
May 1990 UILU-ENG-90-2215
CSG-123

COORDINATED SCIENCE LABORATORY
College o f Engineering

EFFICIENT INSTRUCTION SEQUENCING WITH INLINE TARGET INSERTION
Wen-mei W. Hwu
Pohua P. Chang

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION

Unclassified ________
16. RESTRICTIVE MARKINGS

None
2a. SECURITY CLASSIFICATION AUTHORITY

none
2b. OECLASSIFICATION / DOWNGRADING SCHEDULE

none

3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-90-2215 CSG-123
S. MONITORING ORGANIZATION REPORT NUMBER(S)

none

6a. NAM E OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(tf applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION
NSF, NCR, NASA, ONR

6c ADORESS (Gty, Stata, and ZIP Cod*)

1101 W. Springfield Avenue
Urbana, IL 61801

I h ? ™ g (' Sít?éet^rWa<sh?ngton, DC 20552
NCR: Personal Computer Div.-Clemson

1150 Anderson dr., Liberty, SC 29657
8a. NAME OF FUNDING/SPONSORING

ORGANIZATION
same as 7a.

8b. OFFICE SYMBOL
Of applicable)
N/A

f e m w r i i T O i number
NASA: NASA NAG 1-613, ONR: N00014-88-K-0656

8c ADDRESS (C/ty, State, and ZIP Cod«)

same as 7b
10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

Efficient Instruction Sequencing with Inline Target Insertion
12. PERSONAL AUTHOR(S)Hwu, Wen-mei W. Chang, Pohua P.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (fear, Month, Day) 15. PAGE COUNT

Technical FROM TO 1990 May 48
16. SUPPLEMENTARY NOTATION

none
17. COSATI COOES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Inline Target Insertion, pipeline implementation,
Branch Target Buffers, pipelining

■ - * — •— w — — •— - ! » - -The trend of deep pipeliningABSTRACT (Continue on reverse if necessary and identify by block number) , ,p pipelining and multiple instruction issue has made instruction sequencing
an extremely critical issue. Traditionally, compiler-assisted instruction sequencing methods
have been considered not suitable for deep pipelining and multiple instruction issue. Hard­
ware methods such as Branch Target Buffers have been proposed for deep pipelining and multiple
instruction issue. This paper defines Inline Target Insertion, a specific compiler and
pipeline implementation method for Delayed Branches with Squashing. THe method is shown to
offer two important features not discovered in previous work. First, branches inserted into
branch slots are correctly executed. Therefore, the instruction sequencing efficiency is
limited solely by the accuracy of compile-time branch prediction. This feature coupled with
highly accurate compile-time branch prediction gives Inline Target Insertion excellent per­
formance characteristics. Second, the execution returns correctly from interrupts or
exceptions with only one single program counter. There is no need to reload other sequencing
pipeline state information. These two features make Inline Target Insertion a superior
alternative (better performance and less software/hardware complexity) to the conventional
20. DISTRIBUTION /AVAILABILITY OF ABSTRACT

B UNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ OTIC USERS
21. ABSTRACT SECURITY CLASSIFICATION

Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE Qndude Area Code) 22c. OFFICE SYMBOL

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED
SECURITY GLASSIFICATION

7b. NASA Langle Research Center, Hampton, VA 23665
Office of Naval Research, 800 N. Quincy, Arlington, VA 22217

19.
delayed branching mechanisms. The compiler part of Inline Target Insertion has been
shown to be straightforward with an implementation in the IMPACT-I C Compiler. A
new code expansion control method has been proposed and included in the implementation
The code expansion and instruction sequencing efficiency are measured for real UNIX
and CAD programs. The size of programs, the variety of programs, and the variety of
inputs to each program are significantly larger than those used in the previous
experiments. The stability of code restructuring based on profile information is
proved empirically using a large number of diverse inputs to each benchmark
program. The results show that Inline Target Insertion achieves high sequencing
efficiency at a small cost of code expansion for deep pipelining and multiple
instruction issue.

UNCLASSIFIED ISECURITY CLASSIFICATION OF THIS PAGE

Efficient Instruction Sequencing with Inline Target Insertion

Wen-mei W . Hwu Pohua P. Chang

Center for Reliable and High-Performance Computing

University o f Illinois

hwuQcsg.u iu c . edu

April 11, 1990

Abstract

The trend of deep pipelining and multiple instruction issue has made instruction sequenc­

ing an extremely critical issue. Traditionally, compiler-assisted instruction sequencing methods

have been considered not suitable for deep pipelining and multiple instruction issue. Hardware

methods such as Branch Target Buffers have been proposed for deep pipelining and multiple

instruction issue. This paper defines Inline Target Insertion, a specific compiler and pipeline

implementation method for Delayed Branches with Squashing. The method is shown to offer

two important features not discovered in previous work. First, branches inserted into branch

slots are correctly executed. Therefore, the instruction sequencing efficiency is limited solely

by the accuracy of compile-time branch prediction. This feature coupled with highly accurate

compile-time branch prediction gives Inline Target Insertion excellent performance character­

istics. Second, the execution returns correctly from interrupts or exceptions with only one

single program counter. There is no need to reload other sequencing pipeline state information.

These two features make Inline Target Insertion a superior alternative (better performance and

1

less software/hardware complexity) to the conventional delayed branching mechanisms. The

compiler part of Inline Target Insertion has been shown to be straightforward with an imple­

mentation in the IMPACT-I C Compiler. A new code expansion control method has been

proposed and included in the implementation. The code expansion and instruction sequencing

efficiency are measured for real UNIX and CAD programs. The size of programs, the variety

of programs, and the variety of inputs to each program are significantly larger than those used

in the previous experiments. The stability of code restructuring based on profile information

is proved empirically using a large number of diverse inputs to each benchmark program. The

results show that Inline Target Insertion achieves high sequencing efficiency at a small cost of

code expansion for deep pipelining and multiple instruction issue.

2

1 Introduction

The instruction sequencing mechanism of a processor determines the instructions to be fetched from

the memory system for execution. In the absence of branch instructions, the instruction sequencing

mechanism keeps requesting the next sequential instructions in the linear memory space. In this

sequential mode, it is easy to maintain a steady supply of instructions for execution. Branch

instructions, however, disrupt the sequential mode of instruction sequencing. Without special

hardware and/or software support, branches can significantly reduce the performance of pipelined

processors by breaking the steady supply of instructions to the pipeline [Kogg81].

