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The Importance of Anisotropy in Modeling ST
Segment Shift in Subendocardial Ischaemia

Peter R. Johnston*, David Kilpatrick, and Chuan Yong Li

Abstract—In this paper, a simple mathematical model of a slab and transverse directions. The model also incorporates cardiac
of cardiac tissue is presented in an attempt to better understand the fiber rotation between the endocardium and the epicardium.

relationship between subendocardial ischaemia and the resulting . . . .
epicardial potential distributions. The cardiac tissue is represented The bidomain model has been used extensively in the study of

by the bidomain model where tissue anisotropy and fiber rota- €lectrical propagation along single fibers [4], [5], through bun-
tion have been incorporated with a view to predicting the epicar- dles of cardiac fibers [4], [6], [7], through thin layers of cardiac
dial surface potential distribution. The source of electric potential cells [8] and even through the whole heart [9]. It has also been
it“ t?isl st_eady-stalte p(;o_blerr]‘n is t.het.differe”‘;]e be_ttv\(een platea(ljutﬁot- used to study the electrical fields created in the heart muscle
entials in normal and ischaemic tissue, where it is assumed tha . I
ischaemic tissue has a lower plateau potential. Simulations with asa re_sult of \{entncular deflbrlllat_lon [1(_)]' Howev_er, very few
tissue anisotropy and no fiber rotation are also considered. modeling studies have used the bidomain model in the study of
Simulations are performed for various thicknesses of the tran- ST segment shift. Such a study is steady-state in nature as the
sition region between normal and ischaemic tissue and for various potential distribution arises from differing plateau potentials be-
sizes of the ischaemic region. The simulated epicardial potential tveen normal and ischaemic tissue. On the other hand, propaga-

distributions, based on an anisotropic model of the cardiac tissue, tion studies are. by necessitv. transient. The ST seament studies
show that there are large potential gradients above the border of » Dy Y, ) 9

the ischaemic region and that there are dips in the potential distri- Pf Holland and Brooks [11] ?nd Sm?t#t al. [12] use a Sphel’j
bution above the region of ischaemia. It could be concluded from ical model of the heart yet ignore tissue anisotropy and fiber
the simulations that it would be possible to predict the region of rotation. This paper also considers the effect making these sim-

subendocardial ischaemia from the epicardial potential distribu- hjifications has on the resulting epicardial potential distribution.
tion, a conclusion contrary to observed experimental data. Possible . L .
reasons for this discrepancy are discussed. ST segment shift shown as ST depression in the ECG arises

In the interests of mathematical simplicity, isotropic models due to the currents set up in cardiac tissue flowing between
of the cardiac tissue are also considered, but results from these normal and ischaemic muscle. The currents are induced by the
simulations predict epicardial potential distributions vastly gifference between the plateau of the action potentials in normal
different from experimental observations. A major conclusion o4 jschaemic tissues. This source essentially generates ST ele-

from this work is that tissue anisotropy and fiber rotation must . . C . .
be included to obtain meaningful and realistic epicardial potential  Vation over ischaemic tissue compared with normal tissue. How

distributions. this is observed on the body surface depends on its position
Index Terms—Anisotropy, bidomain model, simulation, ST de- Withinthe heart. There is a clear relationship between full-thick-
pression, subendocardial ischaemia. ness ischaemia and epicardial ST elevation, which can also be

