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Optimistic Make

Rick Bubenik, Member, IEEE, and Willy Zwaenepoel, Member, IEEE

Abstract— Optimistic make is a version of the make program
that begins execution of the commands needed to update makefile
targets before the user issues the make request. Qutputs of
these optimistic computations (such as file or screen updates) are
concealed until the request is issued. If the inputs read by the
optimistic computations have not been changed by the time of
the make request, the results of the optimistic computations are
used, leading to improved response time. Otherwise, the necessary
computations are reexecuted.

We introduce the notion of encapsulations as the basic construct
used to support optimistic make, and we describe the implemen-
tation of optimistic make in the V-System on a collection of SUN
workstations. Statistics measured from this implementation are
used to synthesize a workload for a discrete-event simulation,
and to validate the simulation’s results. The simulation shows
a speedup distribution over pessimistic make with a median of
1.72 and a mean of 8.28. The speedup distribution is strongly
dependent on the ratio between the target out-of-date times and
the command execution times. With faster machines the median
of the speedup distribution grows to 5.1, and then decreases
again. Given the large idle tirhes observed in many workstation
environments, the extra machine resources used by optimistic
make are well within the limit of available resources.

Index Terms— Encapsulation, optimistic computation, opti-
mistic make, performance evaluation, programming environment,
simulation study, software development environment, speculative
computation.

I. INTRODUCTION

AKE is a tool used primarily in software development
environments for creating up-to-date executable pro-
grams from their source files [9]. Using a makefile, the user
specifies a number of targets, the sources that they depend
on, and the commands necessary to construct the targets from
the sources. A target is said to be out-of-date if one of its
sources has a later timestamp than the target. When the user
types make, out-of-date targets are reconstructed according to
the makefile. If some of the commands are independent, they
may be executed in parallel on separate machines.
Optimistic make is identical in functionality to make. How-
ever, unlike the conventional pessimistic implementation of
make, it monitors the file system for out-of-date targets,
executes the commands necessary to bring the targets up-
to-date before the make request is issued, and conceals the
outputs of the optimistically executed commands until the user
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types make. If the inputs read by the optimistic commands
remain unchanged until the make request is issued, these opti-
mistic results are used immediately. Otherwise, the necessary
commands are reexecuted.

The operational differences between optimistic make and
pessimistic make, and the potential performance benefits of
optimistic make are shown in Fig. 1.

The top portion of the figure depicts the operation of a
pessimistic distributed make, whereby the user edits and saves
a number of files, and then issues a make request, at which
time the commands necessary to bring the targets up-to-
date are executed. The bottom portion of the figure depicts
the operation of optimistic distributed make. Commands are
started as soon as files are saved, when targets become out-of-
date. The response time for the make request is significantly
improved since most command execution occurs before the
request is issued.

The outline of the rest of this paper is as follows. Section II
discusses the notion of encapsulations, the primary mechanism
used to support optimistic make. Section III discusses the
implementation of encapsulations and optimistic make in the
V-System. Section IV presents the statistics collected from
our implementations of both pessimistic make and optimistic
make. Section V describes the simulation model used to further
evaluate the performance of optimistic make. Results from
this simulation are presented in Section VI. Related work is
covered in Section VII. Finally, conclusions are drawn and
further work is discussed in Section VIIL

II. ENCAPSULATIONS

A. Definition

An encapsulation is a computation whose outputs are con-
cealed until the computation is mandated. Once mandated,
the outputs are made visible in an order consistent with the
order in which they were produced during the execution of
the encapsulation. The following three operations are defined
on encapsulations:

eid = CreateEncapsulation(): Create an encapsulation with
unique identifier eid. Output produced by the encapsulation
is not visible outside the encapsulation until it is mandated,
with one exception: it is possible to allow an encapsulation
to read the outputs of one or more input encapsulations,
before they are mandated, by specifying these encapsulations
as arguments to the CreateEncapsulation() call. The newly
created encapsulation is then said to be dependent on its input
encapsulations.

result = MandateEncapsulation(eid): If the inputs read by

.the encapsulation are unchanged, then reveal all outputs pro-
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Fig. 1. Optimistic versus pessimistic distributed make.

duced so far, do not conceal further output, and return success.
Otherwise, abort the encapsulation and return failure.

AbortEncapsulation(eid): Abort the encapsulation and dis-
card its concealed output.