Many hardware methods for handling branches in pipelined processors have been studied

[Smith81] [Lee84] [DeRo88] [McFa86] [Hsu86] [Ditz87]. An important class o f hardware meth­

ods, called Branch Target Buffers (or Branch Target Caches), employ buffering and extra logic to

detect branches at an early stage of the pipeline, predict the branch direction, fetch instructions ac­

cording to the prediction, and scratch the instructions fetched due to an incorrect prediction[Lee84].

Branch Target Buffers have been adopted by many commercial processors [Lee84][Hors90][Amd].

The performance of the hardware methods is determined by their capability to detect the branches

early and to predict the branch directions accurately. High branch prediction accuracy, about

85-90% hit ratio, has been reported for hardware methods[Smith81][Lee84][McFa86]. They do not

require recompilation or binary translation of existing code. However, the hardware methods suffer

from the disadvantage of requiring a large amount of fast hardware to be effective[Lee84][Hwu89a].

Their effectiveness is also sensitive to the frequency of context switching [Lee84].

Compiler-assisted methods have also been proposed to handle branches in pipelined proces­

sors. For example, delayed branching has been a popular method to absorb branch delay in

3

microsequencers o f microprogrammed microengines. This technique has also been adopted by

many recent processor architectures including IBM 801[Radin 82], Stanford MIPS[Henn81], Berke­

ley RISC [Patt82], HP Spectrum [Birn86], SUN SPARC [Sun87], MIPS R2000 [Kane87], Motorola

88000[Mele89], AMD 29000[Amd], and Intel i860[Inte89]. In this approach, instruction slots imme­

diately after a branch are reserved as the delay slots for that branch. The number of delay slots

has to be large enough to cover the delay for evaluating the branch direction. During compile-time,

the delay slots following a branch are filled with instructions that are independent o f the branch

direction, if the data and control dependencies allow such code movement [Gros82]. Regardless of

the branch direction, these instructions in the delay slots are always executed. McFarling and Hen-

nessy reported that the first delay slot can be successfully filled by the compiler for approximately

70% of the branches, and the second delay slot can be filled only 25% of the time[McFa86]. It is

clear that delayed branching is not effective for processors requiring more than one slot.

Another compiler-assisted method, called Delayed Branches with Squashing, has been adopted

by some recent processors to complement delayed branching[McFa86][Hill86][Chow87] [Mele89].

That is, the method is used when the compiler cannot fill the delay slots for delayed branching.

In this scheme, the number of slots after each branch still has to be large enough to cover branch

delay. However, instead of moving independent instructions into branch delay slots, the compiler

can fill the slots with the predicted successors of the branch. If the actual branch direction differs

from the prediction, the instructions in the branch slots are scratched (squashed) from the pipeline.

On the least expensive side, the hardware predicts all conditional branches to be either always

taken (as in Stanford MIPS-X [Chow87]) or always not-taken (as in Motorola 88000 [Mele89]). Pre­

dicting all the instructions to be taken achieves about 65% accuracy whereas predicting not-taken

does about 35%[Smith81][Lee84] [Emer84]. The compiler simply fills the branch slots according

4

Scheme Hardware features Compiler features
Delayed branches None Fill slots with

independent code
Delayed branches
with squashing

Uniform prediction
and squashing

Fill slots with
independent code or
predicted successors

Profiled delayed branches Prediction bit Execution profiling
with squashing and squashing Fill slots with

predicted successors

Table 1: A summary of delayed branching mechanisms.

to the hardware prediction. Predicting all the branches to be either taken or not taken limits

the performance of delayed branches with squashing. Furthermore, filling the branch slots for

predicted-taken branches require code copying in general. Predicting all branches to be taken can

result in a large amount of code expansion.

McFarling and Hennessy proposed Profiled Delayed Branches with Squashing. In this scheme,

an execution profiler is used to collect the dynamic execution behavior o f programs such as the

preferred direction of each branch[McFa86]. The profile information is then used by a compile­

time code restructurer to predict the branch direction and to fill the branch slots according to the

prediction. In order to allow each branch to be predicted differently, an additional bit to indicate the

predicted direction is required in the branch opcode in general. Through this bit, the compiler can

convey the prediction decision to the hardware. McFarling and Hennessy also suggested methods

for avoiding adding prediction bit to the branch opcode. Using pipelines with one and two branch

slots, McFarling and Hennessy showed that the method can offer comparable performance with

hardware methods at a much lower hardware cost. They suggested that the stability of using

execution profile information in compile-time code restructuring should be further evaluated.

5

This paper examines the extension of McFarling and Hennessy’s idea to processors employing

deep pipelining, multiple instruction issue, and high-bandwidth low-cost memory. These techniques

increase the number of slots for each branch. As a result, four issues arise. First, there are only

3 to 5 instructions between branches in the static program (see Section 4.2). In order to fill a

large number of slots (on the order o f ten), one must be able to insert branches into branch slots.

Questions arise regarding the correct execution of branches in branch slots. Second, the state

information of instruction sequencing becomes large. Brute force implementations of return from

interrupts and exceptions can involve saving/restoring a large amount o f state information of the

instruction sequencing mechanism. Third, the code expansion due to code restructuring can be very

large. It is important to control such code expansion without sacrificing performance. Fourth, the

number of bubbles created due to each incorrectly predicted branch is large. It is very important

to show extensive empirical results on the performance and stability o f using profile information

in compile-time code restructuring. The first three issues were not addressed by McFarling and

Hennessy [McFa86].

In order to address these issues, we have specified a compiler and pipeline implementation

method for Delayed Branches with Squashing. We refer to this method as Inline Target Inser­

tion to reflect the fact that the compiler restructures the code by inserting predicted successors

of branches into their sequential locations. Based on the specification, we show that the method

exhibits desirable properties such as simple compiler and hardware implementation, proof o f correct­

ness, clean interrupt/exception return, moderate code expansion, and high instruction sequencing

efficiency. Our correctness proof o f filling branch slots with branch instructions is also applicable

to a previously proposed hardware scheme [Ples87].

