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A Novel Division Algorithm for
the Residue Number System

Mi Lu, Member, IEEE, and Jen-Shiun Chiang

Abstract—We present in this paper a novel general algorithm
for signed number division in Residue Number Systems (RNS).
A parity checking technique is used to accomplish the sign and
overflow detection in this algorithm. Compared with conventional
methods of sign and overflow detection, the parity checking
method is more efficient and practical. Sign magnitude arith-
metic division is implemented using binary search. There is no
restriction to the dividend and the divisor (except zero divisor),
and no quotient estimation is necessary before the division is
executed. Only simple operations are needed to accomplish this
RNS division. All these characteristics have made our algorithm
simple, efficient, and practical to be implemented on a real RNS
divider.

Index Terms—Binary search, core function, division algorithm,
fractional representation, number comparison, overflow detec-
tion, parity checking, residue number system.

I. INTRODUCTION

ESIDUE Number Systems (abbreviated as RNS) are

attractive to many people. An RNS is composed of
moduli that are independent of each other. A number in
the RNS is represented by the residue of each modulus,
and arithmetic operations are accomplished based on each
modulus. Since the moduli are independent of each other,
there is no carry propagation among them, and it is easy to
implement RNS computations on a multi-ALU system. The
operation based on each modulus can be performed by a
separate ALU, and all the ALU’s can work concurrently. These
characteristics allow RNS computations to be completed more
quickly—an attractive feature for people who need high speed
arithmetic operations [1], [2].

Overflow detection, sign detection, number comparison,
and division in RNS are very difficult and time consuming
[3], [4]. These shortcomings limited most of the previous
RNS applications to addition, subtraction, and multiplica-
tion.

The general division algorithms can be classified into two
groups [S]: multiplicative algorithms and subtractive algo-
rithms. There are several RNS division algorithms that are
classified as multiplicative algorithms [4], [6], [7]. These
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multiplicative algorithms use mixed radix number conver-
sion to find the reciprocal of the divisor and to compare
numbers. Iteratively, the approximate quotient is made closer
to the accurate one. Due to the involvement of the mixed
radix number conversion, the arithmetic calculation is very
complicated and needs a lot of stored tables. Among these mul-
tiplicative algorithms, Kinoshita’s algorithm [7] uses mixed
radix numbers to approximate the quotient, and requires ei-
ther a decimal divider or the storage of a very large table.
Banerji’s algorithm [6] also uses the mixed radix number
approach and requires a lot of storage. Chren [4] criticizes
that the standard deviation of the mean of the execution time
needed in this algorithm is high. Chren’s algorithm [4] is
modified from Banerji’s. Chren made some effort to reduce
the storage and to improve the standard deviation of the
mean execution time, but the storage and the computation
time needed by the mixed radix number conversion are still
expensive.

On the other hand, there are several algorithms classified
as subtractive algorithms [3], [8], [9]. These subtractive
algorithms use the conventional division approach, and no
mixed radix number conversion is necessary. Therefore, the
arithmetic calculations are not complicated. However, its
number comparison and sign detection consume a lot of time
and hardware. Szabo’s algorithm [3] is not a general division
algorithm but a scaling algorithm. Keir ef al. [8] present two
algorithms, both of which involve the binary expansion of the
quotient. The speed of Keir’s first algorithm is not desirable.
His second algorithm uses look-up tables so that the hardware
requirements are huge. Lin’s algorithm [9] is a modification of
the well known CORDIC division algorithm, but it needs a lot
of comparators, which is not practical for general computing
applications.

