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The Forward EEG Solutions Can be Computed Using
Artificial Neural Networks
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Abstract—Study of electroencenphalogarphy (EEG) is the one
of the most utilized methods in both basic brain research and clin-
ical diagnosis of neurological disorders. Recent technological ad-
vances in computer and electronic systems have allowed the EEG
to be recorded from large electrode arrays. Modeling the brain
waves using a head volume conductor model provides an effective
method to localize functional generators within the brain. How-
ever, the forward solutions to this model, which represent theo-
retical potentials in response to current sources within the volume
conductor, are difficult to compute because of time-consuming nu-
merical procedures utilized in either the boundary element method
(BEM) or the finite element method (FEM). This paper presents a
novel computational approach using an artificial neural network
(ANN) to map two vectors of forward solutions. These two vec-
tors correspond to different head models but with respect to the
same current source. The input vector to the ANN is based on the
spherical head model, which can be computed efficiently but in-
volves large errors. The output vector from the ANN is based on the
spheroidal model, which is more precise, but difficult to compute
directly using the traditional means. Our experiments indicate that
this ANN approach provides a remarkable improvement over the
BEM and FEM methods: 1) the mean-square error of computa-
tion was only approximately 0.3% compared to the exact solution;
2) the online computation was extremely efficient, requiring only
168 floating point operations per channel to compute the forward
solution, and 10.2 K-bytes of storage to represent the entire ANN.
Using this approach it is possible to perform real-time EEG mod-
eling accurately on personal computers.

Index Terms—Artificial neural network, efficient algorithm, ef-
ficient computation, EEG, electrostatic theory, forward problem,
head geometry, head model, machine learning, partial differential
equation, signal processing, source localization.

I. INTRODUCTION

I N recent years, recording high-resolution electroencephalo-
grams (EEG’s) from large electrode arrays has become a

clear trend in brain research. It provides important insights into
the functioning of the brain by revealing the location and se-
quence of neural activities, and thereby pinpointing the origins
of certain neurological disorders, such as epilepsy, sleep distur-
bances, psychiatric illness, and brain tumors [1].
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Several imaging modalities can be used to localize brain
functions. These modalities include functional magnetic res-
onance imaging (fMRI) and positron emission tomography
(PET), which are both based on physical changes induced
by cerebral blood flow. Although their spatial resolution is
more superior than EEG, these modalities have difficulty in
localizing fast functional activity because of their low temporal
sensitivity. In contrast, the localization of brain functions based
on EEG is not constrained by the large time constant associated
with blood flow changes. In addition, EEG costs much less
than fMRI, PET, and magnetoencephalography (MEG) which
is the twin modality of EEG.

The EEG-based source localization technique includes a key
component,a forward head volume conductor model(or, in
short,a forward model), which mathematically expresses the
relationship between a current dipole inside the volume con-
ductor and the corresponding surface potentials. Due to compu-
tational considerations, researchers in source localization have
been using simple forward models, such as the sphere [2], [3].
In order to model the variations of conductivity values for dif-
ferent structures within the head, the interior of the sphere is
often divided into three or four homogeneous shells; namely the
scalp, skull, brain, and, optionally, cerebrospinal fluid [4]–[6].
The mathematical expression for the source-potential relation-
ship of the multishell model contains infinite sums of the Le-
gendre functions which are not computationally favorable. To
solve this problem we have recently developed an efficient al-
gorithm, implemented by a short C-program, in which the infi-
nite sums are approximated by a closed-form formula [7]. As a
result, the required number of floating-point operations are dras-
tically reduced from over 1500 to about 100.