The paper is organized into five sections. Section 2 presents background and motivation for

6

Inline Target Insertion. Section 3 defines the compiler and pipeline implementation, proves the

correctness o f the proposed implementation, and suggests a clean method to return from interrupt

and exception. Section 4 provides empirical results on code expansion control and instruction

sequencing efficiency. Section 5 offers concluding remarks regarding the cost-effectiveness and

applicability o f Inline Target Insertion.

2 Background and Motivation

2.1 Branch Instructions

Branch instructions reflect the decisions made in the program algorithm. Figure 1(a) shows a C

program segment which finds the largest element of an array. There are two major decisions in the

algorithm. One decides if all the elements have been visited and the other decides if the current

element is larger than all the other ones visited so far.

(a):
MaxElement = 0;
for (i = 0; i < IMax; i+ +) {

if (Array[i] > MaxElement) MaxElement = Array[i];
} . . .

(b):
rl <— i
r2 <— temporary for Array[i]
r3 <— IMax
r4 «— MaxElement

Figure 1: (a) An example C program for finding the largest element in Array, (b) The register
assignment.

With the register allocation/assignment assumption in Figure 1(b), a machine language program

can be generated as given in Figure 2. There are three branches in the machine language program.

Instruction D ensures that the looping condition is checked before the first iteration. Instruction I

checks if the loop should iterate any more. Instruction F determines if the current array element

7

is larger than all the others visited so far.

(a)
A: r4 <— 0
B: r l <— 0
C: r3 <— IMax
D: goto I
E: r2 <— Array(rl)
F: if (r2 > r4) goto H
G: r4 « - r2
H: r l <— r l + 1
I: if (r l < r3) goto E
J: MaxElement <— r4
K: ...

(b)

100%

Figure 2: a) A machine language program generated from the C program shown in Figure 1. b) A
simplified view of the machine language program.

The simplified view of the machine language program in Figure 2 highlights the effect of

branches. Each arc corresponds to a branch where the head of an arc is the target instruction.

The percentage on each arc indicates the probability for the corresponding branch to occur in

execution. The percentages can be derived by program analysis and/or execution profiling. If

the percentage on an arc is greater than 50%, it corresponds to a likely branch. Otherwise, it

corresponds to an unlikely branch.

The instructions shown in Figure 2(a) are static instructions. These are the instructions gener­

ated by the compilers and machine language programmers. During program execution, each static

instruction can be executed multiple times due to loops. Each time a static instruction is executed,

it generates a dynamic instruction. The correct successors o f a dynamic instruction I is defined as

8

the dynamic instructions to be executed after I as specified by the instruction set architecture. The

kth correct successor o f I will be denoted as S(I, k). A dynamic branch instruction which redirects

the instruction fetch is called a taken branch.

2.2 Instruction Sequencing for Pipelined Processors

The problems with instruction sequencing for pipelined processors are due to the latency of de­

coding and/or executing branches. A simple hardware example suffices to illustrate the problem

of instruction sequencing for pipelined processors. The processor shown in Figure 3 is divided

into four stages: instruction fetch (IF) , instruction decode (ID) , instruction execution (E X) , and

result write-back (WB) . The instruction sequencing logic is implemented in the E X stage. The

sequencing pipeline consists o f the IF , ID , and E X stages o f the processor pipeline. When a

compare-and-branch1 instruction is processed by the E X stage2, the instruction sequencing logic

determines the next instruction to fetch from the memory system based on the comparison result.

The dynamic pipeline behavior is illustrated by the timing diagram in Figure 4. The vertical

dimension gives the clock cycles and the horizontal dimension the pipeline stages. For each cycle,

the timing diagram indicates the pipeline stage in which each instruction can be found.

Without branches, the pipeline fetches instructions sequentially from memory. In Figure 4, the

instructions to be executed ar e E ^ F ^ > G - + H ^ I - ^ E ^ F . However, the direction of

branch I is not known until cycle 7. By this time instructions J and K have already entered the

pipeline. Therefore, in cycle 8 instruction E enters the pipeline while J and K are scratched. The

bubbles created by incorrectly fetching J and K reduce the throughput of the pipeline.

1 Although the compare-and-branch instructions are assumed in the example, the methods in this paper applies
to condition code branches as well.

2 Although unconditional branch instructions can redirect the instruction fetch at the the I D stage, we ignore the
optimization in this example for simplicity.

9

I F

Instruction
memory

IR-

I D

Decode and
Register

fetch

Next fetch
address

logic

OIr-*'

E X

ALU and
branch

decision
*RL

W B

Register

write

Figure 3: A block diagram and a simplified view of a pipelined processor. FA, IR, OR, RR are
pipeline registers Fetch Address, Instruction Register, Operand Register, and Result Register.

I F ID E X W B
1 E
2 F E
3 G F E
4 H G F E
5 I H G F
6 J I H G
7 K J I H
8 E I
9 F E

Figure 4: A timing diagram of the pipelined processor in Figure 3 executing the sequence of
instructions E —> F -+ G —* H —> I -+ E -+ F of Figure 2. Instructions J and K are scratched
from the pipeline because I is taken.

10

Figure 5: A timing diagram of a pipelined processor which results from further dividing the IF
and E X stages of the processor in Figure 3.

2.3 Deep Pipelining and Multiple Instruction Issue

The rate o f instruction execution is equal to the clock frequency times the number of instructions

executed per clock cycle. One way to improve the instruction execution rate is to increase the clock

frequency. The pipeline stages with the longest delay (critical paths) limit the clock frequency.

Therefore, subdividing these stages can potentially increase the clock frequency and improve the

overall performance. This adds stages in the pipeline and creates a deeper pipeline. For example,

if the instruction cache access and the instruction execution limit the clock frequency, subdividing

these stages may improve the clock frequency. A timing diagram of the resultant pipeline is shown

in Figure 5. Now four instructions are scratched if a compare-and-branch redirects the instruction

fetch. For example, — I5 may be scratched if Ii redirects the instruction fetch.

Another method to improve instruction execution rate is to increase the number of instructions

executed per cycle. This is done by fetching, decoding, and executing multiple instructions per cycle.