In this paper we use parity checking for sign and over-
flow detection. Compared to conventional methods, the parity
checking method is more efficient and practical. Based on
the extension of overflow and sign detection techniques, a
new signed RNS division algorithm is presented. Basically,
this is a subtractive division algorithm using an efficient
method to detect overflows and compare numbers. We use
sign magnitude arithmetic for RNS division. In this division
algorithm, binary search is used. There are no restrictions to
dividends and divisors (except zero divisor), and no quotient
estimation is necessary before the division is executed. In a
hardware implementation, only a few small tables are required.
All these characteristics have made our algorithm simple,
efficient, and practical.
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II. RESIDUE CODES

A. Residue Numbers and Arithmetics of Residue Numbers

The RNS representation of an integer is defined as follows.
Let {m1,ma,--.m,} be a set of positive numbers all greater
than 1. The m;’s are called moduli and the n-tuple set
{mi.ma,---.my} is called the modulus set. Consider an in-
teger number X. For each modulus in set {my,ma, - JMnts
we have z; = X mod m; (denoted as | X|,,). Thus a number
X in RNS can be represented as X = (z1.22, -+, %), given
a specific modulus set {mq,msa. -+, my}. In order to avoid
redundancy, the moduli of a residue number system must be
pair-wise relatively prime.

Let M = [[;_;m;. It has been proved, in [3], that if
0 < X < M, the number X is one by one corresponding to
the RNS representation. If the result of a calculation exceeds
M, we say that overflow occurs. All the numbers should be
within the dynamic range M (i.e., 0 < X < M). Then, the
RNS arithmetic can be performed.

Suppose that two numbers, X and Y, are represented as
X = (x1.79.-++,2,) and Y = (y1,¥2, -+, Yn) in RNS. We
use ® to represent the operator of additions, subtractions, and
multiplications. The arithmetic in RNS can be expressed as
X QY = (21,22, ++,2n), where z; = |&; @ Yi|m,. From the
definition of the mod operation, all moduli are positive. z;
may be less than y;, which yields z; — y; < 0. In the mod
operation, if z; — y; < 0, then z; is defined as

zi = m; + (2

- Yi)- 1)

B. Number Comparison for Unsigned Numbers

As we know, number comparison and overflow detection in
RNS are very difficult. It is necessary to find methods that are
efficient, practical, and easy to implement.

Let parity indicate whether an integer number is even or
odd. We say two numbers are of the same parity if they are
both even or both odd. Otherwise the two numbers are said
to be of different parities. In residue number systems, we can
use a redundant modulus, modulus 2, to find the parity of a
number. If a number modulo 2 equals 0, it is indicated as an
even number. On the other hand, an odd number modulo 2
is equal to 1. We will apply the properties of the parities of
numbers to accomplish the number comparison.

In a survey of research in the former Soviet Union on
residue number systems [10], Miller et al. defined a function
called the core function and explored its properties as follows:

Let m1,mg. . m, be the relatively prime moduli of a
residue number system with product M. For fixed integers
wy.Ws, - . Wy, the core Ry of an integer is defined as
follows:

Sl

i=1

where | X | denotes the largest integer not greater than X.
The coefficients w;’s are fixed for the moduli set and do not
depend on the integer V.
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Theorem I1: Let the moduli m; and the core Rjs be odd.
Let (a1, a2, -, an) and (b1, bz, -+, by) be the residue repre-
sentations of integers A, B € [0. M). Then A + B causes an
overflow if

i) (a3 + b1, -, an + by) is odd, and A and B have the
same parity; or

i) (a1 + b1+, an + b,) is even, and A and B have
different parities.

Let the interval [0, M/2] represent positive numbers and the
interval (M /2, M) represent negative numbers.
Theorem 2: 1f the moduli m; and the core Rps are odd,

and (ay,as, -, a,) is the residue representation of a nonzero
integer A € [0,M), then A is positive if and only if
(12a1]my» -+ + |26n|m, ) is even.

According to the theory of core functions, if the core
function of an RNS number is known, it is easy to detect
overflows and the signs of the numbers. However, it is very
difficult to find the core function in RNS by the method
given in [10]. Discarding the core function and revising the
theorems mentioned by Miller ef al., the following theorems
express the properties we need for the comparison of un-
signed numbers. Consider the whole dynamic range, [0, M),
of positive numbers from 0 to (M — 1). Let all m;’s in
the modulus set {m;,ma, -+, m,} be odd numbers, and
X = (z1,%2, ++,&n)and ¥ = (y1,Y2,*,Yn) be two RNS
numbers. Suppose Z = X — Y = (21,22, 2n), then we
have the following theorem.