Although the spherical model is currently widely utilized, it
may introduce large errors in modeling the geometry of the head
and the highly inhomogeneous conductivity distribution of tis-
sues. To reduce these sources of error a realistic head-shape
model can be constructed from computed tomography (CT) or
MRI head scan images. The internal structures of the head are
represented in different chambers and the model solutions are
solved by using the boundary element method (BEM) [8], [9].
Another type of model utilizes the finite element method (FEM)
[10], [11] which allows more complex internal geometry and
tissue conductivity features to be included, and is more precise.
However, this FEM model is computationally expensive. For in-
stance, Haueisenet al.[11] reported an average CPU time of five
hours to compute one single forward solution, using the method
of successive over-relaxation for a three-dimensional (3-D) fi-
nite element model of the head on an IBM RS/6000, Model 580
workstation with 256 Mbytes of RAM. Although the clock rate
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Fig. 1. (a) Comparison of fitting a head shape (solid curve, representing the
top view) by a sphere (dot curve) and a spheroid (dash curve). (b) Sagittal view
of the head fit by a circle.

and the size of RAM will both increase as computer technology
advances, rapid or real-time EEG modeling based on the tra-
ditional approach still does not seem to be feasible in the near
future.

A compromise between the modeling error and computa-
tional complexity is to model the head as an ellipsoid whose
shape is provided by three principal axes. A spheroid is a
special case of an ellipsoid in which two of the three axes
are equal. The human head is close to a spheroid since the
anterior-posterior axis (denoted by) is longer than the lateral
axis (denoted by), while the the sagittal view of the head is
essentially circular. Fig. 1(a) compares the realistic head model
(solid contour) to the spherical model (dot contour) and the
spheroidal model (dash contour). It is clear that the spheroid
model provides a good fit.

As in the case of the spherical model, the interior of the sphe-
roidal model can be divided into certain shells with different
conductivity values, and the forward solution of this model can
be expressed in an analytical form [12]. However, the mathemat-
ical expressions of this solution are very complex. Due to the
computational complexity involved the spheroidal model has
not gained popularity in practice.

In this paper, we present a new artificial neural network
(ANN) approach to the computational problem of the sphe-
roidal head model. A function approximation ANN is trained
to map the differences between the forward solutions of the
spherical and spheroidal models. Once trained, the ANN
produces the desired forward solutions of the best-fit spheroid
of variable shape. We present the fundamentals of this approach
in Section II, the ANN design methods in Section III, and the
experimental results in Sections IV and V.

II. FUNDAMENTALS

The brain waves observed in EEG data result from syn-
chronous electrical activity of large groups of neurons which can
be modeled as electrical current sources. The current generated
by these sources flows in closed paths within the electrical
conduction media of the head tissues, creating a potential
distribution on the scalp. This distribution can be measured non-
invasively by electrodes affixed to the skin surface. The volume
conduction phenomenon can be described mathematically using
the following partial differential equation [13]:

for (1)

where is the potential function of spatial vector
is the conductivity tensor (generally anisotropic);
is the current source density function; specifies

the “boundary condition,” and is the gradient operator,
, which results in a

vector when operating on a scalar, and a scalar when taking a
dot-product with a vector.

The EEG waves usually do not originate from a single source.
Thus, the forward solution must reflect the nature of multiple
sources. It can be easily verified that, if for fixedand , both

(2)

and

(3)

are true, then

(4)

must also be true. This result is usually called the “superposition
principle” which states that the forward solutions of multiple
sources can be obtained by combining the forward solutions of
single elementary sources. The most utilized source model is
a current dipole in which the distance between the two poles
approaches zero [13].

Although the superposition principle simplifies the forward
problem considerably, no analytical forward solutions exist for
the realistic head model, even for the simple dipole case. How-
ever, we claim that the realistic model solutions are not drasti-
cally different from those of the spherical model, as long as the
head shape is not deviated greatly from the sphere. The reason
is illustrated as follows.

Equation (1) can be considered as an extension of the familiar
Ohm’s law to the case of volume conduction. Hence, we make
use of the Ohm’s law to show the validity of our
claim. Let us consider the following hypothetical processes: 1)
constructing a very large, multilayer three-dimensional network
of resistors forming a head shape and 2) activating this network
by connecting an ideal current source to a single resister branch
(in series)insidethe network. It is clear that, when the location
of the current source is not too close to the outer-most layer of
the network, adding or removing a small number of resistors,
which is equivalent to a modification of the boundary condition

, at the outer-most layer of this networkwill not cause a large
variation of the voltage distribution throughout this network.
This observation suggests thatis continuous with respect to

, i.e., if the variation of is small, the variation of is
also small.