This is often referred to as multiple instruction ¿ssue[Tjad70] [Fost72][Kuck72][Nico84][Patt85][Hwu88]

[Ples88][Smith89]. The timing diagram of such a pipeline is shown in Figure 6. In this example,

two instructions are fetched per cycle. When a compare-and-branch (Ji) reaches the E X stage,

11

I F ID E X W B
1 I2 J 1
2 I4 J 3 h J i
3 Ie ,h I4 J 3 h J i
4 I3 J 7 h

Figure 6: A timing diagram of the pipelined processor which processes two instructions in parallel.

five (/2>F3,/4 ,/5 ,/e) instructions may be scratched from the pipeline.3

As far as instruction sequencing is concerned, multiple instruction issue has the same effect

as deep pipeling. They both result in increased number of instructions which may be scratched

when a branch redirects the instruction fetch.4 Combining deep pipelining and multiple instruction

issue will increase the number of instructions to be scratched to a relatively large number. For

example, the TANDEM Cyclone processor requires 14 branch slots due to deep pipeline and multiple

instruction issue[Hors90]5 The discussions in this paper do not distinguish between deep pipelining

and multiple instruction issue; they are based on the number o f instructions to be scratched by

branches.

2.4 High-Bandwidth Low-Cost Instruction Memory

Instruction caches have been adopted in many high performance processors. To support an exe­

cution rate o f one instruction per cycle, most of the instruction caches provide single cycle access.

3The number of instructions to be scratched from the pipeline depends on the instruction alignment. If I2 rather
than 7i were a branch, four instructions (I3 , Z*, i s , /«) would be scratched.

4 An issue which distinguishes multiple instruction issue from deep pipelining is that multiple likely control transfer
instructions could be issued in one cycle. Handling multiple likely control transfer instructions per cycle in a multiple
instruction issue processor is not difficult in Inline Target Insertion. The details are not within the scope of this
paper.

5The processor currently employs an extension to the instruction cache which approximates the effect of a Branch
Target Buffer to cope with the branch problem.

12

Instruction caches work well when processors are implemented with mature technology which can

accommodate large on-chip caches. They also work fairly well when the main-stream memory

technology can provide external single-cycle access caches at a reasonable cost.

There are, however, at least two situations where high-bandwidth low-cost instruction memories

(such as Video RAMs) [Nico88] may be preferred to instruction caches. One is in applications which

require highly predictable instruction access time (due to real-time requirements), high instruction

access bandwidth (due to high performance requirements), and low-cost memory system (to enable

large volume production). Instruction caches with unpredictable cache misses can not provide

predictable instruction access time. The cost for a Video RAM based instruction memory to

support the same size and bandwidth is much lower than that for an instruction cache. For example,

Advanced Micro Devices recommends using Video RAMs for constructing low-cost memory systems

for the AMD29000-based products. The other situation is when an aggressive technology (e.g.

GaAs) is used to build extremely high-performance processors without room for on-chip caches. In

this case, it may be too expensive to build oif-chip caches which provide single cycle access. High-

bandwidth low-cost memories such as Video RAMs, on the other hand, may have the capability to

provide one instruction every cycle at a much lower price.

High-bandwidth low-cost memories can be treated as pipelined memories. It takes several cycles

to perform an initial access. Once the initial data is available, one can perform single cycle access

to its sequential locations. In the context o f instruction fetch, the first instruction access takes

several (typically three) cycles but the subsequent sequential accesses complete in single cycle.

Branches cause performance problem by disrupting the sequential fetch pattern. Fetching the

target instruction of a taken branch involves the initial access delay in general. For example, there

is a Branch Target Cache on AMD29000 to provide the first three successors o f a taken branch to

13

cover the initial latency for accessing the target instructions. Since the first three successors are

supplied by the Branch Target Cache, the external instruction memory are accessed starting with

the fourth successor of the branch.

In this paper, we model high-bandwidth low-cost memories with multiple pipeline stages for

instruction fetch. While this model may not be exact in general, due to some boundary conditions,

compile-time code restructuring together with hardware timing design can make Video RAMs

behave exactly like a pipelined memory[Chan90]. As far as instruction sequencing is concerned, the

use of high-bandwidth low-cost memory increases the depth of the instruction sequencing pipeline.

Therefore, it increases the number of required branch slots. The question is whether we can achieve

high performance with high-bandwidth low-cost instruction memories using clever compile-time

code restructuring methods.

3 Inline Target Insertion

This section addresses three basic theoretical issues of Inline Target Insertion: formal models of

implementation, proof of correctness, and return from interrupt/exception.

3.1 Compiler Implementation

The compiler implementation of Inline Target Insertion involves compile-time branch prediction

and code restructuring. Branch prediction marks each static branch as either likely or unlikely.

The prediction is based on the estimated probability for the branch to redirect instruction fetch

at the run time. The probability can be derived from program analysis and/or execution profiling.

The prediction is encoded in the branch instructions and passed on to the run-time hardware.

The predicted successors of an instruction I are the instructions which tend to execute subse-

14

quent to 7. The definition of predicted successors is slightly complicated by the frequent occurrence

of branches. Let T(7, k) refer to the kth predicted successor o f 7. The predicted successors of an

instruction can be defined recursively:

1. If 7 is a likely branch, then T (7 ,1) is the target instruction o f 7. Otherwise T (7 ,1) is the

next sequential instruction of 7.

2. (7i = T (7 , k)) A (72 = T (IU 1)) - h = T(7, k + 1)

For example, one can identify the first five predicted successors o f F in Figure 2 as shown

below. Since F is a likely branch, its first predicted successor is its target instruction H . The

second predicted successor o f F is 7, which is a likely branch itself. Thus the third predicted

successor o f F is 7 ’s target instruction E.

H = T(F, 1)

H = T(F, 1) A / = T(H, 1) -> I = T(2)

I = T(F,2) A E = T (1 ,1)-* E = T3)

E = T(F, 3) A F = T(E, 1) - F = T(F,4)

F = T(F, 4) A i f = T(F, 1) - H = T(F, 5)

The code restructing algorithm is shown below. It is also illustrated by Figure 7. The goal is to

ensure that all original instructions find their predicted successors in the next sequential locations.

This is achieved by inserting the predicted successors of likely branches into their next sequential

locations.

Algorithm I T I (N)

15

1. Open N insertion slots after every likely branch 6.

2. Adjust the target label o f the likely branches so that a likely branch I will branch

to T (7, N + 1) rather than T (7 ,1) 7.

