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The Importance of Anisotropy in Modeling ST
Segment Shift in Subendocardial Ischaemia

Peter R. Johnston*, David Kilpatrick, and Chuan Yong Li

Abstract—In this paper, a simple mathematical model of a slab
of cardiac tissue is presented in an attempt to better understand the
relationship between subendocardial ischaemia and the resulting
epicardial potential distributions. The cardiac tissue is represented
by the bidomain model where tissue anisotropy and fiber rota-
tion have been incorporated with a view to predicting the epicar-
dial surface potential distribution. The source of electric potential
in this steady-state problem is the difference between plateau po-
tentials in normal and ischaemic tissue, where it is assumed that
ischaemic tissue has a lower plateau potential. Simulations with
tissue anisotropy and no fiber rotation are also considered.

Simulations are performed for various thicknesses of the tran-
sition region between normal and ischaemic tissue and for various
sizes of the ischaemic region. The simulated epicardial potential
distributions, based on an anisotropic model of the cardiac tissue,
show that there are large potential gradients above the border of
the ischaemic region and that there are dips in the potential distri-
bution above the region of ischaemia. It could be concluded from
the simulations that it would be possible to predict the region of
subendocardial ischaemia from the epicardial potential distribu-
tion, a conclusion contrary to observed experimental data. Possible
reasons for this discrepancy are discussed.

In the interests of mathematical simplicity, isotropic models
of the cardiac tissue are also considered, but results from these
simulations predict epicardial potential distributions vastly
different from experimental observations. A major conclusion
from this work is that tissue anisotropy and fiber rotation must
be included to obtain meaningful and realistic epicardial potential
distributions.

Index Terms—Anisotropy, bidomain model, simulation, ST de-
pression, subendocardial ischaemia.

I. INTRODUCTION

E LECTROCARDIOGRAPHIC (ECG) ST segment depres-
sion has long been recognized as a sign of ischaemia [1],

but the explanations of the responsible mechanisms have been
controversial [2]. In this paper, we present a simple mathemat-
ical model of a slab of cardiac tissue in an attempt to further
our understanding of the relationship between subendocardial
ischaemia and the resulting epicardial potential distributions.

The model is based on the bidomain representation of cardiac
tissue [3] which allows differing electrical conductivity in the in-
tracellular and extracellular spaces as well as in the longitudinal
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and transverse directions. The model also incorporates cardiac
fiber rotation between the endocardium and the epicardium.

The bidomain model has been used extensively in the study of
electrical propagation along single fibers [4], [5], through bun-
dles of cardiac fibers [4], [6], [7], through thin layers of cardiac
cells [8] and even through the whole heart [9]. It has also been
used to study the electrical fields created in the heart muscle
as a result of ventricular defibrillation [10]. However, very few
modeling studies have used the bidomain model in the study of
ST segment shift. Such a study is steady-state in nature as the
potential distribution arises from differing plateau potentials be-
tween normal and ischaemic tissue. On the other hand, propaga-
tion studies are, by necessity, transient. The ST segment studies
of Holland and Brooks [11] and Smithet al. [12] use a spher-
ical model of the heart yet ignore tissue anisotropy and fiber
rotation. This paper also considers the effect making these sim-
plifications has on the resulting epicardial potential distribution.

ST segment shift shown as ST depression in the ECG arises
due to the currents set up in cardiac tissue flowing between
normal and ischaemic muscle. The currents are induced by the
difference between the plateau of the action potentials in normal
and ischaemic tissues. This source essentially generates ST ele-
vation over ischaemic tissue compared with normal tissue. How
this is observed on the body surface depends on its position
within the heart. There is a clear relationship between full-thick-
ness ischaemia and epicardial ST elevation, which can also be
observed on the body surface. When the ischaemic tissue is
subendocardial i.e., does not reach the epicardium, there is ST
depression observed both on the epicardium and on the body
surface [13]. There is ST elevation on the endocardium over
the ischaemic tissue, and this can sometimes be seen on the 12
lead electrocardiogram in leads such as aVR. The mechanism by
which the endocardial ST elevation is expressed as ST depres-
sion on the epicardium is still unclear, and it is this difficulty
which we expand in this paper.