Now, let us express this continuity mathematically. Under
certain conditions there should exist a continuous function,,
given by

(5)

where and are, respectively, the forward solutions of a
simplebase model, such as the sphere, and adeviated model
which is closer to the head shape, such as the best-fit spheroid.
Although cannot be expressed explicitly, this difficulty does
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not prevent us from approximatingnumerically in an off-line
process, since both and in (5) can be evaluated based on
their respective models,and , excited by the same cur-
rent source,. By varying the location and direction of, a large
set of samples of the input and output ofcan be generated. This
forms the basis of our function approximation approach to the
forward EEG problem.

The remaining question is how to represent these samples
for each head shape. One way to do this is to establish a com-
puter database consisting of many tables indexed by a set of
representative head shapes. Once this database is established,
future computation can be performed by a table look-up. Al-
though this approach is not impossible with today’s computing
environment, it is certainly cumbersome requiring tremendous
storage. In addition, the potentials stored are highly correlated
among different tables, resulting in a very inefficient data rep-
resentation.

Storing data requires a certain type of “memory”. Conven-
tional memory stores values in individual addresses, whileas-
sociative memorystores contents and relationships in shared ad-
dresses [14], [15]. The latter form of memory is more suitable
to our case since, although the human head has virtually infinite
appearances, they share a common set of features. The techno-
logical advances in ANN’s have provided various ways to con-
struct the associative memory by performing pattern mapping
and functional approximation. It has been shown [16]–[18] that
certain ANN’s, such as nonlinearly activated backpropagation,
radial basis, and generalized regression ANN’s can approximate
any continuous function to an arbitrarily small error provided
that the numbers of training samples and hidden units are suf-
ficiently large. This universal approximation theorem suggests
that the desired function in (5) may be approximated closely
by an ANN using machine learning. Once trained the ANN is
expect to fetch and generalize the stored information from its as-
sociative memory and reproduce consistent output for any head
shape which has been, or is related to one of those, observed
previously.

III. CONSTRUCTION OF THEANN-BASED SPHEROIDAL MODEL

The ANN approach presented in the previous section is not
restricted to the spheroidal model. However, for realistic head
models, generation of training patterns for the ANN requires
considerable preprocessing, such as image segmentation, regis-
tration, and reconstruction using MRI or CT head scans, sur-
face or volumetric mesh building, and implementation of fi-
nite boundary model or FEM. In order to bypass these prepro-
cessing procedures and initiate the study on the ANN approach,
we focus on a simple case where the forward solutions of a
unit-radius homogeneous spherical model are mapped to that of
a spheroidal model of variable shapes. Since both models have
closed-form analytical solutions, we do not have to rely on FBM
or FEM to obtain forward solutions. In addition, the ANN to be
designed is not affected by the numerical errors resulting from
FBM or FEM. We anticipate that the design and implementation
methods obtained from this simple case will help us in the fu-
ture investigation on more general cases, where more complex
network design and a longer training time may be required.

Fig. 2. One-to-one mappings between the electrode sites (e and e ) and
between dipole locations (d andd ) for the spherical model (denoted by “o”)
and the spheroidal model (denoted by “+”).

A. Model Specification

The head model under consideration is a prolate spheroid
whose surface equation is given by

(6)

where and are, respectively, the long and short axes. We
define the eccentricity by . For most human
head shapes, thevalue is estimated between 0.4 and 0.6. We
also assume, without loss of generality, 1, since the surface
potentials on the unit spheroid can always be scaled up to fit
different head sizes.

In the ANN approach, we must also choose a base model. For
simplicity we employ the simplest homogeneous spherical head
model with a unit radius whose equation is given by

(7)

Equations (6) and (7) imply that the two models share the same
coordinate system centered atas illustrated in Fig. 2.

B. ANN Design

Once the base (i.e., spherical) and deviated (i.e., spheroidal)
models are specified, training patterns for the ANN can be gen-
erated by assuming dipole positions and moments and com-
puting forward solutions. The forward solution to (1) for the
unit-radius spherical volume conductor with a homogeneous
conductivity has the following simple form [19]:

(8)

where , and , are, respectively, the vector
elements of , and representing the dipole location, cur-
rent moment, and scalp location;and are, respectively, the
conductivity value and potential at; and and are equal to,
respectively, and .