3. Copy the first N predicted successors of each likely branch into its slots8. If some

of the inserted instructions are branches, make sure they branch to the same target

after copying.9

Note that we referred to the slots opened by the ITI Algorithm as insertion slots instead of

more traditional terms such as delay slots or squashing delay slots. The insertion slots are only

associated with likely branches. It is a compile-time concept. Only instructions in the insertion

slots can be duplicate copies. All the others are original. This is different from what the terms

delay slots and squashing delay slots usually mean. They often refer to sequential locations after

both likely and unlikely branches.

Figure 8 illustrates the application of ITI(N=2) to a part o f the machine program in Figure 2.

Step 1 opens two insertion slots for the likely branches F and 7. Step 2 adjusts the branch label

so that F branches to H + 2 and 7 branches to E + 2. Step 3 copies the predicted successors o f F

(H and I) and 7 (E and F) into the insertion slots o f F (H ' and I') and I (E' and F'). Note that

the offset is adjusted so that F and F' branches to the same target instructions as I and F. The

readers are encouraged to apply ITI(N=3) to the code for more insights into the algorithm.

6It is possible to extend the proofs to non-uniform number of slots in the same pipeline. The details are out side
the scope of this paper.

7In the discussions, all address arithmetics are in terms of instruction words. For example, address <— address + 1
advances the address to the next instruction.

®This step can be performed iteratively. In the first iteration, the first predicted successors of all likely branches are
determined and inserted. Each subsequent iteration inserts one more predicted successor for all the likely branches.
It takes N iterations to insert all the target instructions to their assigned slots.

This is trivial if the code restructuring works on assembly code. In this case, the branch targets are specified as
labels. The assembler automatically generates the correct branch offset for the inserted branches.

16

(a) Likely branch handling

C:t
N insertion

slots

alternative —
address

(b) unlikely branch handling

C:

no insertion

slots

Figure 7: Handling branches in the ITI Algorithm.

target of C

adjusted target

o f C

alternative
address

17

likely

(a) (b)
E E
F

ikely steP 1 -
F

G
H
I G

H
I

....... copy a predicted successor into a branch slot
Figure 8: A running example of Inline Target Insertion.

18

With Inline Target Insertion, each instruction may be duplicated into multiple locations. There­

fore, the same instruction may be fetched from one of the several locations. The original address,

A0(I) f o f a dynamic instruction is the address o f the original copy of I. The fetch address, Af (I) , of

a dynamic instruction I is the address from which I was fetched. In Figure 8, the original address

of both I and V is the address of I. The fetch addresses / and / ' axe their individual addresses.

3.2 Sequencing Pipeline Implementation

The sequencing pipeline is divided into N + 1 stages. The sequencing pipeline processes all instruc­

tions in their fetch order. If any instruction is delayed due to a condition (e.g. instruction cache

miss) in the sequencing pipeline, all the other instructions in the pipeline are delayed. This includes

the instructions ahead of the one being delayed. The net effect is that the entire sequencing pipeline

freezes. This ensures that the relative pipeline timing among instructions is accurately exposed to

the compiler. It guarantees that when a branch redirects instruction fetch, all instructions in its

insertion slots have entered the sequencing pipeline. Note that this restriction only applies to the

instructions in the sequencing pipeline, the instructions in the execution pipelines (e.g., data mem­

ory access and floating point evaluation) can still proceed while the instruction sequencing pipeline

freezes.

The definition of time in instruction sequencing separates the freeze cycles from execution cycles.

Freeze cycles do not affect the relative timing among instructions in the sequencing pipeline. In

this paper, cycle t refers to the tth cycle o f program execution excluding the freeze cycles. I (k, t) is

defined as the dynamic instruction at the kth stage of the sequencing pipeline during cycle t. The

implementation keeps an array of fetch addresses for all the instructions in the sequencing pipeline.

The fetch address for the instruction at stage i in cycle t will be referred to as Af (I (i , t)) .

19

The fetch address generation function of the sequencing pipeline is shown below. The sequencing

pipeline fetches instructions sequentially by default. Each branch can redirect the instruction fetch

and/or scratch the subsequent instructions when it reaches the end o f the sequencing pipeline.

If a branch redirects the instruction fetch, the next fetch address is the adjusted target address

determined in Algorithm ITI. If the decision of a branch is incorrectly predicted, it scratches all

the subsequent instructions from the sequencing pipeline.___

Fetch Address Generation Function FAG(N)

Pipeline stage 1:

if { I (N + 1 ,0 = E M P T Y } A , (J (M + 1)) « - A / (I (1 ,0) + 1

else if { I (N + l , i) = R E D I R E C T } A / (/ (l , i + 1)) <— adjusted target address of

/(iV+ 1 ,0)

else + 1)) <- A / (I (1 ,0) + 1

Other stages:

fo r k = 1...N Af (I (k + 1,* + 1)) <— Af (I (k , t))

Figure 9(a) shows a timing diagram for executing the instruction sequence ... E —► F H -»■

I -* E ... o f the machine program in Figure 8(a). With Inline Target Insertion (Figure 8(e)), the

instruction sequence becomes ... E F -> H' -*• V -> E' ... In this case, the branch decision

for F is predicted correctly at the compile time. When F reaches the E X stage in cycle 4, no

instruction is scratched from the pipeline. Since F redirects the instruction fetch, the instruction

20

(a) I F I D E X W B 0 0 I F I D E X W B
1 E 1 E
2 F E 2 F E
3 H r F E 3 H f F E
4 r W F E 4 V H' F E
5 E f V H' F 5 G F

Figure 9: (a) Timing diagram of a pipelined processor executing the sequence ... E - + F - *
H' —► ► E' ... o f instructions in Figure 8(e). (b) A similar timing diagram for the sequence ...
E - + F ^ G ...

to be fetched by the I F stage in cycle 5 is E r (the adjusted target o f F) rather than the next

sequential instruction G.

Figure 9(b) shows a similar timing diagram for executing the instruction sequence ... E —► F —»

G ... With Inline Target Insertion, the instruction fetch sequence becomes ... E —► F —* H' —► V —►

G ... In this case, the branch decision for F is predicted incorrectly at the compile time. When F

reaches the E X stage in cycle 4, instructions H' and I' are scratched from the pipeline. Since F

does not redirect the instruction fetch, the instruction to be fetched by the I F stage in cycle 5 is

the next sequential instruction G.