Encapsulations are superficially similar to atomic transac-
tions in that both mechanisms hide operations until a later
time (commit time for atomic transactions, mandate time for
encapsulations). However, the semantics of encapsulations
differ considerably from those of transactions. Encapsulations
can be mandated before the concealed computation completes,
allowing an encapsulation to be converted into a normal
computation at any point during execution. When an encapsu-
lation is mandated, output is made visible in steps rather than
atomically. This simplifies the implementation by avoiding
atomicity concerns. Encapsulations may be destroyed at any
time, even while concealed output is being made visible,
allowing the user to abort unwanted computations before the
remaining unwanted output has appeared.

An extended version of encapsulations appears to be a useful
abstraction for supporting output commitment in any optimistic
computation [2], not only in optimistic make. In optimistic
computations, all output must be concealed until the guess on
which the optimistic computation is based can be confirmed.
For instance, optimistic rollback recovery methods [14], [19]
require that outputs be concealed until it is guaranteed that the
states from which these outputs are performed will never be
rolled back as a result of a failure. In this paper, we concentrate
only on the use of encapsulations to support optimistic make.

B. Optimistic Make and Encapsulations

The optimistic make program reads an unmodified makefile,
and monitors the file system for modifications to the source
files on which the makefile targets depend. By default, the first
target appearing in the makefile is the only target optimistically
remade. This can be expanded or restricted by command
line options. File system monitoring is done efficiently by
requesting notification from the file server when any file in a
specified list of directories is modified. This results in shorter
notification times and less overhead on the file server than

polling, while keeping small the amount of file server state
to be maintained for this purpose. When optimistic make
detects a target in the makefile that is out-of-date, it starts an
encapsulation to update that target. If two (or more) dependent
computations are necessary to update a target (for instance, a
compilation followed by a linkage), the first computation is
started as an encapsulation eid, without input encapsulations,
and when it finishes, the second computation is started as
an encapsulation eid, with the first encapsulation eid; as an
input encapsulation. In the example of a compilation followed
by a linkage, this allows the linker to read the output of the
compiler. If a source file changes after an encapsulation has
been started, the corresponding encapsulation is aborted, and
a new one is started. If any encapsulation in a sequence of
dependent encapsulations is aborted, all subsequent encapsu-
lations in the sequence are also aborted. When more than
one independent encapsulation is necessary to update a target,
the independent encapsulations are started concusrently on
separate machines, assuming enough machines are available.
If an encapsulation is not mandated within a certain timeout
interval, the encapsulation may be aborted to release resources.
The computation is then repeated if the user eventually issues
the make request.

III. IMPLEMENTATION

This section describes an implementation of encapsulations
and optimistic make in the V-System [4]. In this implemen-
tation, encapsulations are transparent to application programs.
The same executable can be run either as a normal computation
or as an encapsulation, with no need for recompilation or
relinking.

The V-System follows the client—server model of appli-
cation programs executing as client processes and accessing
most operating system services by sending messages to server
processes. The V kernel is a small kernel that provides
efficient, location-independent message passing, and very little
else.

We have adhered to the small-kernel philosophy in the
implementation of encapsulations. An encapsulation server
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process provides most of the support for encapsulations. Only
minor modifications to the kernel and to some of the servers
are required. However, not all servers need to be modified.
Several encapsulation servers may be running at the same
time, but a particular encapsulation and all its dependent
encapsulations must be handled by the same encapsulation
server.

A. Kernel Support

Two new fields are added to each kernel process descriptor
record in order to support encapsulations: the eid, which con-
tains the encapsulation identifier, and the encapsulation flag,
which indicates whether this process supports encapsulations.
The eid is zero, by default, for processes that do not run as
encapsulations. A normal computation is converted into an
encapsulation by instructing the kernel to set the eid to a
specified nonzero value for all processes of the computation.
The eid is also inherited by all processes created by the
encapsulation. Servers that support encapsulations instruct the
kernel to set the encapsulation flag in their process descriptor.

All messages are tagged with the eid of the sender. The
kernel delivers messages sent by an encapsulation (that is,
messages with a nonzero eid tag) only to other processes in the
same encapsulation or to server processes that have indicated
that they support encapsulations. Delivery of other messages
sent by encapsulations is blocked until the computation is man-
dated, typically blocking the progress of the sending process
as well. This allows encapsulations to be used in environments
where not all servers support encapsulations, accommodating
servers whose code cannot be modified. Although optimistic
computation cannot proceed if the encapsulation communi-
cates with one of these servers, correctness is preserved and
the computation proceeds once mandated.