observed on the body surface. When the ischaemic tissue is
subendocardial i.e., does not reach the epicardium, there is ST
depression observed both on the epicardium and on the body
LECTROCARDIOGRAPHIC (ECG) ST segment depressurface [13]. There is ST elevation on the endocardium over
sion has long been recognized as a sign of ischaemia [tHe ischaemic tissue, and this can sometimes be seen on the 12
but the explanations of the responsible mechanisms have b electrocardiogram in leads such as aVR. The mechanism by
controversial [2]. In this paper, we present a simple mathemathich the endocardial ST elevation is expressed as ST depres-
ical model of a slab of cardiac tissue in an attempt to furtheron on the epicardium is still unclear, and it is this difficulty
our understanding of the relationship between subendocardidlich we expand in this paper.
ischaemia and the resulting epicardial potential distributions. A combined simulation/experimental study has been pub-
The model is based on the bidomain representation of cardisbhed by this group [13]. This study measured the potentials
tissue [3] which allows differing electrical conductivity in the in-showing similar regions of ST depression on the epicardium
tracellular and extracellular spaces as well as in the longitudirfiat ischaemia in both the left anterior descending territory
and the circumflex territory. The source was endocardial
Manuscript received August 10, 2001. This work was supported by the Na! elevation n th‘_a ischaemic region as would be_pred'_CtEd-
tional Health and Medical Research Council of Australia and the National He&bserved epicardial ST changes, however, remained in the
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*P. Johnston is with the School of Science, Griffith University, Nathan h | . hat th fl d h ’ |
Queensland 4111, Australia (e-mail: P.Johnston@mailbox.gu.edu.au). out the explanation t at t. e current : owe OUIF e great vessels
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GPO Hobart, Tasmania 7001, Australia. o the same results but did not enable a simple explanation as
C. Li is with the Department of Physics, Nankai University, Tianjin, 300071[, . . . . .

P. R. China. 0 why the ischaemic region on the epicardium was centered
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regions. The modeling data suggested a powerful curratitection within a sheet. It is further assumed that the conduc-

sink at the boundary but gave no clue as to why this shouislity in the » direction, i.e., perpendicular to the sheets, is the

be so. The work presented here originated from our needsame as in the transverse direction. Thus, this formulation ig-

further understand the nature of the subendocardial source. Tioees the secondary effects of sheet structure.

underlying assumptions of the modeling in the above paperOther investigators have observed that the main fiber axis ro-

were that, although it contained a realistic cardiac geomettgtes in a counterclockwise direction as one moves from the

fiber rotation was ignored. Also, by virtue of the fact that thepicardium to the endocardium. Reported rotations in the left

simulations were purely numerical, the current source due\entricle are in the range a3 £ 21° [16] to a mean of 120

the ischaemic boundary was calculated from discrete valuesnth extremes of 18Y17]. Itis further assumed that the rotation

the transmembrane potential. Here, although the geometryésies linearly with depth [18]. Hence, if it is assumed that the

simple, fiber rotation will be included and the current sourcibers on the epicardium are aligned along the positiaxis,

will be treated in a continuous fashion. then the longitudinal direction at any depthwith respect to
the positiver axis can be given by

Il. METHODS
27

A. Governing Equations 9(z) = 5 (3)

For the simulations performed here, itis assumed that the cargyen the above discussion, it follows that conductivities in

diac tissue can be represented by a block of tissue, infinite in tﬁﬁ% governing bidomain (1) must be represented a33ma-
x andy coordinate directions and of unit thickness in thei- trices of the following form:

rection. Itis also assumed that the epicardium is represented by
the plane at = 0 which is also assumed insulated to facilitatg, (

; . ) Z,Y,2)
a comparison with experimental data [13]. Further, the endo-

n ny .2 n n n
L b - - 0
cardium is represented by the plane-at 1 whichisin contact — _ (Jl(anoz szl) —;Ut (argoz an)o—f‘;Q) fan 0 @)
with a volume of blood extending tso in the positivez direc- t 0 ! ‘o toon
t

tion.
To include the effect of both the intracellular and extracelyheren = 4 or e (for intracellular and extracellulary, =

lular regions, the bidomain model [3], [14], [15] for cardiaG.s ¢(z) ands = sin g(z).

tissue will be used. In order to solve the two bidomain equa- The imburcation angle (the angle of inclination of the fibers
tions, governing the intracellular potentiajg,and the extracel- relative to the epicardial surface) is assumed to be zero in this
lular potentials., respectively, the transmembrane potentialnodel, which is a reasonably common assumption [19]. Gen-
Pm = ¢; — . is introduced. It can be shown that [14], [15] thexrally, this angle is less thar? n the bulk of the myocardium

governing equation fog. is [20] except in the regions of the apex and the base. Since the
geometry of the model considered here better approximates the
V- (M; + M)V = =V -M; Ve, (1) ventricular wall, the above assumption is not unreasonable.