A very important rule is that whenever the sequencing pipeline is empty, first instruction is

always fetched from its original copy. The sequencing pipeline can be empty in three cases: program

startup, incorrect branch prediction, and return from interrupt/exception. It is easy to guarantee

that the program entrance address always be an original address. We will show in the next section

that the appropriate original address for a program to resume after incorrect branch prediction

and interrupt/exception handling is always conveniently available. These original addresses will be

used by the sequencing to resume program execution.

21

N + 1 The number of stages in the instruction sequencing pipeline
I (k , t) The dynamic instruction occupying the kth pipeline stage at cycle t
A f (I) The fetch address o f dynamic instruction I
A 0(I) The original address of dynamic instruction I

T (/ , k) The kth predicted successor of I
S (I , k) The kth correct successor of dynamic instruction I

Table 2: A summary of important definitions used in the proofs.

3.3 Correctness of Implementation

Branches are the central issue of Inline Target Insertion. Without branches, the sequencing

pipeline would simply fetch instructions sequentially. The instructions emerging from the sequenc­

ing pipeline would be the correct sequence. Therefore, the correctness proofs o f the compiler and

pipeline implementation will focus on the correct execution of branches. We first show that branches

are executed correctly with perfect branch prediction. We then finish the proof by showing that

the execution of branches remains correct when they are incorrectly predicted.

Correctly Predicted Branches

The difficulties with proving the correctness o f Inline Target Insertion are due to branches in

insertion slots. For pipelines with many slots, it is highly probable to have branches inserted

into insertion slots (see Section 4.2). In the case where there in no branch in insertion slots, the

correctness follow from the description of the ITI Algorithm. All branch instructions would be

originals and they would have their first N predicted successors in the next N sequential locations.

Whereas a branch instruction is an insertion slot can not have all its N predicted successors in

the next N sequential locations. For example, in Figure 8(e), questions arise regarding the correct

22

execution of F'. When F ' redirects the instruction fetch, how do we know that the resulting

instruction sequence is always equivalent to the correct sequence F —► H —» /...?

Theorem 1 states that, without incorrectly predicted branches in the sequencing pipeline, the

instructions in the sequencing pipeline are always the correct successors of the instruction at the

end of the pipeline. Therefore, the sequence of instructions delivered by the sequencing pipeline is

correct when all branches are predicted correctly.

T h eorem 1 I f none o f { I (i , t) , i = 1...JV -K 1} is an incorrectly predicted branch, then I (i , t) =

S(I (N + 1, t), N - i + 1), i =

Proof: The theorem can be proved by induction. Initially, the sequencing pipeline is empty. The

first instruction I fetched into the pipeline must be an original. According to the code restructuring

algorithm, the next N sequential instructions are the first N predicted successors to I . Since there

is no instruction preceding I in the pipeline, the next N sequential instructions are fetched into the

pipeline as I approach the end o f the pipeline (see the Fetch Address Generation Function). Since

there is no incorrect branch prediction, the first N predicted successors o f I are also its first correct

successors. This proves the initial step o f the induction.

Assuming that the theorem holds up to cycle t, we show that it also holds for cycle t + 1. That is,

knowing I (i , t) = 5(7(1V+1, f), JV -i+1), i = 1...N, we need to show I (i , t + l) = S (I (N + l , i+ 1), N -

i + l) , i = 1...N . From the Fetch Address Generation Function, I { i + 1 ,/ + 1) = I (i , t) , i = 1. . .N.

This implies I (i , t + 1) = S(I (N + l , t + 1), jV — * + 1), i — 2 ...N . It remains to be shown that

7(1, i + 1) = S(I (N + M + 1), N).

I f I (N + l , i) is not a taken branch, then it can not be a likely branch according to the assumption

o f correct branch prediction. Therefore, I (l , t) can not be fetched from the last insertion slot o f a

branch. 5(7(1 , i) , l) = 5(7(2, 1), 1) = 5(7(JV + + l),iV) must be 7 (l , i) ’s next sequential

23

instruction. According to the Fetch Address Generation function, 1(1, t + 1) is simply the next

sequential instruction o f 1(1 , t) if I (N -\ -l,t) is not a taken branch. Therefore I (l , t -\-l) = S(I (N +

l , i + 1) , N) is true if I (N + l , t) is not a taken branch.

I f I (N + l , t) is a taken branch, 1(1, t + 1) would be the adjusted target o f I (N + l ,t) . This

address o f this adjusted target is N plus the original target address o f 1(1, t + 1). Note that an

original target instruction is always an original instruction. The IT I algorithm ensures that the

first N predicted successor o f an original instruction are always found in the next N sequential

locations. Therefore, the adjusted target o f I (N + 1 ,t) is the N th predicted successor o f the original

target o f I (N + 1, t). Meanwhile, I (N + l , t + l) = I (N, t) is a copy o f the original target instruction

o f I (N + l , t) . Therefore, I (l , t + 1) = S(I (N, t) , N) = S (I (N + l , t + 1), N) . QED.

Figure 10 illustrates Theorem 1 with the execution of instructions in Figure 8(e). Assume that

correct instruction sequence should be equivalent to E —> F —> H -+ I —> E —> F m the original

program in Figure 8(a). The pipeline starts by fetching E into the empty pipeline. Note that

when F reaches the end of the pipeline in cycle 5, its correct successors H' and V are already

in the pipeline due to inline target insertion. F redirects the instruction fetch to E' which is the

adjusted target of F. With correct branch prediction, the instructions at the I F and ID stages

are always the correct successor of the one at the E X stage. Although instructions may be fetched

from duplicate copies rather than their originals, the instructions delivered to the W B stage is

equivalent to the correct sequence. The readers are encouraged to design an example involving the

execution of F ', a branch in a branch slot.

24

I F ID E X W B
1 E
2 F E
3 H' F E
4 V H • F E
5 E ' V H' F
6 F* E ' V H'

Figure 10: Timing diagram of a pipelined processor executing the sequence ... E —*• F —► H' —►
I' E' F' ... of instructions in Figure 8(e).

Incorrectly Predicted Branches

To execute an incorrectly predicted branch instruction correctly, the subsequent instructions in

the sequencing pipeline must be scratched. The alternative target instruction address must be

determined so that the instruction fetch can restart from that address. The results in this section

show that the alternative target address for both likely and unlikely branches are conveniently

available.