The analytical forward solution for the homogeneous sphe-
roidal volume conductor has been reported by Yeh and Martinek
[20]. Due to the complexity involved, the mathematical details
of this solution will not be presented. The evaluation of this so-
lution involves the following procedures: 1) a coordinate trans-
formation from the Cartesian coordinates to the prolate sphe-
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roidal coordinates; 2) an evaluation of the Hassian matrix of the
transformation; 3) evaluations of three types of associated Le-
gendre functions of order zero to infinity; and 4) evaluations of
nested infinite sums with respect to the orders of the associated
Legendre functions and their derivatives. These functions and
derivatives can be expressed using various recursive relations;
however, many of these relations are numerically unstable. This
problem has been discussed in [21] where stable algorithms
have been presented. We utilized 30 terms to approximate each
of the nested infinite sums. The accuracy in Legendre function
evaluation was checked against the tabulated values in [21]. The
entire accuracy of potential computation was examined by set-
ting close to zero and comparing the result obtained from (8).

C. Pattern Generation

In order for the ANN to approximate the mapping function
in (5), we utilized training patterns constructed from densely
located unit-strength random dipoles. For each training pattern,
we first generated a large set of three-element vectors for dipole
location using the uniform probability distribution in the
range of , where the value of 0.84 corresponds to
the boundary between the brain and scalp shells in the spherical
head model. Then, we discarded all vectors in this set whose
modulus was greater than 0.84. The remaining 12 000
dipoles densely covered the “brain region” within
the spherical model.

We associated with each dipole a current moment vector.
Each of the three elements in was first generated indepen-
dently using the zero-mean, unit-variance Gaussian distribution.
Then, was normalized by re-signing it with . Next,
each pair was utilized in (8) to compute a 20-element
vector at scalp locations defined by the international 10–20
system [22].

For each of the spherical model we matched it with a
20-element vector of the spheroidal model of variable shape
using the following procedure: 1) generate a random number for
eccentricity using the uniform probability distribution in the
range between 0.4 and 0.6; 2) define a one-to-one mapping be-
tween the scalp electrode sites of the two models as shown in
Fig. 2 where a ray is projected from the center at, through the
electrode site at on the spherical model, to the electrode site

on the spheroidal model (see the Appendix for details of cal-
culation); 3) define a one-to-one mapping (again see Fig. 2 and
the Appendix) between dipole locations by projecting from
through to ; and, 4) plug into the analytical
form of the spheroidal model to compute the 20-element poten-
tial vector .

D. Training

A backpropagation (BP) ANN was utilized to approximate
in (5). In our ANN design (see Fig. 3) we utilized a bipolar

sigmoid activation function (given by )
and a linear activation function, respectively, at the single hidden
layer and the output layer. It has been shown [15] that such a
configuration satisfies the universal approximation theorem.

The 21-element input vector, (a column vector), to the
ANN was composed of both the shape parameter,, and ,

Fig. 3. Configuration of the ANN.W andW are weight matrices, andb
andb are bias vectors. The activation functions (bipolar sigmoid function for
the hidden layer, and linear function for the output layer) are illustrated in each
box after the add sign�. The dimensions of matrices and vectors, as well as the
contents of the input/out vectors, are also indicated.

i.e., , while the 20-element output target vector,
, consisted of only, i.e., . Prior to the training

process, we normalized both and to the unit variance
with respect to each row of the 12 000 training patterns. This
normalization results in an appropriate operating range for each
element in the pattern vector, and enables the ANN to be trained
more efficiently.

E. Alternative Input/Output Design

In the previous design and are highly correlated be-
cause a spheroid with eccentricity is not greatly
different from a sphere. As a result, we have

, for , and the ANN primarily approxi-
mates the identical function. In order for the ANN to emphasize
the difference between the two models, we re-defined the target
training vector as , for ,
i.e., is used to predict . As a result, the identity com-
ponent is removed from the mapping function, and the average
amplitude of becomes much smaller than . As in the
previous case, we normalized both and to the unit
variance to improve the sensitivity of ANN to the model differ-
ence. It is clear that these procedures can be easily reversed to
recover from .