In total, the kernel modifications for encapsulation support
consist of an additional 65 bits in each process descriptor and
approximately 120 lines of C-language code.

B. Running an Encapsulation

The create, mandate, and abort encapsulation requests are
issued by optimistic make and serviced by an encapsulation
server process. The encapsulation server allocates a unique eid
for each encapsulation, and keeps track of all input and output
operations performed by an encapsulation. Servers that support
encapsulations inform the encapsulation server of the input and
output operations performed by an encapsulation in a server-
specific manner. These servers determine that a message comes
from an encapsulation by checking the message’s eid tag.

In our current implementation, both the file server and the
terminal server support encapsulations. When an encapsulation
opens a file for read, the file’s timestamp is recorded with
the encapsulation server. When an encapsulation opens a file
for write, the request is first recorded with the encapsulation
server, then a hidden file is created and all subsequent writes
are redirected to that file. Hidden files do not appear in the
file system directory structure and are only accessible through
the encapsulation server. Furthermore, the encapsulation server
maintains a hidden file system directory tree for each encapsu-
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lation, recording the modifications made by that encapsulation
to the directory structure. The hidden directory tree is also used
to record the mapping between the names of files modified by
the encapsulation and the corresponding hidden files. When
an encapsulation writes to the terminal server, the data to
be written are recorded with the encapsulation server. Any
other operation sent to the terminal server (including a read)
is blocked.

In summary, each server records the operations of an en-
capsulation in a server-specific manner with the encapsulation
server. This allows us to take advantage of the semantics or
common usage patterns of certain servers. For instance, the
file server only records opens with the encapsulation server,
and does not need to record individual reads and writes, an
important optimization in our environment where typically
multiple reads and writes are performed on each open file.

The encapsulation server transfers information between en-
capsulations during a create encapsulation request if input
encapsulations are specified. When a single input encapsu-
lation is specified, the hidden directory tree containing the
modifications of the input encapsulation is inherited by the
new encapsulation. When more than one input encapsulation is
specified, the hidden directory trees of all input encapsulations
are merged and then passed on to the new encapsulation.

C. Mandating an Encapsulation

When an encapsulation is mandated, the encapsulation
server inquires with the relevant servers (in our implementa-
tion, with the file server) whether the timestamps of the inputs
that the encapsulation has read have remained unchanged. If
so, it instructs the servers to make the outputs performed
by the encapsulation visible in the same order as they were
recorded. Servers synchronously record the output operations
of encapsulations with the encapsulation server. Hence, the
order in which the outputs are recorded, and thus made visible,
is a serialization of the order in which they were created. After
all outputs have been made visible, if the encapsulation is
still running, the encapsulation server zeroes the eid of the
encapsulated process and all its descendents, converting the
encapsulation into a normal computation. As a result, blocked
messages to servers not supporting encapsulations are now
delivered.

D. Encapsulation Performance for Make

For the kind of computations that are commonly part
of our makes, the overhead of executing an encapsulation
compared to a normal computation is roughly proportional to
the number of file opens, as opposed to the number of reads
or writes. In our implementation, on SUN-3/50 workstations,
the encapsulation overhead is 18 ms per open for read and
8 ms per open for write, for the first open of each file. The
encapsulation overhead is lower if the same file is opened
again: 10 ms per open for read and 4 ms per open for write. The
overhead is lower on subsequent opens because the hidden file
system directory tree does not need to be updated. Most of the
encapsulation overhead results from communication between
the file server and the encapsulation server, and from the
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cost of maintaining the hidden file system directory tree. An
implementation in which the encapsulation server is integrated
with the file server might be more efficient, but we prefer the
modularity of our approach.

At mandate time, overhead is minimized by obtaining a
number of timestamps for examination in a single operation.
We measured a mandate overhead of 8 ms per open for read
and 31 ms per open for write. These times are limited by the
time it takes our file server to find a file in the directory tree
and to overwrite a file, respectively. When a computation is
mandated while still executing, the mandate can proceed in
parallel with the computation, so the overhead does not add
to the computation’s response time.