where M. and M; are conductivity tensors reflecting thec Region of Subendocardial Ischaemia

anisotropy of the cardiac tissue. Hengg, can be determined it will b d that the isch it . finit
from a knowledge of the transmembrane potential distribution, Wit ehassurge di attheisc aemlg |351|g)qculp|eﬁa inite
a quantity which is known from individual cell action poten-reglon In the andy directions, centered on theaxis. In thez

tials. Here, (1) will be solved to obtain the epicardial potentizﬂiremion’ the regi_on is_bounded F’y the endocardium butdoes not
distribution, i.e., the value af, atz = 0. gxtend tc_> the eplcardlum (as th|§ woqld then be fuII—thmkness
Finally, in the blood, being a source free region, the eIectﬁ%Chaem'a)' Hence, the ischaemic region can be described as

potential,¢;, is governed by Laplace’s equation T = {(@,,7)| — s < © < ag,—a, <y < ag,a, < 2 < 1}

2, _ ®)

Vidy =0. 2) However, as will be discussed later, the region does not neces-
sarily have a sharp boundary, as indicated by theZsét the
presence of a so-called ischaemic boundary is assumed, then
there is a smooth transition between ischaemic and normal

Cardiac tissue is an electrically anisotropic structure, cofissue. In this case, the quantities, a, anda. (all measured
sisting of sheets of parallel strands of cells. Itis well known thgi cm) represent centers of the ischaemic boundary.

itis much easier for electric current to flow along the fibers than To specify an analytic representation for the ischaemic re-

across them, both in the intracellular and extracellular domairgen, the product representation for the transmembrane potential
Hence, four values for conductivity are requiregl; o}, o7, of  distribution

where the superscripisande refer to the intracellular and ex-

tracellular domains, respectively, and the subsctiptsit refer (Y, 2) = AgpU(x)V(y) V(1 — 2) (6)

to the longitudinal and transverse directions, respectively. Here,

longitudinal means along the direction of the fibers and transdaggested by Tung [14] is employed. Hefep, is the differ-
verse means across the fibers, perpendicular to the longitudieate in plateau potentials between normal and ischaemic tissue.

B. Conductivity Tensor
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In any particular directiont, the shape functiony/(¢), is de- and

(I)m(kvlvz) = / / (/)m(xvy72)6727”km6727”1yd$dy'

It < ax (12)
™ Applying these transformations to (10) gives the following or-
dinary differential equation in:

2o, B
dz?

1—e~ %/ cosh %
By s va—
\Ij(t) = eiMl/)‘j sirzh {—t
1—e—at/>¢ |t| > ag
wheretisx , y or z. The parameters,, (¢ = x,y, z) govern the
width of the ischaemic boundary and will be discussed below i
Section lI-G. Note thatin (7), the argument of the shape funCti(avrhere
in the z direction is1 — z, to achieve the ischaemic region near

the endocardiums( = 1). h(z) = 4n?k® (MM + M) + 872kl (M2 + M2?)
+4n? P (MP + MZ?)  (14)

2
W(2)B, = pl2)o,— MB L (13)

33 33
r(Mz +M ) [ d=2

€

D. Boundary Conditions

Solving differential equations (1) and (2) requires a set énd
boundary conditions. Since it is assumed that the cardiac tissue
and the region of blood in contact with it are infinite in both
the z andy directions, the potentials at large distances from By similarly defining ®y(k,1, z), application of the Fourier
the origin are set to zero, that is, as— +oc andy — oo, transformation to (2) yields
¢ = ¢ = 0. The assumption that the epicardium is in contact

p(2) = 4m? B2 MM 4 8 kIM;? + 47 P M. (15)

with an insulating medium means that d;q;b — 47 (k2 + 12)®, = 0. (16)
A
atz =0; % =0. (8) This equation can be solved to give
z
_ —27Vk24+122
Further, at the interface between the tissue and the blood, there by = fe a7
is continuity of potential and current, i.e., where the fact thab, — 0 asz — oo has been used anitlis a
06 ¢ constant to be determined.
atz = 1;¢. = ¢y andaba—b = o3 5 c 9) Equation (13) can now be solved, for all pai¥s ), using
Z z

a simple finite difference approach over the interj@ll] on
whereo, is the conductivity of blood. Finally, since the bloodthe » axis. To achieve the solution it is necessary to utilize the
mass is assumed infinite in the positivelirection,¢, = 0 as conditions that
Z — OQ. d(I)e