A combined simulation/experimental study has been pub-
lished by this group [13]. This study measured the potentials
showing similar regions of ST depression on the epicardium
for ischaemia in both the left anterior descending territory
and the circumflex territory. The source was endocardial
ST elevation in the ischaemic region as would be predicted.
Observed epicardial ST changes, however, remained in the
same position even when the epicardium was isolated, ruling
out the explanation that the current flowed out the great vessels
back on to the epicardium. Detailed modeling reproduced
the same results but did not enable a simple explanation as
to why the ischaemic region on the epicardium was centered
over the boundary between the ischaemic and nonischaemic

0018–9294/01$10.00 © 2001 IEEE
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regions. The modeling data suggested a powerful current
sink at the boundary but gave no clue as to why this should
be so. The work presented here originated from our need to
further understand the nature of the subendocardial source. The
underlying assumptions of the modeling in the above paper
were that, although it contained a realistic cardiac geometry,
fiber rotation was ignored. Also, by virtue of the fact that the
simulations were purely numerical, the current source due to
the ischaemic boundary was calculated from discrete values of
the transmembrane potential. Here, although the geometry is
simple, fiber rotation will be included and the current source
will be treated in a continuous fashion.

II. M ETHODS

A. Governing Equations

For the simulations performed here, it is assumed that the car-
diac tissue can be represented by a block of tissue, infinite in the

and coordinate directions and of unit thickness in thedi-
rection. It is also assumed that the epicardium is represented by
the plane at 0 which is also assumed insulated to facilitate
a comparison with experimental data [13]. Further, the endo-
cardium is represented by the plane at 1 which is in contact
with a volume of blood extending to in the positive direc-
tion.

To include the effect of both the intracellular and extracel-
lular regions, the bidomain model [3], [14], [15] for cardiac
tissue will be used. In order to solve the two bidomain equa-
tions, governing the intracellular potentials,and the extracel-
lular potentials, , respectively, the transmembrane potential,

is introduced. It can be shown that [14], [15] the
governing equation for is

(1)

where and are conductivity tensors reflecting the
anisotropy of the cardiac tissue. Hence,, can be determined
from a knowledge of the transmembrane potential distribution,
a quantity which is known from individual cell action poten-
tials. Here, (1) will be solved to obtain the epicardial potential
distribution, i.e., the value of at 0.

Finally, in the blood, being a source free region, the electric
potential, , is governed by Laplace’s equation

(2)

B. Conductivity Tensor

Cardiac tissue is an electrically anisotropic structure, con-
sisting of sheets of parallel strands of cells. It is well known that
it is much easier for electric current to flow along the fibers than
across them, both in the intracellular and extracellular domains.
Hence, four values for conductivity are required:, , ,
where the superscriptsand refer to the intracellular and ex-
tracellular domains, respectively, and the subscriptsand refer
to the longitudinal and transverse directions, respectively. Here,
longitudinal means along the direction of the fibers and trans-
verse means across the fibers, perpendicular to the longitudinal

direction within a sheet. It is further assumed that the conduc-
tivity in the direction, i.e., perpendicular to the sheets, is the
same as in the transverse direction. Thus, this formulation ig-
nores the secondary effects of sheet structure.

Other investigators have observed that the main fiber axis ro-
tates in a counterclockwise direction as one moves from the
epicardium to the endocardium. Reported rotations in the left
ventricle are in the range of [16] to a mean of 120
with extremes of 180[17]. It is further assumed that the rotation
varies linearly with depth [18]. Hence, if it is assumed that the
fibers on the epicardium are aligned along the positiveaxis,
then the longitudinal direction at any depth, with respect to
the positive axis can be given by

(3)

Given the above discussion, it follows that conductivities in
the governing bidomain (1) must be represented as 33 ma-
trices of the following form:

(4)

where or (for intracellular and extracellular),
and .

