERENTTYPESARE SHOWN HORIZONTALLY. FOR EXAMPLE, 31OF THEN BEATS ARE ASSIGNED TOCLUSTERSWHEREj IS DOMINANT.
~� DENOTES(%) THE PERCENTAGEOFF THE DIAGONAL. F IS THE PERCENTAGE OFBEATS IN THE ROW/COLUMN OF ALL BEATS

IN THE MATRIX, INDICATING THE IMPACT OF ~� UPON THETOTAL RESULT

type of threshold design ensures that the creation of new beat
classes remains within reasonable limits in noisy signals. The
noise level was measured as a root-mean-square value of the
high-pass filtered samples contained in the RR interval prior
to the QRS complex (high-pass filtering with cutoff frequency
at 20 Hz was performed in order to avoid P and T waves to
increase the noise level). A beat classified as being similar to
an existing class is then used to update the template beat by
means of recursive averaging, thus, gradually improving the
quality of the template beats.

For each 10-min record, we train a SOM with the same
number of clusters (denoted by ) as produced by the CC
method. We compute the total percentage of misclassified beats
for both methods (as defined above). The same is done with
fixed map sizes of . The results from the CC method is
4.4% misclassified, which should be compared with 2.3% for
the SOM under similar conditions (see Table VIII).

VI. DISCUSSION ANDCONCLUSION

We have devised a procedure for clustering beats into classes
which are not predefined. The proposed method is based on Her-

mite-function encoding of QRS complexes. A self-organized
feature map (SOM) is employed for clustering the encoded QRS
complexes. The original beats are then presented together with
the ones clustered together in a “box.” It is found that the QRS
complex of the beats in the MIT-BIH arrhythmia database are
accurately detected with our procedure (99.7%). Decomposing
the beats into five Hermite functions turns out to be sufficient
for achieving a good classification performance. The entire ap-
proach is successfully evaluated in three different and indepen-
dent ways using output maps.

• The degree of misclassification is very low (1.5%), where
a misclassified beat is defined as a beat ending up in clus-
ters, where the dominant kind is another one. Furthermore,
when analyzing the resulting topological maps, these tend
to cluster the beats such that similar features are adja-
cent. The CPU consumption needed for the clustering is
modest, less than 1 min/record on a desktop computer
(Digital Alpha 250).

• When comparing the clustering results with those from
supervised learning methods [19] by classifying each of
the 25 clusters according the dominant kind of beat, our
method outperforms the supervised approach.
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TABLE VII
COMPARISON OF THEMIXTURE OF EXPERT MODEL [19] USING THE

R-MEASURESDEFINED IN (23) AND (24). THE REFERENCECOLUMN

“REF.” SHOWS THE EXTREME CASE OF CLASSIFYING ALL BEATS AS

THE DOMINATING ONE

TABLE VIII
RESULTS FROM THE10-MIN RECORDINGUSED TOCOMPARE SOM WITH THE

CORRELATION METHOD. THE SOM IS EVALUATED FOR A 5� 5 MAP AND FOR

THE SIZE PRODUCED BY THECORRELATION METHOD,A � B

• As a reference we also classify 10-min-long records using
a method based on template CC. It turns out that our
method performs significantly better than the latter.

The MIT/BIH database was selected because it contains a
wide variety of QRS complex morphologies as well as different
types of noise and artifacts. Another reason for considering this
database was its use in other studies and, thus, comparison of
results can be performed. Other annotated databases exist but
it seems that these suffer from certain drawbacks, e.g., having
a too sparse amount of noise and artifacts (the AHA database,
[24]) or being collected with a particular clinical feature in mind
(the European ST-T database is primarily concerned with my-
ocardial ischemia, [25]).

The primary motivation for using a clustering algorithm that
conserves some of the neighborhood (topology) is that it facili-
tates the interpretation by cardiologist since similar clusters are
presented as neighbors in the map. When it comes to the “hard”
results presented, a simpler clustering algorithm without this
feature would do as well as the SOM. The benefits for the car-
diologist using SOM remains to be exploited. One should men-
tion that our approach not only classifies well. It also embraces
all processing steps from the raw ECG signal to the clustered
beats; no corrections based on annotations were inserted in be-
tween the different steps.

A limitation with the present method is that no information
on signal quality was included in the SOM input vector, e.g., as
expressed by a signal-to-noise ratio. It is reasonable to assume
that the performance will become even better when such mea-
surements are included. Another step which remains to be con-
sidered is the classification of beat episodes. The present clas-
sification of single beats could be one part of such an analysis
but the time relation between the beats and the heart rate also
needs to be considered. Also, it could be beneficial to include
the encoding error e.g., as a separate input parameter. The SOM
could then sort the beats with a high error signal into a separate
box.

It is not within the scope of this project to adjust the method
to perform particularly well for a certain type of beats. The best
performance is found for the normal beats, a class that also out-
numbered the other beats. However, it is possible to fine tune
the algorithm to give a higher performance for a special type of
beat. For example, for ventricular beats one finds a strong cor-
relation to the width of the QRS. One could then utilize this fact
by enhancing the importance of width measures by e.g., simply
multiplying the corresponding input feature by a factor larger
than one.

By increasing the size of the output map one will have more
cluster centers and, thus, allow for better separation between
beats with different shapes. On the other hand a very large output
map will be more difficult to use for the physician. Our believe
is that a map would be a good tradeoff; the physician could
view the whole matrix at once and decide on which beats to take
a closer look. The optimal size of the map have to be decided in
a future clinical evaluation.
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