Theorem 3: Let X and Y have the same parity and Z =
(X —Y). X > Y, iff Z is an even number. X <Y, iff Z
is an odd number.

Proof: ¥ X > Y, then X —Y > 0and Z equals X - Y.
We know from the mathematical axioms that the two numbers
are with the same parity, and the result of the subtraction
should be an even number. Therefore, X > Y implies that Z
is an even number.

On the other hand, suppose that Z is an even number and X
and Y are with the same parity. If X <Y, then X - Y <0.
From (1) we have Z = X — Y + M. Since M is an odd
number and X — Y is even, Z must be an odd number. This
contradicts the assumption that Z is even. Therefore, if Z is
an even number and X and Y are with the same parity, then
X >Y.

If X <Y, then X —Y < 0. From (1) we have Z =
X - Y + M. Since m;’s are all odd numbers, M should be
an odd number. In addition, (X — V') is an even number and
this implies that Z is an odd number. Therefore, it is obvious
that if X < Y, Z is an odd number.

On the other hand, suppose that Z is an odd number and X
and Y are with the same parity. If X > Y, then X —Y > 0.
Since X and Y are with the same parity, Z must be an even
number. This contradicts the assumption that Z is an odd
number. Therefore, if Z is an odd number and X and Y are
with the same parity, then X < Y.

Theorem 3 shows us a method to compare two numbers if
the parities of these two numbers are the same. Similarly, if
the parities of two numbers are different, then the following
theorem can tell us which one is bigger.
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Theorem 4: Let X and Y have different parities and Z =
X-Y. X >Y,iff Z is an odd number. X < Y, iff Z is
an even number.

The proof of Theorem 4 is similar to that of Theorem 3 and
is hence omitted.

C. Signed Numbers and the Properties

The method used to represent negative numbers in RNS
is similar to that used in conventional radix number systems.
Letting the dynamic range be M, we can define the positive
and negative numbers as follows [3].

Definition 1: Given m;’s in the modulus set all odd, and
the dynamic range M = []_, m;, the range of a positive
number X is defined as 0 < X < |M/2], and the range of
a negative number Y is defined as |[M/2] < Y < M. For
any positive number X # 0, the additive inverse of X is
represented by M — X.

The following definition is to define overflows in the RNS
addition.

Definition 2: Given m;’s in the modulus set all odd, and
two numbers in RNS such as X = (zy,z2,---,2,) and
Y = (y1.92.,,, -Yn), overflow exists if | X +Y| > (M —1)/2.

Note that the following cases need to be considered.

1) X and Y are with the same sign. The absolute value of

the sum should be no greater than | M/2].

2) X and Y have different signs. No overflow will occur.

Corollary 1: The overflow detection theory in Definition 2
applies to the addition of only two numbers.

When comparing two signed numbers, three cases need to
be considered. If X and Y are with different signs, the positive
number is greater than the negative number. If X and Y are
both positive numbers, Theorems 3 and 4 can be applied to
compare X and Y. If X and Y are both negative numbers,
then find the absolute values for X and Y, and compare
them applying Theorems 3 and 4. The number with a greater
absolute value is smaller.

Consider the number |b|,,,, the multiplicative inverse of it
is defined as follows.

Definition 3: If 0 < a < m and |ab|,, = 1, a is called
the multiplicative inverse of (b mod m), and is denoted as
1™ e or [1/b],,.

D. The Parity of an RNS Number

We use the parity checking technique to compare numbers
and detect overflows in the addition of two numbers. For the
parity checking, a redundant modulus 2 is required. The parity
of a number, 0 if it is even or 1 if odd, can be obtained by
looking up a table. The entries of the table contain the residue
representations of the numbers, and all the residues of those
numbers modulo 2. The size of the table is proportional to the
dynamic range, M. If M is not big, the size of the redundant
modulus 2 table is reasonable. Otherwise, such a table is not
practical, and the following alternative method should be used.