The imburcation angle (the angle of inclination of the fibers
relative to the epicardial surface) is assumed to be zero in this
model, which is a reasonably common assumption [19]. Gen-
erally, this angle is less than 5in the bulk of the myocardium
[20] except in the regions of the apex and the base. Since the
geometry of the model considered here better approximates the
ventricular wall, the above assumption is not unreasonable.

C. Region of Subendocardial Ischaemia

It will be assumed that the ischaemic tissue occupies a finite
region in the and directions, centered on theaxis. In the
direction, the region is bounded by the endocardium but does not
extend to the epicardium (as this would then be full-thickness
ischaemia). Hence, the ischaemic region can be described as

(5)
However, as will be discussed later, the region does not neces-
sarily have a sharp boundary, as indicated by the set. If the
presence of a so-called ischaemic boundary is assumed, then
there is a smooth transition between ischaemic and normal
tissue. In this case, the quantities, and (all measured
in cm) represent centers of the ischaemic boundary.

To specify an analytic representation for the ischaemic re-
gion, the product representation for the transmembrane potential
distribution

(6)

suggested by Tung [14] is employed. Here, is the differ-
ence in plateau potentials between normal and ischaemic tissue.
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In any particular direction,, the shape function, , is de-
fined by

(7)

where is , or . The parameters , govern the
width of the ischaemic boundary and will be discussed below in
Section II-G. Note that in (7), the argument of the shape function
in the direction is , to achieve the ischaemic region near
the endocardium ( 1).

D. Boundary Conditions

Solving differential equations (1) and (2) requires a set of
boundary conditions. Since it is assumed that the cardiac tissue
and the region of blood in contact with it are infinite in both
the and directions, the potentials at large distances from
the origin are set to zero, that is, as and ,

0. The assumption that the epicardium is in contact
with an insulating medium means that

at (8)

Further, at the interface between the tissue and the blood, there
is continuity of potential and current, i.e.,

at and (9)

where is the conductivity of blood. Finally, since the blood
mass is assumed infinite in the positivedirection, 0 as

.

E. Solution Method

The model proposed is three-dimensional (3-D) in a rectan-
gular coordinate system and the governing (1) can be expanded
to give

(10)

where represent the elements of the conductivity tensor
matrices . It should be remembered that ,

and are functions of , through the fiber
rotation, yet are constant.

To solve (10) the ideas suggested by Tung [14] are extended
by introducing the two-dimensional (2-D) Fourier transforms

(11)

and

(12)
Applying these transformations to (10) gives the following or-
dinary differential equation in:

(13)

where

(14)

and

(15)

By similarly defining , application of the Fourier
transformation to (2) yields

(16)

This equation can be solved to give

(17)

where the fact that as has been used andis a
constant to be determined.

Equation (13) can now be solved, for all pairs , using
a simple finite difference approach over the interval on
the axis. To achieve the solution it is necessary to utilize the
conditions that

at (18)

and

at and (19)

The interval from 0 to 1 is discretised into a nonuni-
form grid of 100 points, clustered in the vicinity of the ischaemic
border. This results in a tridiagonal system of algebraic equa-
tions which are solved using the routine “tridag” from Numer-
ical Recipes [21].

Since only the epicardial potentials are of interest in this
study, (13) is only solved for the value of at 0. These
values are collected into a 2-D array for various values ofand

which is inverted using a fast Fourier transform (FFT) routine
[21] to recover the epicardial potential distribution. The fact
that an inverse FFT has been used slightly changes the physics
of the problem under consideration. Instead of dealing with a
domain which is infinite in the and directions, the domain
is now of finite extent and the boundary conditions are of an
insulating type. In order to minimize the difference between
these two situations, the computational domain must be large
enough to allow the boundary potentials to approach zero. The
assumption of a finite block of tissue would be required if any
other numerical method (for example, 3-D finite difference or
finite-element methods) were used.
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Fig. 1. Transmembrane potential distribution in thez direction for various
thicknesses of the ischaemic boundary. A sharper transition occurs at smaller
values of� .