atz = 0; F P 0 (18)
E. Solution Method and )
The model proposed is three-dimensional (3-D) in a rectan- 4% 4%
gular coordinate system and the governing (1) can be expanded atz=1;0, = ¢, ando;, —% = o ==, (19)
to give dz dz
The interval fromz = 0 to z = 1 is discretised into a nonuni-
(M<11 1 Mll) e Iy (M;g I Mlg) e form grid of 100 points, clustered in the vicinity of the ischaemic
¢ ¢/ ox? ¢ ¢ 7 dxdy border. This results in a tridiagonal system of algebraic equa-
82, 82, tions which are solved using the routine “tridag” from Numer-
+ (MP? + MZ) 8_;)2 + (M7 + MZ) a_j; ical Recipes [21].
b b b Since only the epicardial potentials are of interest in this
= —MSIW - 32W - 32? study, (13) is only solved for the value @&, at = = 0. These
8;;) vy Y values are collected into a 2-D array for various values aifid
_ M3 (10) whichis inverted using a fast Fourier transform (FFT) routine

e [21] to recover the epicardial potential distribution. The fact
where M™J represent the elements of the conductivity tens&pat an inverse FFT has been used slightly changes the physics
matricesM,, (n = 4,¢). It should be remembered thaf1!, of the problem under consideration. Instead of dealing with a
M2 and M22 (n = i,e) are functions of, through the fiber _domam Wh_lc_h is infinite in ther andy dlrect|0ns_, _the domain
rotation, yet\/33 (n = i, e) are constant. is now of finite extent and the boundary conditions are of an

To solve (10) the ideas suggested by Tung [14] are extendBgulating type. In order to minimize the difference between
by introducing the two-dimensional (2-D) Fourier transforms these two situations, the computational domain must be large
enough to allow the boundary potentials to approach zero. The

[ ke —omil, assumption of a finite block of tissue would be required if any
ekl 2) = /_Oo /_Oo Pe(@,y, 2)e e drdy other numerical method (for example, 3-D finite difference or
(11) finite-element methods) were used.
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T —T g center of the ischaemic boundary iszat 0.5. ForA, = 0.01,

i, = (.05 there is a sharp change between normal tissue (left-hand side
gg | =010 of the figure) and ischaemic tissue (right-hand side). The actual
) border extends over the regi®m5 < z < 0.55. When the
value of\, is increased to 0.05, the boundary is now the region

L | 0.2 < z < 0.8and for\, = 0.1, the border extends across the
[ entire thickness of the muscle.
0.4 If the degree of subendocardial ischaemia was increased to

75% (i.e., the center of the ischaemic boundary intbgection

was moved ta = 0.25), then for\, equal to 0.05 and 0.1, there

would be a nonuniform transmembrane potential distribution set

up on the epicardium which, as will be seen in Section Il1, affects
o4 ! i the epicardial potential distribution.

[ .2 i ki (LB LA Changing the value ok, and, independently will not re-
sult in significant changes in the epicardial distribution. In Sec-
tion lll, the three values\,, A,, and A., will always satisfy

Fig. 1. Transmembrane potential distribution in thelirection for various — )\, = \. = ). Also. the three values of. indicated above
thicknesses of the ischaemic boundary. A sharper transition occurs at sma)l)éf v # ’ - Z .

values ofA.. will be used to study the differences between narrow, wide and
intermediate ischaemic boundaries.

Trarsmiembeane Pogentil

There are two quantities that require further comment in (13).

First, ®,,, can be calculated readily as a product of one-dimen- . RESULTS
sional Fourier transforms, for example A. Simplifications
Itis possible to introduce several simplifications in the model
i D(a)e-27ke gy sin 2w ka 1 in order to achieve analytic solutions to (13). These simplifi-
o (w)e = 1— /% 7k (14 472k2X2) cations include ignoring the fiber rotation and assuming equal

(20) anisotropy ratios (where the ratio of the conductivities parallel
Second, the derivative terd?®,, /d=2 can be calculated ana-and perpendicular to the fibers are the same in the intracellular

lytically by differentiating the shape functiofi(1 — =) twice and extracellular spaces). _ ,
with respect toz and multiplying by the Fourier transforms of First, assume that fiber rotation can be ignored. It then fol-