Given a modulus set, {m;,ms, -, m,}, whose dynamic
range is equal to M, an RNS number X, (z1,x2,---,2,),
is corresponding to the modulus set. By the Chinese remain-
der theorem, X can be converted from its residue number
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representation by the weighted sum such as
n
X = E m;
=1

with Tﬁj = M/mj.
Since |A|5s denotes the least positive residue of A modulo
M, (2) can be rewritten as

Zi
TYL]'

@

™| ar

X =3 n ;L’ —rM ©)
j=1 7 lm;
M)z Mz | M|
my|my|,, — me|ma|, M | M |,

“

with r being an integer.
All the moduli, mq, ms, - - - m,,, are odd numbers, therefore,
My, Mg, -+, My, and M are all odd numbers in (4). Under
this situation, |z1/mi1l,, ,|z2/mal,, -, |Zn/Minl, ,and r
in (4) will determine the parity of X. To find the parities of
|zi/mil,,. and r, we can extract the least significant bit (LSB)
of |z; /m[|m1’s and r, and “Exclusive OR,” @, them together,
ie.,
P=LSB(|2L| )Y@ LSB(|-2

mi

)69

mo

my ma2
LSB(|Z| Y& LSB(r). )

My

n

Here P = 0 means that X is an even number, and P = 1
means that X is an odd number.

The numbers |x;/m;|,, ’s can be precalculated, and their
LSB’s can be stored in a table. Considering that the table
storing the parity of |z;/m;l,, ’s is much smaller than the
table storing the parity of X, we have reduced the size of the
table needed for the parity checking. The next problem is how
to find 7.

In 1985, Van Vu [11] developed a fractional representation
in Chinese remainder theorem to detect the sign of an RNS
number. His approach can be revised to find the integer number
T.

Let |a:1/rﬁ1|m =S5, withi=1,2,3,---,n, and divide (4)
by M on both sides. We have

X
gz 2 6
mo + my, M ( )
As we know, a number modulo m; is less than m;.
Therefore, S; < m; and S;/m; < 1. A number X is always
less than M, and we can find X/M < 1. Obviously r is equal
to the integer part of }, S;/m;, and (6) can be rewritten as
S S S
r:[i+—2+~-+—"J. ()
m1 me Mmn
We discuss below the number of the bits needed in the cor-
responding implementation. Ideally, the binary representation
for the fractional part of S;/m; has infinite length. However,
in the physical electronic system it can have only finite length.
Suppose that ¢ bits are used to represent the fractional part of
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S;/m;. For simplicity, we denote S;/m; as u;. Let the rounded
value 1; be equal to [2'u;]27%, where [Y] is the smallest
number that is not smailler than Y. Since %; is a rounded
number of w;, an error ¢; is involved such that u; = u; + e;.
Taking the summation over ¢ from both sides of the previous
equation, we have

Zﬁ,:Zui+Zei. 8)

Denote ., t;, ».,u;, and >, e; as U,U,ande, respectively.
Equation (8) can be rewritten as U = U — e. Substituting U
into (6), and rearranging the equation, we have

. X
U= —. 9
r+et or )
Here, we hope that e + X/M < 1. In other words, e <

1 - (X/M).

Since X/M < 1, and the smallest difference between 1 and
X/M is 1/M, the integer part of U will not be bothered if
e < 1/M in (9). From

n
ezz:e,ﬂ<i e < L e <
et M T M t T aM’
we can choose ¢ (the number of bits in the fractional part
of S;) as ¢t > logy(nM). In that case, the integer r can be
represented, by the rounded value 4;, as r = |, 4;].

For the calculation of the parity, all we need is the LSB of
r. Therefore, t + 1 bits are needed for ;, with 1 bit for the
integer part. The value of «; can be precalculated and stored
in a table. Since each modulus, m;, in RNS is not a large
number, the table for storing «; is small. The summation of
all 4;’s can be accomplished by using fast multioperand binary
adders proposed by Daniel ef al. [12].