There are two quantities that require further comment in (13).
First, can be calculated readily as a product of one-dimen-
sional Fourier transforms, for example

(20)

Second, the derivative term can be calculated ana-
lytically by differentiating the shape function twice
with respect to and multiplying by the Fourier transforms of

and .

F. Modeling Parameters

The conductivity values chosen for this paper are based
on those presented by Clerc [22] and taken from Trayanova
et al. [10]: S/cm, S/cm,

S/cm and S/cm. The conduc-
tivity of blood, , is taken as 0.0067 S/cm. The block of tissue
modeled was 1 cm thick and 16 cm in each of theand
directions. Finally, the difference between plateau potentials in
normal and ischaemic tissue, , was set at 30 mV.

G. Boundary of the Ischaemic Region

The boundary of the ischaemic region represents the transi-
tion region between normal and ischaemic tissue. On a cellular
level it would be expected that a normal cell could be juxta-
posed with an ischaemic cell, but there is nothing to suggest
that this is true on a macro scale. Therefore, in order to ac-
count for what could be considered a ragged border on a cellular
level, the ischaemic boundary concept is included. The width
of the ischaemic boundary is governed by the parameters,

in (7). In the limiting case of any of these param-
eters going to zero, the result is a sharp ischaemic boundary in
that particular direction.

As an example, the normalized transmembrane potential in
the direction, , is shown in Fig. 1 for three values of

equal to 0.01, 0.05, and 0.1 and 1. In all cases, the

center of the ischaemic boundary is at 0.5. For 0.01,
there is a sharp change between normal tissue (left-hand side
of the figure) and ischaemic tissue (right-hand side). The actual
border extends over the region . When the
value of is increased to 0.05, the boundary is now the region

and for 0.1, the border extends across the
entire thickness of the muscle.

If the degree of subendocardial ischaemia was increased to
75% (i.e., the center of the ischaemic boundary in thedirection
was moved to 0.25), then for equal to 0.05 and 0.1, there
would be a nonuniform transmembrane potential distribution set
up on the epicardium which, as will be seen in Section III, affects
the epicardial potential distribution.

Changing the value of and independently will not re-
sult in significant changes in the epicardial distribution. In Sec-
tion III, the three values , , and , will always satisfy

. Also, the three values of indicated above
will be used to study the differences between narrow, wide and
intermediate ischaemic boundaries.

III. RESULTS

A. Simplifications

It is possible to introduce several simplifications in the model
in order to achieve analytic solutions to (13). These simplifi-
cations include ignoring the fiber rotation and assuming equal
anisotropy ratios (where the ratio of the conductivities parallel
and perpendicular to the fibers are the same in the intracellular
and extracellular spaces).

First, assume that fiber rotation can be ignored. It then fol-
lows that the conductivity tensors can be expressed as diagonal
matrices containing constant elements. Therefore, the mixed
derivative terms in (10) disappear and all other coefficients in
the differential equation are constant. In turn, the coefficients
appearing in the ordinary differential equation for (13) are
again constant. In this case, (13) can be solved via the method
of variation of parameters and hence an analytic solution can be
obtained for , assuming the integrals required in the variation
of parameters can be evaluated.

On the other hand, if it is assumed that the anisotropy ra-
tios are equal, it can be shown that (13) reduces to a homoge-
neous differential equation with nonconstant coefficients, which
is most readily solved via a numerical technique given the func-
tional form of the coefficient function .