E. Implementation Considerations in Other Systems

The V-System facilitated the implementation of encapsu-
lations in two ways. First, we had access to the source, so
that we could easily modify the kernel, the file server, and the
terminal server. Second, the modular structure of the V-System
kept the modifications to the kernel and the servers small,
with the bulk of the implementation residing in a separate
encapsulation server. We now briefly speculate on how to
implement encapsulations in an environment where those two
conditions are not fulfilled. To make the discussion specific,
we consider an implementation in a Unix environment [16].

If modifications to the operating system are not possible or
not desirable, encapsulations could be implemented using a
library. The library would define several entry points, such
as read, write, and open, which would be called instead
of the real kernel calls. Every program that is to be run
as an encapsulation would then be linked with this library.
The obvious drawback of such a solution is the lack of
transparency, requiring the ability to relink existing programs,
and resulting in separate executables for normal computations
and encapsulations.

If the kernel can be modified, then a transparent Unix
implementation appears possible. A bit would need to be added
to the process descriptor record indicating the computation
runs as an encapsulation. For operations on the file system,
the kernel would have to implement the same functionality
implemented in the V-System in the encapsulation server, in-
cluding the hidden file system tree. Blocking an encapsulation
on input from, and output to, the terminal would require minor
kernel modifications, where many of the existing features
of signals could be adapted for this purpose. Buffering the
output until mandate time and allowing the encapsulation to
continue would also require kernel changes, such as redirecting
terminal output to a temporary file until the encapsulation is
mandated, then writing the contents of this file to the terminal
and allowing subsequent writes to go directly to the terminal.
Other terminal operations would likewise either need to be
masked or block the encapsulation until mandate time.

IV. MEASUREMENTS

A. Measurement Environment

The system used for measurement consists of between 8
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and 12 diskless SUN-2/50 and SUN-3/50 workstations, and a
SUN-3/160 file server, connected by a 10 megabit Ethernet.
All machines run the V-System [4]. Remote execution of
programs is transparent and incurs a negligible performance
penalty. File access is also transparent, and has equal cost
from all diskless machines. The availability of other machines
on the network can be determined efficiently using the V group
communication mechanism [5].

These machines are used for software development by our
group, which consists of 8 graduate students and faculty
members, and for projects in a graduate distributed systems
course. Most of our makefiles involve C compilations and
linkages, with a small number of Modula-2 compilations and
some TEX text processing. There are typically 4 to 6 active
users on the system during the day, although commonly only
2 or 3 of these are actually engaged in software development.

B. Method of Measurement

We have instrumented our make programs (both the pes-
simistic and optimistic versions) to collect the following
statistics each time a make request is executed:

* The out-of-date time for all out-of-date targets: the differ-
ence between the time of the make request and the latest
timestamp of any of the target’s sources.

* Command execution time: the running time of each
program executed as part of the make. All times are
normalized to SUN-3 CPU speed.

* The shape of the dependency graph and the number of
commands executed as part of the make.

» The number of encapsulations aborted as part of each
optimistic make.

We gathered these make statistics for more than 6 months,

over which time we measured approximately 4000 requests.

C. Measurement Results

Fig. 2 shows the cumulative distribution of the target out-of-
date times. The median and mean values of this distribution
are 32 and 378 s, respectively. This implies that the make
request for most targets is issued fairly soon after a change
to the source files is made, but occasionally, users wait
much longer before issuing a make request. Fig. 3 shows the
cumulative distribution of the command execution times. The
distribution varies with the number of commands per make
request, where requests with a small number of commands
have lower execution times for each command. We speculate
that this is due to the fact that many make requests with a
small number of commands (and especially those with one
command) terminate quickly due to compilation errors.

Most of our makefiles have a similar dependency graph (see
Fig. 4): a number of independent commands (usually compila-
tions) followed by a single command (usually a linkage). The
distribution of the number of commands per make is given in
Fig. 5. The median number of commands per make request is
2, usually corresponding to a change to a single source file,
resulting in a recompilation of that source file and a linkage.
The mean number of commands is 4.39.
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D. Overhead Estimates

Optimistic make uses more system resources (CPU time,
device input/output bandwidth, and memory space) than pes-
simistic make due to the presence of aborted optimistic com-
mands and the encapsulation overhead. Table I shows the
number of commands mandated and aborted with optimistic
make in our measurements.