W(z) and U(y). lows that the conductivity tensors can be expressed as diagonal
matrices containing constant elements. Therefore, the mixed
F. Modeling Parameters derivative terms in (10) disappear and all other coefficients in

o ) the differential equation are constant. In turn, the coefficients
The conductivity values chosen for this paper are basﬁgpearing in the ordinary differential equation for (13) are

on those presented by Clerc [22] and taken from TrayanO¥gain constant. In this case, (13) can be solved via the method
et al. [10]: oj = 0.00174 S/em, of = 0.00625 S/, ¢\ ariation of parameters and hence an analytic solution can be
oy = 0.000193 S/cm ando = 0.00236 S/em. The conduc- ghiained forb. , assuming the integrals required in the variation
tivity of blood, o+, is taken as 0.0067 S/cm. The block of tissugg parameters can be evaluated.

modeled was 1 cm thick and 16 cm in each of th@ndy op the other hand, if it is assumed that the anisotropy ra-
directions. F_mally, thg d_lfference between plateau potentials i 40 equal, it can be shown that (13) reduces to a homoge-
normal and ischaemic tissuap,,, was set at-30 mV. neous differential equation with nonconstant coefficients, which
is most readily solved via a numerical technique given the func-
tional form of the coefficient functiop(z).

The boundary of the ischaemic region represents the transiHowever, if both of the above assumptions are used, then an
tion region between normal and ischaemic tissue. On a cellutarer-simplification results. It can be shown that (13) reduces
level it would be expected that a normal cell could be juxtde a homogeneous differential equation with constant coeffi-
posed with an ischaemic cell, but there is nothing to suggestnts which is readily solved analytically. The over-simplifi-
that this is true on a macro scale. Therefore, in order to azation arises because the resulting epicardial potential distri-
count for what could be considered a ragged border on a cellutation depends only on the epicardial transmembrane poten-
level, the ischaemic boundary concept is included. The widtial distribution and its normal derivative. Interpreting this re-
of the ischaemic boundary is governed by the parametgrs sult physically means that, for a uniform transmembrane po-
(t = z,y, 2) in (7). In the limiting case of any of these paramtential distribution on the epicardium, the position of the is-
eters going to zero, the result is a sharp ischaemic boundarcimemic boundary within the myocardium will not affect the
that particular direction. epicardial potential distribution. That is to say, the degree of

As an example, the normalized transmembrane potentialsnbendocardial ischaemia will not become apparent until the is-
the z direction, (1 — 2), is shown in Fig. 1 for three values ofchaemia is nearly full thickness which is demonstrated in Fig. 2.
A equal to 0.01, 0.05, and 0.1 addp, = 1. In all cases, the In this figure, the epicardial potential distributions are identical

G. Boundary of the Ischaemic Region
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Eploardial Potentisl Distrianion (nV) B. Conduction Anisotropy Without Fiber Rotation

Corigar Intsrwell » &0 m' Minieem
Fig. 3 shows the contour plots of the epicardial=£ 0) po-
tential distribution as the degree of subendocardial ischaemia
= increases from 10% to full thickness. The ischaemic region is
centered on the axis with an area of 16 cfrand the fibers are
- directed parallel to the axis. Finally, the parameter describing

the ischaemic border is = 0.01.

As perhaps would be expected, the potential distribution for
small degrees of ischaemia shows a set of elliptical level curves
7 in a valley (ST depression) oriented along the direction of the
fibers. This underlying pattern does not change as the degree
of ischaemia increases. However, as the degree of ischaemia
e e T—"1 does increase, two, and eventually three, distinct valleys appear,

ot all in a line oriented along the fiber direction. The two outer
valleys intensify further as the degree of ischaemia increases,
R (.a) , with the central valley eventually becoming a peak (ST eleva-
c:-F;.'.:-"'-:;fT'.a,! ff'ﬂrﬂ'fw"-'!q P'."-IEE[T?.:' o tion) at approximately 80% ischaemia. Also, at higher degrees
of ischaemia there are large potential gradients above the two
ischaemic borders perpendicular to the direction of the fibers.