However, if both of the above assumptions are used, then an
over-simplification results. It can be shown that (13) reduces
to a homogeneous differential equation with constant coeffi-
cients which is readily solved analytically. The over-simplifi-
cation arises because the resulting epicardial potential distri-
bution depends only on the epicardial transmembrane poten-
tial distribution and its normal derivative. Interpreting this re-
sult physically means that, for a uniform transmembrane po-
tential distribution on the epicardium, the position of the is-
chaemic boundary within the myocardium will not affect the
epicardial potential distribution. That is to say, the degree of
subendocardial ischaemia will not become apparent until the is-
chaemia is nearly full thickness which is demonstrated in Fig. 2.
In this figure, the epicardial potential distributions are identical
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(a)

(b)

(c)

Fig. 2. Epicardial potential distributions for varying degrees of subendocardial
ischaemia with isotropic cardiac tissue and an ischaemic region of 16 cm.
Dotted lines indicate negative potentials, with positive potentials indicated by
thin solid lines. The thick solid line indicates the zero potential. The thick dashed
line in (a) represents the projection of the ischaemic region onto the epicardium
(this regions is common to all subsequent contour plots). The contour interval
in each plot is 2.0 mV. (a) 10%, (b) 90%, and (c) 100% ischaemia.

for subendocardial ischaemia up to 90% of the thickness of the
myocardium. Experimental evidence has shown that this is not
the case [13].

B. Conduction Anisotropy Without Fiber Rotation

Fig. 3 shows the contour plots of the epicardial ( 0) po-
tential distribution as the degree of subendocardial ischaemia
increases from 10% to full thickness. The ischaemic region is
centered on the axis with an area of 16 cmand the fibers are
directed parallel to the axis. Finally, the parameter describing
the ischaemic border is 0.01.

As perhaps would be expected, the potential distribution for
small degrees of ischaemia shows a set of elliptical level curves
in a valley (ST depression) oriented along the direction of the
fibers. This underlying pattern does not change as the degree
of ischaemia increases. However, as the degree of ischaemia
does increase, two, and eventually three, distinct valleys appear,
all in a line oriented along the fiber direction. The two outer
valleys intensify further as the degree of ischaemia increases,
with the central valley eventually becoming a peak (ST eleva-
tion) at approximately 80% ischaemia. Also, at higher degrees
of ischaemia there are large potential gradients above the two
ischaemic borders perpendicular to the direction of the fibers.

C. Conduction Anisotropy With Fiber Rotation

Now consider the block of tissue to have conduction
anisotropy combined with a fiber rotation of 120from the
epicardium to the endocardium. As above, the fibers on the
epicardium are directed parallel to theaxis. Fig. 4 shows a
contour plot of the epicardial ( 0) potential distribution as
the degree of subendocardial ischaemia increases from 10% to
full thickness. Again the ischaemic region is centered on the

axis with an area of 16 cm. The parameter describing the
ischaemic border is again 0.01.

With 10% subendocardial ischaemia a single elliptical valley
exists in the epicardial potential distribution with the long
axis of the valley aligned approximately along theaxis.
This would suggest ST depression on the epicardium above
the ischaemic region. At 20% subendocardial ischaemia (not
shown), the depth of the valley has reduced and it is now di-
rected with a long axis rotated counterclockwise through about
90 , which is due to the fiber rotation. At 30% ischaemia two
distinct valleys (again shallower) are apparent in the epicardial
potential distribution and at 40% ischaemia (not shown) they
are deeper again with a considerable ridge between them. Here,
there are significant potential gradients above what would be
the borders of the ischaemic region in the longitudinal direction
of the fibers on the endocardium. Between 40% and 50%
ischaemia the ridge between the two valleys (which are again
deeper) becomes positive and there would be ST elevation
occurring between the two valleys of ST depression. As the
degree of subendocardial increases further to 70% and 90%,
this pattern is maintained with the valleys becoming deeper and
the ridge between higher. Finally, at full thickness, the ridge is
a spike with ST depression occurring only near the boundary
of the ischaemic region.