For each mandated command (that is, for every command
also necessary in pessimistic make), an average of 1.39 op-
timistic commands are started. Hence, aborted commands
impose an extra load of at most 39%. This is an upper limit
on the extra load since many of the aborted commands do
not run to completion, and thus use fewer resources. For the
types of computations considered in this paper (compilations
and linkages), a conservative estimate for the encapsulation
overhead, derived from measurements, is 2 s per computation
during execution and 1 s per computation at mandate time,
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Fig. 4. Typical makefile dependency structure.
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Fig. 5. Cumulative distribution of number of commands per request.

or on average less than 5% of the computation time. Hence,
we estimate that the total extra load is at most 44%, and is in
practice significantly lower. This extra load is small compared
to the large idle times that have been observed in workstation
environments, even during peak usage periods [15].

Encapsulations use additional disk space beyond that used
by normal commands to store the hidden files. To estimate how
much extra space might be used, we assume that each user has
a completed, unmandated optimistic make request containing
the measured average of 4.39 commands. These commands
normally consist of a linkage (producing an executable file)
and an average of 3.39 compilations (producing object mod-
ules). Using the average executable and object module sizes in
our system, each of these optimistic make requests requires a
total of 81 kilobytes. If we conservatively assume the typical
file server has at least 10 megabytes per client, this represents
less than 1% of the client’s disk allocation.

V. SIMULATION

To further evaluate the performance of optimistic make, we
now use the measurements of Section IV to parameterize a
simulation of a software development environment. The sim-
ulation model consists of NV identical machines and M users.
Each user issues make requests, with the think time between
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TABLE 1
MANDATED AND ABORTED COMMANDS
Commands Number Percent
mandated 16634 100%
aborted 6448 39%
total 23082 139%

requests drawn from an exponential distribution. A command
may use any of the N machines, although at any time we
allow only a single command to execute on each machine.
A centralized scheduler assigns commands to machines in
FCFS order, preferring normal commands to optimistic ones.
Once a command is started, it runs to completion with no
preemption, unless aborted. When all workstations are busy,
requests are queued until one becomes available. Simulations
with centralized, distributed, preemptive, and nonpreemptive
schedulers show that in our environment, under normal load,
the choice of scheduling algorithm has little effect [2].

We simulate both pessimistic and optimistic make with
identical arrivals of make requests. For each pessimistic make
request, we draw the number of commands to be executed
from the empirical distribution shown in Fig. 5, and then select
the command execution times from the distribution in Fig. 3
for requests with that number of commands. The commands
are started when the pessimistic make request arrives, subject
to the dependencies in the makefile. Only dependencies of
the form depicted in Fig. 4 are considered. For optimistic
make, we use the same request stream as used for pessimistic
make, and for each request we draw the out-of-date times for
each of the targets from the empirical distribution shown in
Fig. 2. The commands for the optimistic make are started at
the time of the make minus the time drawn from the out-of-
date time distribution. In order to simulate aborted commands
in optimistic make, we introduce an extra command for P
percent of the optimistic commands, where P is normally set
to the measured value of 39%. We assume both pessimistic and
optimistic make have negligible request processing overhead.
In order to account for encapsulation overhead, each optimistic
command is assessed an overhead of 2 s during execution and
1 s at mandate time (see Section IV-D).

The purpose of the simulation is to determine the response
time improvement of optimistic make over pessimistic make.
Response time is the elapsed time from the time when the make
request is issued to the time when all the commands corre-
sponding to that make request are completed. Response time
improvement is the ratio of response time in pessimistic make
to response time in optimistic make. This is our performance
metric: it indicates the relative improvement perceived by the
user as a result of optimistic make. Since the response time
improvement is dependent on the particular make request and
the out-of-date times, we provide as the main result of our
simulations the cumulative distribution of the response time
improvement of optimistic over pessimistic make. Addition-
ally, we provide the median response times for both optimistic
and pessimistic make as an indication of the absolute difference
in response times.

We run a terminating (finite horizon) simulation for a period
of 10 simulated hours. Pessimistic and optimistic results are
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compared by constructing a 95% confidence interval on the
median response time improvement for each run with a relative
precision of +£3%.! This typically requires between 10 and
100 runs of the simulator.

VI. SIMULATION RESULTS

A. The Baseline System

Fig. 6 shows cumulative distributions for the response time
improvement in a system similar to our environment. All
simulation inputs are drawn from the empirical distributions,
the number of machines is set to 10, and the mean think time
is set to 6 min. Results are shown for 1, 5, and 10 users.
For the 5-user curve, the median response time improvement
is 1.72, and the mean improvement is 8.28. The median
improvement in the curves for 1 and 10 users is similar, but
the mean improvement varies slightly. The shape of the curves
reflects the fact that most make requests are issued shortly
after changes to the source files are made. Improvements are
occasionally very large, when all optimistic commands have
completed by the time of the make request. In this case the
response time for the optimistic make is equal to the time
necessary to mandate the commands. A small percentage of
optimistic requests perform worse than the same request in the
pessimistic simulation, particularly under high load.