F. Training Algorithms

There exist numerous training algorithms for the BP ANN.
Although some sophisticated designs are involved, no single al-
gorithm is universally better than others. Therefore, the choice
of training algorithm is problem-dependent and is usually made
by repeated experiments. We investigated five algorithms, in-
cluding the resilient algorithm [26] and four types of conju-
gate gradient algorithms [24], [25]. In the resilient algorithm
the gradient values in weight update are designed according to
the number of consecutive signs in the previous gradient values,
rather than their amplitude. In this way the update sensitivity
is expected to increase. In the conjugate gradient algorithms,
the directions of descent in the optimization process are conju-
gate each other which, under certain conditions, provide a faster
convergence. The four types of conjugate gradient algorithms
tested are based on the same principle but differ in the deter-
mination of the update constant value (for the Fletcher-Reeves
and Polak-Ribiere algorithms), the initialization of a new conju-
gate set (for the Powell-Beale algorithm), and the method of line
search (for the scaled conjugate gradient algorithm). Details of
these algorithms are described in [24] and [25].
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TABLE I
RESULTS OFANN PERFORMANCEUSING ~� AS THE TARGET VECTOR

IV. EXPERIMENTAL RESULTS

The BP ANN was implemented on a 9000/802 HP worksta-
tion using the Neural Network Toolbox (Version 3) in the Matlab
software package (Version 5.2, Mathworks Inc., Natick, MA).
Repeated experiments were performed to determine the sizes of
hidden neurons and training samples. Our final ANN consists
of 30 hidden neurons which provide a compromise between the
mapping error and the computational cost. With this design the
number of weights is about 1230. The ratio between the number
of training patterns and the number of weights is 10:1, as sug-
gested by a common rule of thumb [23]. Our experiments indi-
cate that more training patterns provide a smaller mapping error
and a better generalization; however, a larger dynamic memory
(swap space) is required when the batch training, which is more
rapid than the sequential training, is employed [24], [25]. We
also employed the early stopping criterion in which training
was halted when the validation error (computed based on an in-
dependent 5000-pattern validation set) started to increase. The
results of our experiments are shown in Table I with respect
to the training algorithms described previously, training time,
number of epochs presented, relative training error, and relative
test error. These relative errors are defined by

% (9)

where and are, respectively, the directly computed
and ANN produced potentials for the spheroidal model,

12 000 for the training case, and 5000 for the test
case. Note that in the test case the 5000 test patterns were
independently generated without being used in the training
process.

The modified target vectors were utilized to train another
ANN which has the same configuration as in the previous case.
The results are listed in Table II. It can be observed that both
the training and test relative errors have been improved signif-
icantly. In order to visualize the accuracy of the ANN compu-
tation more directly, we selected a single test pattern from the
5000-pattern test set and compared, in Fig. 4, the forward solu-
tions computed by the ANN (dashed curve), by direct evaluation
(solid curve), and by the spherical head model as the input to
the ANN (dotted curve). In this example the ANN was trained
using the Powell–Beale algorithm. It can be seen that the solid

TABLE II
RESULTS OFANN PERFORMANCEUSING ~� �

~� AS THE TARGET VECTOR

Fig. 4. A particular potential pattern selected from a 5000-pattern test set. The
comparison is made among the ANN computed result (dash curve), the directly
evaluated result (solid curve), and the result evaluated based on the spherical
model which is used as the input to the ANN (dot curve). The horizontal and
vertical axes represent, respectively, channel number and potential value (in
millivolts). In this comparison the relative mean-squared error is 0.0046.

and dashed curves are very close, indicating a good approxi-
mation by the ANN. Note that most other forward solutions in
the 5000-pattern test set performedbetterthan this solution be-
cause, in this particular case, the relative test error is 0.0046,
larger than the average relative test error of 0.0030 as listed in
the last cell in Table II.