D. Effect of the Ischaemic Boundaries

Fig. 5 shows the effect of changing the width of the ischaemic
boundary. The three values of shown in Fig. 1 coincide with
the three values of used in these simulations. In each case,
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Fig. 3. Epicardial potential distributions for varying degrees of subendocardial ischaemia with anisotropic cardiac tissue without fiber rotation and an ischaemic
region of 16 cm. The format for each figure is described in the caption for Fig. 2. The contour interval in each plot is 0.2 mV. (a) 10%, (b) 30%, (c) 50%, (d) 70%,
(e) 90%, and (f) 100% ischaemia.

the area of the ischaemic region is 16 cmand contour plots
are shown for 50% and 75% subendocardial ischaemia. At 50%
ischaemia (left-hand column), increasing the width of the is-
chaemic boundary does not have a great effect on the poten-
tial contours, except that the valleys become shallower. This is
perhaps not surprising because, as can be seen from Fig. 1, the
transmembrane potential on the epicardium is very close to zero
in all cases.

However, at 75% subendocardial ischaemia, some differences
do emerge (that is to say, in Fig. 1 the center of the ischaemic re-
gion (where the dimensionless transmembrane potential is 0.5)
has been moved to 0.25). In this case, the transition region
intersects the epicardium resulting in regions of nonzero trans-
membrane potential on the epicardial surface for 0.05 and

0.1. The result of this, as demonstrated in Fig. 5, is higher
peaks and shallower valleys of the corresponding contour plots.
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Fig. 4. Epicardial potential distributions for varying degrees of subendocardial ischaemia with anisotropic cardiac tissue with fiber rotation and an ischaemic
region of 16 cm. The format for each figure is described in the caption for Fig. 2. The contour interval in each plot is 0.2 mV. (a) 10%, (b) 30%, (c) 50%, (d) 70%,
(e) 90%, and (f) 100% ischaemia.

Hence, increasing the width of the ischaemic boundary tends to
indicate that ST elevation would become apparent at lesser de-
grees of subendocardial ischaemia.

IV. DISCUSSION

This paper has introduced a bidomain model to study the ST
segment epicardial potential distributions induced by subendo-

cardial ischaemia. Realistic conductivities have been used and
the rotation of cardiac fibers from the endocardium to the epi-
cardium has also been included.

Briefly, simulations have shown that in the transition from
partial to full-thickness ischaemia there is initially ST depres-
sion over the ischaemic region with a region of ST elevation
developing in the center as the degree of ischaemia increases.
Finally, at full-thickness ischaemia there is ST elevation over
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Fig. 5. Epicardial potential distribution at 50% and 75% subendocardial ischaemia at various thicknesses of the ischaemic boundary. The format for each figure
is described in the caption for Fig. 2. The contour interval in each plot is 0.2 mV. (a) 50% subendocardial ischaemia,� = 0.01; (b) 75% subendocardial ischaemia,
� = 0.01; (c) 50% subendocardial ischaemia,� = 0.05; (d) 75% subendocardial ischaemia,� = 0.05; (e) 50% subendocardial ischaemia,� = 0.1; (f) 75%
subendocardial ischaemia,� = 0.1

the region of ischaemia (greater near the boundary) and ST de-
pression just outside the boundary. The model also predicts large
potential gradients above the boundary of the ischaemic region.
As the width of the ischaemic boundary in the transmural direc-
tion increases, ST elevation appears at a lesser degree of suben-
docardial ischaemia.

Although this is a simple model, based on fairly restrictive
assumptions (in order to accommodate the mathematics), it
does reflect some of the experimental observations published
previously, as well as some desirable features of other simpler
models. On the other hand, there are several experimentally
observed features that this model does not predict.
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First, consider the limitations of the model. The main limita-
tion is that the model does not support the experimental observa-
tions of Li et al. [13] that epicardial depression does not predict
the position of the ischaemic region. Clearly, from Figs. 2–4,
the ST depression observed at small degrees of subendocardial
ischaemia is above the region of ischaemia. The experiments of
Li et al. [13] were performed using the sheep model and suben-
docardial ischaemia was induced by partially occluding the left
circumflex or left anterior descending coronary arteries. Such
occlusion induces ischaemia over approximately half of the left
ventricle in each case and there is little overlap between the two
regions. The observation was that the epicardial potential dis-
tributions were very similar for occlusion of the respective ar-
teries (correlation coefficient of using six animals).
A possible explanation for the discrepancy between the exper-
iment and model is that the model is an infinite slab of cardiac
tissue attached to an infinite amount of blood, whereas, clearly,
the experimental model dealt with finite quantities. Also, the
experimental model induced ischaemia from the middle of the
left-ventricular free wall to the septum behind which is another
blood mass. Given this and the size of the ischaemic region,
there is a clear difference in the geometries being considered,
as well as the relative size of the ischaemic region (it is effec-
tively assumed small in the mathematical model).