Fig. 7 shows cumulative distributions of response time
improvement in the baseline system with varying mean think
times. Decreasing the think time affects the improvement
more than varying the number of users, in part because
shorter think times imply that users do not wait as long
before issuing a make request after modifying source files,
leaving less time to complete the optimistic work. However,
the effect of varying the think time on the response time
improvement curves becomes minimal for think times larger
than 6 min. Measurements indicate that the mean think time
in our environment is at least 6 min. Hence, for the remaining
experiments described in this paper, we fix its value at 6 min.

Validation: To validate the simulation model, we compare
the cumulative response time distribution measured in our
implementation to the one obtained from the simulation, for
both optimistic and pessimistic make (see Fig. 8). We compare
response times rather than response time improvements since
the improvement, as it is computed in the simulator, cannot
be measured from the implementation: each real make request
is either pessimistic or optimistic, but not both (as in the
simulator).

Correlations: The response time improvement is correlated
with the number of commands per make request and with
the total CPU demand per request. Fig. 9 shows the median
improvement plotted as a function of the number of commands
per make request, and Fig. 10 shows the median improvement
plotted as a function of the CPU demand per request. With one
or two commands per request and with a total CPU demand
less than 30 s, the median improvement is noticeably higher

!In those experiments where the median pessimistic and optimistic response
times are also recorded, the relative precision for each of the three statistics
is set at +3%, resulting in a lower aggregate precision.
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than with more commands and larger CPU demands. This is
because commands are shorter in these cases and thus more
likely to have completed optimistically when the make request
is issued.

Discussion: Response time improvement is affected mainly
by the ratio of target out-of-date times to command exe-
cution times, and by the number of machines available for
execution. The ratio of target out-of-date times to command
execution times is important because it determines the amount
of optimistic computation that can be executed before the
computation is mandated. To isolate the effect of changing
this ratio from the effect of the number of machines available
for execution, we initially assume an infinite number of
machines and alternately vary the command execution and out-
of-date times (Sections VI-B and VI-C). In Section VI-D, we
compare the machine utilization of pessimistic and optimistic
make, and then address the effect of limiting the number of
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machines in Section VI-E. Finally, the effect of heterogeneous
machine speeds on the response time improvement is studied
in Section VI-F.

B. Varying Machine Speeds

To assess the effect of varying machines speeds, the number
of machines is set to infinity, and the command execution
times (from Fig. 3) are divided by a scale factor. Encapsulation
overhead is also reduced by the same factor. Other inputs to
the simulation (out-of-date times, think time, and number of
commands per make request) are as in the baseline model.?

Fig. 11 shows the cumulative distribution of response time
improvement for the original machine speed (labeled SUN-3),
and for systems 8 and 16 times faster (labeled 8*SUN-
3 and 16*SUN-3, respectively). Fig. 12 shows the median
response times for both pessimistic and optimistic make plotted

2The number of users is irrelevant with an infinite number of machines.
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Fig. 11. Cumulative distribution of response time improvement for varying

machine speeds.

side-by-side for several CPU speeds.> These figures show
that as machine speed increases, the difference between the
response time of optimistic and pessimistic make decreases.
The response time improvement, however, first grows and
then decreases with faster machines, from a median of 1.7
in the SUN-3 curve, to a maximum median of 5.1 in the
8*SUN-3 curve, and then back down to a median of 3.3 in
the 16*SUN-3 curve. As the machine speed goes from SUN-3
to 8*SUN-3, many more optimistic commands are completed
or are near completion by the time the make request is issued.
Hence, response time for optimistic make is greatly improved.
Response time for pessimistic make does not improve as
fast as for optimistic make, yielding a higher response time
improvement. Beyond the CPU speed at which most optimistic
commands are completed by the time of the make request,

3The ratio of the median response times is not the same statistic as the
‘median response time ratio (the latter is computed by selecting the median of
all individual improvements).
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Fig. 12. Median response times for varying machine speeds.

there is little additional improvement in optimistic make’s
response time. Pessimistic make continues to improve, though,
decreasing the response time improvement.