The training times for the ANN listed on Tables I and II
are not overwhelming for an off-line, unattended computation.
Once the ANN is trained, the on-line computation can be per-
formed very rapidly as shown by the following measure of the
number of floating point operations (flops). The total flops re-
quired consist of two major components: 1) those required for
evaluating (8) which are estimated to be 45 flops per channel, or
900 flops for 20 channels; and 2) those required for evaluating
the ANN in the form of multiplications between weight matrices
and data vectors, where an matrix multiplying a -di-
mensional vector requires flops. In our case the
ANN has a 21:30:20 configuration. The flops required to eval-
uate the ANN are approximately
flops. Therefore, to compute 20-channels of forward solutions,
the total computational cost is only flops.
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If real-time processing is desired, these flops must be accom-
plished within 5 ms (assuming a sampling rate 200 Hz). This
task represents little problem since a 400-MHz PC is capable of
accomplishing 100 000 flops in 5 ms under a very conservative
estimate of 20 clock cycles per flop.

The trained network requires storage for weights and biases.
In our case we must store values
for the weights and values for the biases (Fig. 3).
Assuming each value is stored in the double precision floating-
point format consisting of 8 bytes, the total storage required is
only about 10.2 K-bytes.

V. DISCUSSION

We have presented an ANN approach to compute EEG for-
ward solutions for a spheroidal model of variable shape. The
computational speed of this new approach out-performs that
of the direct computation by a very wide margin, making it
possible to use precise head models in practical EEG analysis
demanding little computational resources. This approach, with
certain modifications, can also be applied to the modeling of
MEG, ECG, EMG, various other biomedical data, and non-
biomedical engineering and scientific problems in which effi-
cient computation of numerical solutions to certain partial dif-
ferential equations is required.

At the current stage we have only tested a simple case where
the forward solutions of the homogeneous spherical and sphe-
roidal models were successfully mapped. Further investigations
are required for more complex cases where the input and output
of the ANN may be designed as follows. The input vector con-
sists of three parts: 1) head shape parameters, 2) conductivity pa-
rameters, and 3) potentials computed from the multishell spher-
ical model implemented using an efficient algorithm [7]. The
output vector contains the potentials corresponding to the FBM
or FEM. With this design the ANN is instructed to select a set
of forward solutions from its associative memory according to
the boundary condition and conductivity specified in the
first two parts of the input vector. As a result, a single ANN is
capable of representing different head shapes and conductivity
characteristics. Considering that the forward solutions for dif-
ferent head sizes of the same shape can be obtained by a simple
scaling, this ANN may satisfy the needs in EEG modeling for a
great portion of the general population.

Although the utilization of ANN to solve the forward problem
is promising, there are several issues to be addressed: 1) We
do not currently have accurate measures of tissue conductivity
(generally anisotropic); 2) The methods for compact representa-
tions of head shape and conductivity are not currently available;
3) The input/output potential vectors are not necessarily unique,
i.e., one single set of potentials of the base model may have more
than one corresponding sets of potentials of the deviated model,
or vice versa. This nonuniqueness may affect mapping accu-
racy when the number of channels is small; 4) As the number
of EEG channels increases, the vector size may become exces-
sively large. In this case it may become necessary to represent
scalp potentials by compact parameters instead of raw values; 5)
A systematic procedure is required to determine electrode loca-
tions on the head so that these positions match the “standard”

positions from which the ANN was designed. Although consid-
erable effort is required to solve these problems, there have been
many years of research in image processing, FEM and BEM op-
timization, shape description, data parameterization, and data
compression. We believe that the ANN approach indeed pro-
vides a practical solution to the EEG modeling problem.

APPENDIX

MAPPINGPOINTS BETWEEN THESPHERICAL AND SPHEROIDAL

SPACES

The mapping between electrode positions and
has been illustrated in Fig. 2. The line, denoted

by , passes through pointsand . Hence, its line equation is
given by

(10)

where and are, respectively, represent the angles to the-
and -axes as defined in the spherical coordinate system. By the
definition of mapping, line must also pass , we then have

(11)

where and are, respectively, the angles representing.
Note that, in (11), we have assumed that the short axis of the
spheroid is equal to one (see Section III-C).

Solving (11), we have

and

(12)

By the nature of the problem, linegenerally passes through the
surface of the spheroid twice. Thus, there are two candidates for

. The desired candidate is the one with a smaller .
Using the above results, we can now explicitly expressby

(13)

with

for
otherwise

(14)

where . The case for mapping the two dipole positions
and (see Fig. 2) can be similarly derived. The results are

the same as shown in (13) and (14) except that, and are
all multiplied by the modulus .
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