III. DIVISION ALGORITHM

A. Description of the Algorithm

Given two numbers, dividend X and divisor Y, the di-
vision in RNS is to find the quotient Z = |X/Y|. The
absolute value of the dividend and the divisor are used when
performing the division calculation, and the parity checking
technique described in the previous section is applied for
number comparison and overflow detection. Given modulus
set {my.ma.---.my} with dividend X = (z1,z2, -+, 2,)
and divisor Y = (y1,y2,- -, yn), We are to find the quotient
Z, where Z = | X/Y |. The dynamic range, M, of the RNS
is M = []i_,m,. Corollary 1 tells us that the overflow
detection can be applied only to the addition of two numbers,
a special case of which is the addition of two equal numbers.
In other words, multiplying a number by 2 is allowed, and our
algorithm is developed on this basis (see Part II below).

This algorithm can be divided into five parts. Part I detects
the signs of the dividend and the divisor and converts them
to positive numbers. Part II finds 2%, such that (Y - 2%) <
X < (Y - 2k+1), Part III finds the difference between 25 and
the quotient. Part IV deals with the case (¥ -2%) < X <
(M —1)/2 < (Y - 2%+1) and then goes to Part Il to find out

1029

the difference between 2% and the quotient. Part V transforms
the quotient to the proper representation in RNS (positive or
negative).

Part I: Take the absolute value of X and Y, and record
the signs of them. If the signs of the dividend and divisor are
different, then the quotient is negative, and we have to set the
sign variable, SIGN, to 1. SIGN will be used to convert the
quotient to a proper form in Part V.

Part [I: We find the proper 2* such that (Y - 2%) < X <
(Y - 2t1) in the following way. Two variables, LB (Lower-
Bound) and U B (Upper-Bound), are set to record the range in
which the value of the quotient is to be found. The LB and the
U B will dynamically change, as the algorithm is executed. In
iteration ¢, LB = 2¢ and U B = 2'*!. We repeatedly compare
(2 -Y) with X and detect whether (2*! - Y) is greater than
(M —1)/2 (denoted as M), until we find some 4, denoted
as k, such that (Y - 2¥) < X < (Y - 2%*1). Then we make
the record by setting LBy = 2* and UBy = 2¥*1. In each
iteration, the LB;, is updated by doubling LB;, and U B; 11
is equal to the twice of LB; 1. The following are the equations
for finding the Upper-Bound and the Lower-Bound.

LBiy1 = vit1 (10)
UBi11 =2 LBiy, (11)
with
_[2-LB;, itX>Y- LB
Y+1=\LB;, fX<Y-LB;

and LBy = 2°. Suppose that the procedure halts in iteration
i+ 1 when X < Y . LB; is tested. According to (10)
and (11), LB;y1 = LB; and UB;;; = UB;, respectively.
Let us define this i to be k, then LBy = LB; = 2* and
UBy = 2- LB; = ok+1,

Two cases may occur when the above procedure halts. In
one case, (UBy -Y) is smaller than M. Then a binary search
starts in Part III. Otherwise go to Part IV.

Part IlI: We have found the Upper-Bound ((/Bg) and the
Lower-Bound (LBg) from the previous part such that Y -
LBy < X <Y -UDBy. In this part we perform a binary search
to find the difference between LBy and the quotient, denoted
as QE. k steps are needed to finish this part, since 2% integers
exist in the range [2k, 2’““). Before the binary search, we set
the initial value Q) Ey to be 0. In each step of the binary search,
we have to compare X with (Y - (UB;j+1 + LBj41)/2) (for
convenience, we use another variable “Bounding,” Bjt1, to
denote (HB]'+1 +£Bj+1)/2). If (X -Y- Bj+1) < 0, then
set UBj+1 = Bji1 and QFE;11 = 2 - QE;. Otherwise set
£8j+1 = Bj+1 and QEJ+1 = (2QEJ + 1) When this
procedure is finished, we can find the quotient, Z, to be
Z = (LBy + QFE}). The following are the equations for the
binary search.