C. Varying Out-of-Date Times

While measuring our system, we observed that the me-
dian and mean of the out-of-date time distribution changed
slightly between different measurement periods. This change
corresponds to users waiting longer and shorter time periods,
on average, between saving files that necessitate makes and
typing the make command. We simulate this effect by using
values drawn from the empirical out-of-date time distribution
multiplied by different scale factors. Other simulation inputs
are as in the baseline system, with an infinite number of
machines.

Fig. 13 shows the cumulative distributions for scale factors
of 0.25, 1, and 4. Fig. 14 shows the median response times
for both pessimistic and optimistic make for several scale
factors between 0.25 and 8. Unlike with increasing ma-
chine speed (Section VI-B), larger out-of-date times increase
both the response time improvement and the difference be-
tween median response times, until most optimistic commands
are completed by mandate time. With even larger out-of-
date times, both remain constant, again in contrast with
Section VI-B.

D. Machine Utilization

Fig. 15 shows the probability distribution for the number
of busy machines with optimistic make using 39% aborted
commands (the percentage measured, Section IV-D). This
distribution is obtained by sampling the number of busy
machines once per minute of simulation time. The number of
users is varied between 1 and 16, the mean think time is kept
constant at 6 min, other inputs are drawn from the empirical
distributions, and an infinite number of machines are available.
Simulations with a constant number of users and varying think
times give similar results.
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Fig. 16 shows the probability distribution of the number of
busy machines for 16 users with pessimistic make, optimistic
make with no aborted commands, optimistic make with the
measured 39% aborted commands, and optimistic make with
72% aborted commands (where all source node commands
in the makefile dependency graph are aborted once). This
figure shows that optimistic make distributes CPU load more
evenly over time: it is less likely to use very few machines
or very many machines. This arises because pessimistic make
needs many machines when the make request arrives, while
optimistic make spreads out machine use for each request by
using machines as soon as files are modified.* The aborted

4There is a similarity here between our work and load sharing [8]. Load
sharing improves throughput by spreading out the workload over different
machines. Optimistic execution improves response time by spreading out the
workload over time.

215

probability
0.7

0.6
0.5
0.4
0.3 .-
0.2

0.1

0.0

0 2 4 6 8 10 12 14 16
busy machines

Fig. 15. Probability distribution of busy machines for varying numbers of
users.

probability
0.20

0.15 | [ \pessimistic

-optimistic (0%)

5 10 15 20 25 30 35
busy machines

Fig. 16. Probability distribution of busy machines for varying percentages
of aborted commands.

commands add to the overall machine utilization of optimistic
make, but CPU use remains less variable.

E. Limiting the Number of Machines

We now limit the number of machines, while fixing the
number of users at 16 and the mean think time at 6 min.
All other simulation inputs arc taken from the empirical
distributions. Fig. 17 shows the response time improvement
distribution with 8, 16, and an infinite number of machines.
Fig. 18 shows the median response times for optimistic and
pessimistic make for the same numbers of machines using the
three abort ratios from above.

Going from an infinite number of machines to 16, the
improvement changes little, since neither optimistic nor pes-
simistic make are machine-limited. When further decreasing
the number of machines to 8 (with 2 users per machine),
the improvement declines because optimistic commands are



216

0.8

0.6

— infinite

0.4 «+++ 16 machines
- - 8 machines
0.2
040 1 1 1
0.1 05 1 5 10 50 100

response time improvement (semi-log scale)

Fig. 17. Cumulative distributions of response time improvement for varying

numbers of machines.

100 | pessimistic _

é v optimistic, 0%

é 8o A 22208 optimistic, 39%

n optimistic, 72%

: ]

f 60 ;

3 4

r|1 40 /
L/

e %

620 /|

1 1

: %

O_. / /

infinite 16
number of machines

<«

Fig. 18. Median response times for varying numbers of machines.

frequently blocked while normal commands use ail the re-
sources. The lack of change down to 16 machines (one user
per machine) indicates optimistic make provides significant
benefits under normal circumstances. Even with unexpectedly
high loads, optimistic make still provides some improvement.