The simple model of ST depression presented here predicts
many features observed in experimental studies of ST depres-
sion. First, consider full-thickness ischaemia results (bottom
right-hand panels of Figs. 2–4). In each case, the highest
amplitude of ST elevation was obtained at the boundary of the
ischaemic region, as was observed by Liet al.[23] with ligation
of the LAD and LCX arteries. However, this behavior was not
observed with the occlusion of the obtuse marginal artery, nor
was it observed in the experimental studies of Smithet al. [12]
where a more convex distribution was observed. Interestingly,
though, by changing the width of the ischaemic border in
the and directions so that 0.5 (with
0.01), epicardial potential distributions of the type observed by
Smith et al. were obtained (see Fig. 6). That is, in this case,
the maximum of the potential distribution was obtained more
toward the center of the ischaemic region. The model also
predicts ST depression just outside the ischaemic boundary
and this depression increases in magnitude as the size of the
ischaemic region increases. This fact was also observed by Li
et al. [23]. Model predictions also fit with the simple model of
Holland and Brooks [11].

As observed experimentally by Liet al. [13] in the sheep
model, the ST depression increases before the occurrence of
ST elevation and continues to increase as the ST elevation in-
creases. The same observations have also been reported in a
study by Guytonet al. [24] using the canine model. The main
difference between the model and experimental observations is
that the model predicts initial ST elevation near the ischaemic
border and not the ischaemic center. There is also a discrep-
ancy in the magnitudes of the ST depression between the model
and the experimentally recorded data. A possible explanation
for this is that the experiments are performed in a closed, fi-
nite structure which is ultimately insulated. On the other hand,
the modeling was performed in a semi-infinite domain, where

Fig. 6. Epicardial potential distribution for full-thickness ischaemia with an
ischaemic boundary characterized by� = � = 0.5 and� = 0.01. Contour
values (in mV) are indicated on the figure.

the cardiac tissue was attached to a very large amount of blood,
which provides an enormous potential sink. The effect of this
sink would be to lower the observed potentials on the epicardial
surface.

In a recent combined simulation/experimental study [13], a
realistically shaped human heart provided the basis for the mod-
eling studies. The governing bidomain equations were solved
with the finite-element method, however, rotation of the cardiac
fibers was ignored. Also, the current source due to the ischaemic
boundary was treated as a volumetric source in one layer of cells
on one side of the boundary and as a volumetric sink in one layer
of cells on the other side of the boundary (to simulate a dipole
layer). The fact that this model, with its lack of fiber rotation,
more accurately predicts the experimentally observed epicar-
dial potentials than the current model with fiber rotation, poses
an interesting question. Clearly, the above arguments regarding
differing geometry could provide part of the explanation. How-
ever, a combined analytical/numerical study of the problem in
a simple geometry could also provide further insights into the
differences.