¥ (O

=]

-

C. Conduction Anisotropy With Fiber Rotation

Now consider the block of tissue to have conduction
anisotropy combined with a fiber rotation of 2@rom the
r epicardium to the endocardium. As above, the fibers on the
epicardium are directed parallel to theaxis. Fig. 4 shows a
contour plot of the epicardiak(= 0) potential distribution as
® the degree of subendocardial ischaemia increases from 10% to
full thickness. Again the ischaemic region is centered on the
A # -4 & 0 &5 & B8 » axis with an area of 16 c¢fn The parameter describing the
¥ (e ischaemic border is again = 0.01.
(b) With 10% subendocardial ischaemia a single elliptical valley
Epicardial Potential Distribution {mV) exists in the epicardial potential distribution with the long
o axis of the valley aligned approximately along theaxis.
This would suggest ST depression on the epicardium above
the ischaemic region. At 20% subendocardial ischaemia (not
i shown), the depth of the valley has reduced and it is now di-
rected with a long axis rotated counterclockwise through about
90°, which is due to the fiber rotation. At 30% ischaemia two
= distinct valleys (again shallower) are apparent in the epicardial
Py potential distribution and at 40% ischaemia (not shown) they
are deeper again with a considerable ridge between them. Here,
there are significant potential gradients above what would be

¥ [Om

Cosniour inlerved = 30wy

=]

¥ 1Om

@ the borders of the ischaemic region in the longitudinal direction
of the fibers on the endocardium. Between 40% and 50%

T T T a2 8 ischaemia the ridge between the two valleys (which are again
W e deeper) becomes positive and there would be ST elevation

© occurring between the two valleys of ST depression. As the

. . o . d?gree of subendocardial increases further to 70% and 90%,
Fig.2. Epicardial potential distributions for varying degrees ofsubendocardl?_'. . . . . .

ischaemia with isotropic cardiac tissue and an ischaemic region of 26 criiS pattern is maintained with the valleys becoming deeper and
Dotted lines indicate negative potentials, with positive potentials indicated bge ridge between higher. Finally, at full thickness, the ridge is

thin solid lines. The thick solid line indicates the zero potential.Thethickdash%dspike with ST depression occurring 0n|y near the boundary
line in (a) represents the projection of the ischaemic region onto the epicardi

u ; ) .
(this regions is common to all subsequent contour plots). The contour interGgI]the ischaemic region.
in each plot is 2.0 mV. (a) 10%, (b) 90%, and (c) 100% ischaemia.

D. Effect of the Ischaemic Boundaries
for subendocardial ischaemia up to 90% of the thickness of theFig. 5 shows the effect of changing the width of the ischaemic

myocardium. Experimental evidence has shown that this is fmiundary. The three values &f shown in Fig. 1 coincide with
the case [13]. the three values ok used in these simulations. In each case,
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Fig. 3. Epicardial potential distributions for varying degrees of subendocardial ischaemia with anisotropic cardiac tissue without fibearrdtatiGschaemic
region of 16 cri. The format for each figure is described in the caption for Fig. 2. The contour interval in each plotis 0.2 mV. (a) 10%, (b) 30%, (c) 50%, (d) 70%,
(e) 90%, and (f) 100% ischaemia.

the area of the ischaemic region is 16%and contour plots  However, at 75% subendocardial ischaemia, some differences
are shown for 50% and 75% subendocardial ischaemia. At 5@kbhemerge (that is to say, in Fig. 1 the center of the ischaemic re-
ischaemia (left-hand column), increasing the width of the igion (where the dimensionless transmembrane potential is 0.5)
chaemic boundary does not have a great effect on the pothas been moved to = 0.25). In this case, the transition region
tial contours, except that the valleys become shallower. Thisitidersects the epicardium resulting in regions of nonzero trans-
perhaps not surprising because, as can be seen from Fig. 1 nieenbrane potential on the epicardial surfaceXet 0.05 and
transmembrane potential on the epicardium is very close to zére= 0.1. The result of this, as demonstrated in Fig. 5, is higher
in all cases. peaks and shallower valleys of the corresponding contour plots.
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Fig. 4. Epicardial potential distributions for varying degrees of subendocardial ischaemia with anisotropic cardiac tissue with fiber rdtatioschaemic
region of 16 cm. The format for each figure is described in the caption for Fig. 2. The contour interval in each plot is 0.2 mV. (a) 10%, (b) 30%, (c) 50%, (d) 70%,
(e) 90%, and (f) 100% ischaemia.