UB; + LB;
By = 4B 1)
R]-H = X - Y : Bj+1 (13)
QE]+1 =2- QE] + 6]'+1 (14)
UB]_H =0j+1 (15)
LBjt1=0;4 (16)
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where

s [l i R>0
1710, otherwise
{UBj, ifRj1 >0

Titl = Bji1. otherwise

0. = [:B]', if Rj+1 <0
i+1 7\ Bjs+1, otherwise

b = 0, QEy = 0, LBy = 2F, and UBy = 2*t!. The
procedure halts when j + 1 = k. To decide the sign of the
quotient, we have to go to Part V.

PartIV: If (Y - 2%) < X < M,, < (Y - 25%1), we have to
update UB, as (UBy + LBy)/2 = (2F +2%+1)/2, and LB,
as 28, QF, is updated as QF; = 2 - QFEy. Repeatedly, in
the (j + 1)th iteration, update B;1, = (UB; + LB;)/2 and
examine whether (Y - B;;;) overflows again. If there is an
overflow, set UB; 1, = Bji1 and QEj 11 = 2QF;. Continue
this procedure until (Y- B;1) does not overflow. If (Y- B, 41)
does not overflow and (X —Y-B; 1) > 0, set LB;11 = Bj41
and QE;11 = (2- QF; + 1), and detect overflow again. If
(Y - Bj41) does not overflow and (X —Y - Bj11) < 0, set
UBjy1 = Bjiy and QF;4, = 2 QFE;, and perform the
similar operations as defined in the binary search of Part III.
After taking £ steps in total, then go to Part V.

The following equations are applied in the above operations.

Byt = M a7)
Rjs1 =Y B - M, (18)
R, =X -Y Bjn (19)
QF;j 1 =2 -QE; +6;11 (20)
UBj11 =0j41 (21
LBjy1 =101 (22)
where

0, if (Rj+1 > 0) OR [(Rj+1 < 0)

811 = AND (R}, < 0)]
1. otherwise
Bjy1, if (Rj41 > 0) OR [(Rj41 < 0)
Oip1 = AND (R),;, < 0)]
UB;. otherwise
... = Birs i [(Rj41 <0) AND (R}, > 0)]
J+1 LB;, otherwise

80 =0,QFEy =0, LBy = 2%, and UBy = 2*+1 (LB, and UB,
are from (13)]. If [(Y - Bj11— M, <0) AND (X -Y -B,,; <
0)], go to Part III, and continue the search procedures in Part
IL If {UBj41 — LB;+1] = 1, the search stops. Let quotient
Z = LBj;1, and go to Part V to get the proper form for Z
(as a positive number or a negative number).

Part V: From Part 1, the exact quotient may be negative.
Therefore, if SIGN=1, the absolute value of the found quotient
should be complemented.

B. The Correctness of the Algorithm

The absolute value of a quotient is equal to the quotient of
the absolute value of the dividend and the absolute value of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 8, AUGUST 1992

divisor. The sign of the quotient depends on the signs of the
dividend and divisor. If the signs of the dividend and divisor
are different, then the quotient is negative. Otherwise, the
quotient is positive. To prove the correctness of the algorithm,
we concentrate on Part II and Part III only. The proofs of Part
IV and Part III are similar and are hence omitted.

In Part II, by replacing the initial value and the iterative
values, we can find LB;;; and UB;4; as follows:

LBiyy =2, and UB;y, =27L

When the procedure halts, i.e., when X > Y - LB; =Y . 2t
we set the value 7 to be k, hence

LB =LBy=2"<Z <2*' = UB, =UB;. (23)

The values decided for LB, and U By are required by Part III.

In Part III, substituting the initial values of 6¢, UBy, LBy
into (13)—(17), we can find By, Ry, QF;, UB;, and LB;.
Iteratively we can find By, Ro, QFs, UB2, and LB,. In the
jth iteration, the following equations hold.