The case of unlikely branches is fairly straightforward. When the incorrectly predicted branch

reaches the end of the sequencing pipeline, the alternative target address is easily derived from

its fetch address (maintained by the hardware) and its target specification (e.g. target offset).

Note that this address is always an original address (see the ITI Algorithm). Since the N pre­

dicted successors of an instruction always follow its original copy in memory, the pipeline correctly

restarts fetching instruction from this address. Thus the alternative target address o f an incorrectly

predicted unlikely branch is conveniently available for restarting the instruction fetch.

The case of likely branches is not nearly as obvious. The general problem is illustrated in

Figure 11. The alternative address of a likely branch I\ is implicitly specified as N plus its original

25

alternative address o f li

Figure 11: The problem of implicit alternative address for likely branches in insertion slots.

address. However, if the likely branch is copied into a branch slot, this implicit information is not

copied with it. For example, if a dynamic instruction fetched from F' in Figure 8(e) is not taken,

it must produce an instruction sequence equivalent to F —* G —*■ H.... To guarantee this, the

address o f G must be available when F' reaches the end of the sequencing pipeline. However, since

F' does not carry any information about G being its alternative target instruction, it is not clear

if the address o f G will be available at that time. Fortunately, this is formally guaranteed by the

Corollary to Theorem 2, whose proof is divided into Lemma 1 and Lemma 2.

Lemma 1 states that if a dynamic instruction I (N + l , t) is fetched from its original copy, its

original address is conveniently available in the form of A / (/ (l , i)) — N .

L em m a 1 I f the I (N + l , t) is fetched from its original copy, then A f (I (l , t)) = N + A0(I (N + 1,2)).

Proof: Since I (N + l , t) = 1(1, t —N) and I (N + l , t) is fetched from its original copy, A j (I (l , t —

N)) = A0(I (N + 1,2)). Because an original instruction can never reside in any branch slot,

none o f { I { N + l , t - N) , I (N + M - N 4- 1),...J(JV + 1 , t - 1)} can be likely branches. There

could be unlikely branches among these last N instructions. However, unlikely branches do not

26

redirect instruction fetch unless they are incorrectly predicted. Any such incorrect prediction must

be detected before I (N + 1 ,t) reaches the end o f the pipeline. In this case, I (N + l , t) would have

been scratched from the pipeline before t. Therefore, none o f the previous N instructions can be

taken branches. The sequence pipeline fetches instructions sequentially between t — n and t. This

implies A f (I (l , ¿)) = N + A j (I (l , t — N)) = N + A0(I (N + 1, t)). QED.

Lemma 2 states that if a dynamic instruction I (N 4* 1 ,t) is fetched from a duplicate copy,

its original address is also conveniently available in the form of A f (I (l , t)) — N. Note that each

duplicate copy of a branch resides in a branch slot o f an original likely branch. Thus we prove

Lemma 2 by showing that for any arbitrary original likely branch B in the program, the Lemma

holds for all the dynamic instructions fetched from its insertion slots. Since B is an arbitrary original

branch instruction, this proves the Lemma for all dynamic instructions fetched from insertion slots.

L em m a 2 I f I (N + 1, t) is fetched from a duplicate copy, then A f (I (l , t)) = N + A0(I (N + l , i)) .

Proof: By induction. To prove the initial step o f the induction, we prove that the Lemma is

true for an dynamic instruction fetched from the first slot o f an arbitrary original branch B. This

slot contains a copy o f T (B , 1) is the first target instruction o f B. I f I (N + 1,£) = T(B, 1), then

I(N + l , t —l) = B and I (N , t — 1) = T (B , 1). Since T {B , 1) is the first target instruction o f B, the

adjusted target address o f B is N + A0(T(B, 1)). As a result, A f (I (l , t) = adjusted targe address

o f B = N + A 0(T(B, 1)) = N + A 0(I (N , t — 1)) = N + A0(I (N + 1, t)). This proves the initial step.

Assuming the Lemma holds for the T (B , k), we show that the lemma also holds for T (B , k + 1).

I f T (B , k) is a likely branch, the original o f T (B , k -f 1) must be its first target instruction. I f I (N +

M) = T (B , k + 1), thenI (N + l , t - 1) = T{ B , k) a n d I (N , t - 1) = T (B , k + 1). Since T{B, k + 1) is

the first target instruction o f T { B , k), adjusted target address o f T(B, k) is N + A 0(T (B , fc+1)). 4̂s a

27

result, A f (I (l , t) = adjusted targe address o f T (B , k) = N + A 0(T (B , k + l)) = N + A0(I (N, t — 1)) =

N + A 0(I (N + 1 ,t)) . This proves the induction step for the case where T (B , k) is a likely branch.

I f T (B , k) is not a likely branch, the original o f T { B , k + 1) follows immediately the original o f

T(B,k) . That is, A0(T (B, k + 1)) is equal to 1 + A0{T(B,k)) . Also, T (B , k) cannot be a taken

branch. According to the induction assumption, if I (N + 1 , 2 — 1) = T{B,k) , A f (I (l , t — 1)) =

N + A 0(T(B,k)) . Thus A / (/ (l ,2)) = 1 + A / (/ (l , 2 - l) = 1 + N + A0(T{ B, k)) = N + A0(T(B, k +

1)) = N + A 0(I (N + 1,2). This proves the induction step for the case where T (A , k) is not a likely

branch. QED.

T h eorem 2 A f (I (l , t)) — N + A0(I (N + 1,2)).

Proof: Theorem 2 follows from the proofs o f Lemma 1 and Lemma 2. QED.

Theorem 2 is perhaps the most critical result in proving the correctness o f Inline Target In­

sertion. It assures that when an instruction reaches the end of the sequencing pipeline, N plus

its original address is always available at no cost. There are two major applications for this re­

sult: recovery from incorrect branch prediction and return from interrupt/exception. The former

is presented in this section and the latter will be the topic of the next section.

Corollary 1 states that the execution of an incorrectly predicted branch is very simple. When an

incorrectly predicted likely branch reaches the end of the sequencing pipeline, it simply allows the

pipeline to fetch the next sequential instruction (in addition to scratching all subsequent instructions

in the sequencing pipeline).

C oro lla ry 1 The alternative address o f a likely branch I (N + 1,2) is 1 + Af (I (l , t)) .