Hence, increasing the width of the ischaemic boundary tendsctardial ischaemia. Realistic conductivities have been used and
indicate that ST elevation would become apparent at lesser thee rotation of cardiac fibers from the endocardium to the epi-

grees of subendocardial ischaemia. cardium has also been included.
Briefly, simulations have shown that in the transition from

partial to full-thickness ischaemia there is initially ST depres-

sion over the ischaemic region with a region of ST elevation
This paper has introduced a bidomain model to study the S€veloping in the center as the degree of ischaemia increases.

segment epicardial potential distributions induced by subendenally, at full-thickness ischaemia there is ST elevation over

IV. DISCUSSION
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Fig. 5. Epicardial potential distribution at 50% and 75% subendocardial ischaemia at various thicknesses of the ischaemic boundary. Thedohrfigufer e
is described in the caption for Fig. 2. The contour interval in each plot is 0.2 mV. (a) 50% subendocardial ischaefi@l; (b) 75% subendocardial ischaemia,
A = 0.01; (c) 50% subendocardial ischaemia= 0.05; (d) 75% subendocardial ischaemia= 0.05; (e) 50% subendocardial ischaenia= 0.1; (f) 75%
subendocardial ischaemid,= 0.1

the region of ischaemia (greater near the boundary) and ST deAlthough this is a simple model, based on fairly restrictive
pression just outside the boundary. The model also predicts laggsumptions (in order to accommodate the mathematics), it
potential gradients above the boundary of the ischaemic regidoes reflect some of the experimental observations published
As the width of the ischaemic boundary in the transmural direpreviously, as well as some desirable features of other simpler
tion increases, ST elevation appears at a lesser degree of subsdels. On the other hand, there are several experimentally
docardial ischaemia. observed features that this model does not predict.
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First, consider the limitations of the model. The main limita
tion is that the model does not support the experimental obser n
tions of Li et al.[13] that epicardial depression does not predir
the position of the ischaemic region. Clearly, from Figs. 2—
the ST depression observed at small degrees of subendocar _
ischaemia is above the region of ischaemia. The experiments
Li et al.[13] were performed using the sheep model and sube ' |
docardial ischaemia was induced by partially occluding the le ... | e,
circumflex or left anterior descending coronary arteries. Sur " [*=
occlusion induces ischaemia over approximately half of the le
ventricle in each case and there is little overlap between the t
regions. The observation was that the epicardial potential d P
tributions were very similar for occlusion of the respective a = i = i
teries (correlation coefficient @.77 £ 0.14 using six animals). T B i
A possible explanation for the discrepancy between the exp ; e
iment and model is that the model is an infinite slab of cardiac
tissue attached to an infinite amount of blood, whereas, cleamyy. 6. Epicardial potential distribution for full-thickness ischaemia with an
the experimental model dealt with finite quantities. Also, thigschaemic boundary characterizedby = A, = 0.5 and\. = 0.01. Contour
experimental model induced ischaemia from the middle of tglues (in mV) are indicated on the figure.
left-ventricular free wall to the septum behind which is another

blood mass. Given this and the size of the ischaemic regiqRe cardiac tissue was attached to a very large amount of blood,
there is a clear difference in the geometries being consider@ghich provides an enormous potential sink. The effect of this

as well as the relative size of the ischaemic region (it is effesink would be to lower the observed potentials on the epicardial
tively assumed small in the mathematical model). surface.