Now consider the transition from subendocardial ischaemia
to full-thickness ischaemia as shown in Figs. 2–4. A major
difference between these simulations is the degree of suben-
docardial ischaemia at which ST elevation appears above the
ischaemic region. In the isotropic case, it only appears when
the ischaemia is nearly full thickness and for the anisotropic
case without fiber rotation it occurs at about 80% ischaemia.
Yet, when fiber rotation is included ST elevation appears at
about 55%. Another difference between the models is in the
magnitude of the observed epicardial potentials where, for the
isotropic model the potentials are up to a factor of ten higher
than for the other two models which are of similar magnitudes.
In the two models with anisotropy included, from the different
directions of the elliptical level curves, the model without fiber
rotation has a longer major axis than the model with fiber
rotation at all degrees of subendocardial ischaemia. A possible
explanation for these two observations is that the fiber rotation
(which introduces a nonuniform conductivity distribution
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lacking uniform directional anisotropy) has the effect of pulling
the elliptical potential distribution off its major axis on the
epicardium and subsequently smoothing the observed potential
distribution cardiac tissue.

The above observations are in contrast to the observations re-
lating to the simplified isotropic case, where the epicardial po-
tential distribution is the same for all degrees of subendocardial
ischaemia until the edge of the ischaemic border hits the epicar-
dial surface (see Fig. 2).

The study of the transition to full-thickness ischaemia when
fiber rotation is included (Fig. 4) reveals a complex relation-
ship between the fiber rotation and the degree of subendocardial
ischaemia. This is especially evident when the subendocardial
ischaemia is between 10% and 30% [Fig. 4(a) and (b)]. In this
range, the major axis of the elliptical contours moves through an
angle of about 90. Such behavior must be due to the presence
of the fiber rotation, because when fiber rotation is ignored, the
major axis of the contours is in the same direction regardless of
the degree of ischaemia (Fig. 3).

A more detailed examination of the transition (at increments
of 1%) shows that the elliptical pattern with 10% ischaemia does
not actually rotate through the 90to obtain the elliptical pat-
tern at 30% ischaemia, but becomes a circular pattern at about
17% before stretching out in the new direction as the degree of
ischaemia increases. The pattern at 17% looks like that of an
isotropic model. At this point, no explanation is offered for this
behavior.

Changing the size of the ischaemic region has a number of ef-
fects on the epicardial potential distribution. Increasing the
extent of the ischaemic region increases the magnitudes of the
valleys and peaks; however, ST elevation is not observed until
there is a greater degree of subendocardial ischaemia. For ex-
ample, when the area of the ischaemic region is increased to
64 cm , ST elevation is not observed until the subendocardial
ischaemia is nearly 70%. However, reducing the area of the is-
chaemic region to 4 cmyields ST elevation before 50% suben-
docardial ischaemia. Otherwise, the epicardial potential distri-
butions shown in Fig. 4 are fairly typical.

Finally, as observed in the studies of Smithet al. [12] and
Li et al. [13], large potential gradients exist near the ischaemic
border. This same feature is observed with the model. The
magnitude of the gradients predicted by the model developed
here lies between those predicted by the models of Holland and
Brooks [11] (which are larger) and of Smithet al. [12] (which
are smaller).

V. CONCLUSION

This paper has presented a simple bidomain model of car-
diac tissue to study the behavior of ST depression and elevation
in subendocardial and full-thickness ischaemia, as well as the
transition between the two.

In this paper, both isotropic and anisotropic (with and without
fiber rotation) models of cardiac tissue have been considered.
The simplification of using isotropic cardiac tissue predicts
identical epicardial potential distributions for all degrees of
subendocardial ischaemia. This observation is in total contrast
to experimental observations. Therefore, it must be concluded

that the assumption of tissue isotropy is totally inadequate and
greater realism must be included.

Using a model in which tissue anisotropy and fiber rotation
are included predicts some of the features found in experimental
studies of similar physical phenomena. Perhaps the most notable
discrepancy between model and experiment is that the model
does localize subendocardial ischaemia, in contrast to the ob-
servations of Liet al.[13]. However, geometrical considerations
might provide a reason for this difference.

Although this model has been applied to a study of the epicar-
dial potentials due to the presence of ischaemic tissue, the same
techniques could be used to study depolarization wave fronts
before epicardial breakthrough. Such a study could be effected
by a change in the representation of the quantity .
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