J
LBy LBy
Bji1 = LBy + 2_:1‘5’"—% + 57 249
Rjjn=X-Y Bjn (25)
i+l
QEj1 = Z i+l-mg (26)
m=1
i+l
LBy LBy
UBj1 = LBy + Z b + 371 @7
J+1
L‘B
LBjy1=LBo+ Y bmar (28)
m=1
When j + 1 = £k,
Ri=X-Y By
k—1
LBy LB,
=X-Y m— + =2 2
X <L‘Bo+,§;16 ot o ) (29)

Since LBy = 2F, therefore,

k—1
Re=X-Y (LBO + Y Em2m 4 1>. (30)

m=1
Letting both sides of (30) be divided by Y, we can have

k—1

+z:30+25 Qk-—m

X _ Ry

o= (1)

After substituting £ = j + 1 into (26) to find QEy, (31) can
be rewritten as follows,

X R
Yy = 7k+£BO+QEk—(5k+1

In the above equation, & is decided by Ri/Y [from (13)
and (14)]. There are two cases:
1) R/Y > 0, then we find 6 = 1, and (32) becomes
X Rk
Y

(32)

— + LBy + QF;.
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M-1
2

:

j=0, K=0, IMP=0
UB=1, LB=1
QE=0, QB=1

Mp=
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UB=B LB=B
QE=2QE QE=2QE+1

n
TMP=1 @
UB-B

QE=2QE y

PART

Fig. 1. Flowchart of the division algorithm (Part II to Part IV).

Since R/Y < 1, taking the floor values of both sides
in the above equation, we can find the desired quotient
value, Z, by

X R
{VJ = {7" + LBy + QEkJ = LBy +QF;, = Z.
2) Ri/Y <0, then we find é; = 0, and (32) becomes

X R
72}—,'“+£BO+QE,€+1,

Since Ry/Y < 0 and |R;/Y| < 1, therefore, Ry/Y +

1 < 1. Taking the floor values of both sides in the above
equation, we can find the desired quotient value, Z, by

léJ = [1+§;—/E+LBO+QE;¢J =LBy+ QFy = Z.

C. Division Algorithm

The flowchart of Part II to Part IV of the algorithm is shown
in Fig. 1. Since LB and UB are used as program variables,
they can represent previously described LB; and UB;, or LB;
and UB ID
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D. Discussions

This algorithm requires five parts of computations. Constant
time is needed in Part I to find the absolute values of
the dividend and the divisor, and in Part V to transfer the
absolute value of the quotient, |Z|, to the proper form. In
Parts 11, 111, and IV, our algorithm needs (2 - log, Z) steps
to finish the division operation. The first log, Z steps find
the range which the quotient falls in, and the second logy Z
steps find the difference between QB and the quotient. Each
step needs several RNS additions and subtractions, one RNS
multiplication, a table look-up for the parity of S;’s, a table
look-up for the u;’s, a multioperand binary addition over the
4;’s and an Exclusive OR for finding the parity of a number.

We have implemented the presented algorithm on a divider
with modulus set being {17,13,11,7,5} and M = 17 x
13 x 11 x 7 x 5 = 85085. The Verilog Hardware Description
Language (VHDL, Cadence simulation package) has been used
to simulate the design in the logic gate level. The result has
proved that our algorithm is correct and efficient as expected.

IV. CONCLUSION

We have presented a division algorithm which needs only
simple RNS arithmetic operations, and which can be easily
implemented. This is a general division algorithm, with no
restrictions to either dividend or divisor. No estimation of the
quotient is required before the division is executed. These
characteristics make the calculation less complicated, more
efficient, and speedier.

We also presented a very good and easy technique for
overflow detections and number comparisons. In the traditional
way of detecting overflow and comparing numbers in RNS,
mixed radix numbers have to be used. This is time consuming
and requires complex hardware. Our method is more efficient
and less complicated than the existing algorithms.

A parity-checking technique is presented in this paper for
number comparisons and overflow detections. We use the
fractional number approach to find the parity of an RNS
number. Several small tables and a multioperand binary adder
are required. Some other small tables needed are for storing
the values of the multiplicative inverse of 2, |27 |, . Except
the tables mentioned above, no other table is required, and all
we need is simple arithmetic calculations. This algorithm can
be easily implemented on hardware and can achieve good time
performance which is logarithmic to the size of the quotient.
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