The simple model of ST depression presented here predict$n a recent combined simulation/experimental study [13], a
many features observed in experimental studies of ST depresalistically shaped human heart provided the basis for the mod-
sion. First, consider full-thickness ischaemia results (bottosting studies. The governing bidomain equations were solved
right-hand panels of Figs. 2—4). In each case, the highegdth the finite-element method, however, rotation of the cardiac
amplitude of ST elevation was obtained at the boundary of tfibers was ignored. Also, the current source due to the ischaemic
ischaemic region, as was observed bytal.[23] with ligation boundary was treated as a volumetric source in one layer of cells
of the LAD and LCX arteries. However, this behavior was nasn one side of the boundary and as a volumetric sink in one layer
observed with the occlusion of the obtuse marginal artery, nof cells on the other side of the boundary (to simulate a dipole
was it observed in the experimental studies of Sretthl.[12] layer). The fact that this model, with its lack of fiber rotation,
where a more convex distribution was observed. Interestingtyiore accurately predicts the experimentally observed epicar-
though, by changing the width of the ischaemic border iial potentials than the current model with fiber rotation, poses
the z andy directions so that, = A, = 0.5 (with A\. = an interesting question. Clearly, the above arguments regarding
0.01), epicardial potential distributions of the type observed kjiffering geometry could provide part of the explanation. How-
Smith et al. were obtained (see Fig. 6). That is, in this caseyver, a combined analytical/numerical study of the problem in
the maximum of the potential distribution was obtained morg simple geometry could also provide further insights into the
toward the center of the ischaemic region. The model algifferences.
predicts ST depression just outside the ischaemic boundarfNow consider the transition from subendocardial ischaemia
and this depression increases in magnitude as the size of thédull-thickness ischaemia as shown in Figs. 2—4. A major
ischaemic region increases. This fact was also observed bydifference between these simulations is the degree of suben-
et al.[23]. Model predictions also fit with the simple model ofdocardial ischaemia at which ST elevation appears above the
Holland and Brooks [11]. ischaemic region. In the isotropic case, it only appears when

As observed experimentally by lgt al. [13] in the sheep the ischaemia is nearly full thickness and for the anisotropic
model, the ST depression increases before the occurrenceade without fiber rotation it occurs at about 80% ischaemia.
ST elevation and continues to increase as the ST elevation Yet, when fiber rotation is included ST elevation appears at
creases. The same observations have also been reported abaut 55%. Another difference between the models is in the
study by Guytoret al. [24] using the canine model. The mainmagnitude of the observed epicardial potentials where, for the
difference between the model and experimental observationssistropic model the potentials are up to a factor of ten higher
that the model predicts initial ST elevation near the ischaentltan for the other two models which are of similar magnitudes.
border and not the ischaemic center. There is also a discrépthe two models with anisotropy included, from the different
ancy in the magnitudes of the ST depression between the madietctions of the elliptical level curves, the model without fiber
and the experimentally recorded data. A possible explanatimiation has a longer major axis than the model with fiber
for this is that the experiments are performed in a closed, fiotation at all degrees of subendocardial ischaemia. A possible
nite structure which is ultimately insulated. On the other handxplanation for these two observations is that the fiber rotation
the modeling was performed in a semi-infinite domain, whefgvhich introduces a nonuniform conductivity distribution
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lacking uniform directional anisotropy) has the effect of pullinghat the assumption of tissue isotropy is totally inadequate and
the elliptical potential distribution off its major axis on thegreater realism must be included.

epicardium and subsequently smoothing the observed potentidlsing a model in which tissue anisotropy and fiber rotation
distribution cardiac tissue. are included predicts some of the features found in experimental

The above observations are in contrast to the observationsstdies of similar physical phenomena. Perhaps the most notable
lating to the simplified isotropic case, where the epicardial pdiscrepancy between model and experiment is that the model
tential distribution is the same for all degrees of subendocardiiles localize subendocardial ischaemia, in contrast to the ob-
ischaemia until the edge of the ischaemic border hits the epicaervations of Let al.[13]. However, geometrical considerations
dial surface (see Fig. 2). might provide a reason for this difference.

The study of the transition to full-thickness ischaemia when Although this model has been applied to a study of the epicar-
fiber rotation is included (Fig. 4) reveals a complex relatiordial potentials due to the presence of ischaemic tissue, the same
ship between the fiber rotation and the degree of subendocardiéahniques could be used to study depolarization wave fronts
ischaemia. This is especially evident when the subendocardiefore epicardial breakthrough. Such a study could be effected
ischaemia is between 10% and 30% [Fig. 4(a) and (b)]. In tHiy a change in the representation of the quariit,,.
range, the major axis of the elliptical contours moves through an
angle of about 90 Such behavior must be due to the presence
of the fiber rotation, because when fiber rotation is ignored, the ACKNOWLEDGMENT
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