F. Effects of Heterogeneous Machine Speeds

In Section VI-B, we showed that increased machine speed
improves the response time improvement of optimistic make.
We now look at how this improvement is affected in a
heterogeneous environment, in which not all machines are of
the same speed. We assume two types of machines: slow ma-
chines, at the speed used in our baseline system (SUN-3/50),
and fast machines, at twice this speed. In a heterogeneous
environment, the scheduler prefers fast machines and thus
executes commands on fast machines whenever possible. The
number of fast machines is varied from 0 to 10 for different
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TABLE II
MEDIAN RESPONSE TIME IMPROVEMENTS FOR A VARYING
NUMBER OF FAST MACHINES IN A 10-MACHINE SYSTEM

Number of fast machines

users 0 2 4 6 8 10
1 1.72 2.88 2.81 2.79 2.76 2.73

2 1.71 2.74 2.70 2.66 2.65 2.61

4 1.68 2.62 2.69 2.67 2.66 2.64

[ 1.70 2.50 2.65 2.68 2.67 2.66

8 1.71 2.38 2.62 2.69 2.71 2.70
10 1.69 2.24 252 2.66 2.70 2.69

numbers of users on a 10-machine system. The remaining
parameters are set as in the baseline system with a 6 min mean
think time. The resulting median response time improvements
are shown in Table IL

With 20% fast machines, the median improvement increases
substantially, but with more fast machines, the improvement
either levels off or increases only a small amount before
leveling off (depending on the number of users). The reason
for such a large improvement with a small number of fast
machines is twofold. First, with faster machines, optimistic
commands are more likely to be completely executed when
requested. Second, with optimistic make, executions are dis-
tributed over time, allowing a larger percentage of commands
to be executed on fast machines. For example, when a user
types make using pessimistic make, all commands are started
at once (limited by available resources). If the total number
of commands is large, several of these are likely to run on
slow machines. With optimistic make, the user modifies files
over time, allowing commands to start at different times. It
is likely that a later modification will occur after a previous
optimistic command has already completed execution. Thus, a
fast machine will be available where a slow one would have
been used with pessimistic make.

VII. RELATED WORK

Optimistic computations have been incorporated into the
Integral C programming environment developed at Tektronix
[18]. Unlike our implementation, which allows optimistic exe-
cution of arbitrary programs, their system only allows a small
set of tools to be executed optimistically. No performance
evaluation of their system is given, and there is no evidence
that Integral C conceals the output of optimistic computations,
which we consider to be essential.

The many parallel and distributed versions of the make
program [1], [6], [7], [10], [13], [17] are also related to
our work. These programs use the dependency graph for
controlling parallel or distributed execution, similar to our
distributed and optimistic make. However, none of these
programs uses any form of optimistic computation. We have
shown that significant performance improvements are possible
by incorporating optimistic computation. Baalbergen [1] and
Cmelik [6] point out some possible pitfalls when using parallel
or distributed versions of make on makefiles developed in a
sequential environment, and some methods for avoiding them.
These pitfalls and the suggested methods for avoiding them
also apply to optimistic make.
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The work on eager evaluation in functional programming
languages is, to a lesser extent, related to our work [3],
[11], [12]. The functional nature of the language obviates
the need for explicit concealment of side effects. Our work
differs in that we explicitly deal with outputs, and in that
the grain of computation we consider is much larger. We
believe that with a large grain of computation, the potential
for optimistic computation increases significantly, since the
overhead involved in concealing outputs becomes relatively
less important.

VIII. CONCLUSIONS AND FUTURE WORK

Optimistic make offers significant response time improve-
ment under a wide variety of circumstances. The probability
distribution of the response time improvement typically peaks
early and then has a long tail, reflected in a small median
and a large mean. In our current environment, the median
improvement is 1.72 and the mean improvement is 8.28. With
faster machines, the median improvement grows significantly,
until all optimistic commands are completed by the time the
user types make. The amount of extra resource use resulting
from optimistic make is small. Given the increased availability
of machines and the observed large idle time percentages in
many workstation environments, the extra utilization does not
adversely affect performance.

We have introduced the notion of encapsulations as the basic
construct used in our implementation of optimistic make. We
are investigating extensions of encapsulations suited to support
optimistic computation in general. For instance, optimistic
rollback recovery methods [14], [19] appear to require a
more incremental notion of encapsulations that allows partial
mandates and aborts.

We are also interested in investigating the performance
of optimistic make with different workloads, for instance
workloads measured at other sites or workloads in which
program development no longer predominates. Also of interest
are the performance implications of different implementations
of optimistic make, for instance in a system where modification
of the kernel and servers is not possible and encapsulation
support has to be provided through a library that is linked in
with user programs.
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