Proof: The I T I (N) Algorithm opens N insertion slots after each likely branch. Therefore, the

alternative target address (‘fall through”) o f a likely branch I is always 1+ N + A0(I) . According the

28

Figure 12: Timing diagram of a pipelined processor executing the sequence E F ^ G H of
instructions in Figure 8(e).

Theorem 2, when the branch is I (N + l , t) , then its alternative address is 1 + N + A 0(I (N + l , i)) =

1 + Note that is always the address o f an original instruction (see Figure 7). The proof

of Theorem 1 shows that the sequencing pipeline restarts correctly from the alternative address.

QED.

Figure 12 shows the execution of instruction sequence E —► F —► G —► H o f Figure 8(e). When F

reaches the E X stage, the hardware detects that it was incorrectly predicted. The two instructions

in the sequencing pipeline (H ' and / ') will be scratched. The next sequential instruction of V is G,

which is exactly the alternative target instruction of F. This example is relatively simple because

F was fetched from its original copy. The readers are encouraged to verify for themselves that the

instruction sequence I —> E , —+ F , —* G —+ H will be executed correctly. Note that F' is now

fetched from a duplicate copy, which makes the situation slightly more complicated.

To summarize, we have shown the correctness o f Inline Target Insertion in two steps. In the first

step, we show that the branches are executed correctly if they are predicted correctly (Theorem 1).

In the second step, we show that both likely and unlikely branches are executed correctly (second

paragraph of this section and Corollary 1). It is also clear from the proofs that the hardware

29

requirement for the execution is very small. The requirements are an array of fetch addresses of all

instructions in the sequencing pipeline10, an adder to derive the target address o f a taken branch,

and a mechanism to scratch instructions fetched due to an incorrectly predicted branch.

3.4 Interrupt/Exception Return

The problem of interrupt/exception return[Smith85][Hwu87] arises when interrupts and exceptions

occur to instructions in insertion slots. For example, assume that the execution of code in Fig­

ure 8(e) involves an instruction sequence, E —> F —► H' —*■ / ' —► E' —► F '. Branch F is correctly

predicted to be taken. The question is, if H' caused a page fault, how much instruction sequencing

information must be saved so that the process can resume properly after the page fault is handled?

If one saved only the address o f H\ the information about F being taken is lost. Since H' is a

not a branch, the hardware would assume that / ' was to be executed after H'. Since V is a likely

branch and is taken, the hardware would incorrectly assume that G and H resided in the insertion

slots of F. The instruction execution sequence would become H' —*• / ' —» G —► H —► ..., which is

incorrect.

The problem is that resuming execution from H' violated the restriction that an empty se­

quencing pipeline always starts fetching from an original instruction. The hardware does not have

the information that H' was in the first branch slot of F and that F was taken before the page

fault occurred. Because interrupts and exceptions can occur to instructions in all insertion slots

of a branch and there can be many likely branches in the slots, the problem can not be solved by

simply remembering the branch decision for one previous branch.

A popular solution to this problem is to save all the previous N fetch addresses plus the fetch

10It has also been shown that with a modification to the semantics of branch instructions, one can eliminate the
array of fetch addresses as well.[Chan89a]

30

address o f the re-entry instruction. During exception return, all the N + 1 fetch addresses will be

used to reload their corresponding instructions to restore the instruction sequencing state to before

the exception. The disadvantage of this solution is that it increases the number of states in the

pipeline control logic and can therefore slow down the circuit. The problem becomes more severe

for pipelines with a large number of slots. Theorem 3 shows that exception and interrupt return

can be as simple as loading the empty11 instruction sequencing pipeline with only one fetch address

which is readily available upon detection of an interrupt/exception.

Theorem 3 In terru p t/excep tion return to an instruction is correctly perform ed by loading the

original address o f the instruction to the fetch address o f the first stage o f an em p ty instruction

sequencing pipeline.

P roof: A 0(I (N + 1,2)) is always available in the fo rm o f A / (l , t) — N (T h eorem 2). O ne can

record the original addresses when delivering an instruction to the execution units. This guarantees

that the original address o f all instructions active in the execution units be available. Therefore,

when an in terru p t/excep tion occurs to an instruction, the p rocessor can save the original address

o f that instruction as the return address. During exception return, the em p ty sequencing pipeline

sim ply fetch es instructions sequentially starting at the return address. S ince the first instruction is

an original instruction, all the first N predicted su ccessors located in the next sequential locations.

A ccording to the p ro o f o f T heorem 1, the sequencing pipeline produces an instruction sequence

equivalent to that without in terru pt/excep tion . Q E D .

Figure 13 illustrates the equivalence between the sequence with and without exception to an

instruction in a branch slot. Figure 13 shows the timing of a correct instruction sequence E —>

11 The pipeline could still contain instructions from the interrupt/exception handler or from other processes. As far
as the resuming process is concerned, the pipeline does not contain any instruction and/or sequencing information
from the same process.

31

(a) I F ID E X W B
1 E
2 F E
3 H ' F E
4 V H ' F E
5 E' V H' F

(b) I F ID E X W B
1 E
2 F E
3 H' F E
4 V H' F E
5 E' V E ' F

1’ H
2’ I H
3’ E' I H

Figure 13: Timing diagram of a pipelined processor executing the sequence E —► F —* H' —► I' —* E'
of instructions in Figure 8(e).

F —*• H' -* V —> E ' —*• F1' from Figure 13 without exception. Figure 13 shows the timing with an

exception to E * . When H ' reaches the end of the sequencing pipeline (E X stage) at i, its A 0(E ')

is availble in the form of A f (I (l , t) = E ') — 2. This address will be maintained by the hardware

until H ' finishes execution12. When an exception is detected, A 0(H ') is saved as the return address.

During exception return, the sequencing pipeline resumes instruction fetch from iT, the original

copy of H ' . Note that the instruction sequence produced is H —► I —► E ', which is equivalent to

the one without exception.

An observation is that the original copies must be preserved to guarantee clean implementation

of interrupt/exception return. In Figure 8(e), if normal control transfers always enter the section

at E ' , there is an opportunity to remove E and F after Inline Target Insertion to reduce code size.

However, this would prevent clean interrupt/exception return if one occurs to E ' or F ' . Section 4.2

presents a superior alternative approach to reducing code expansion.

12The real original address does not have to be calculated until an exception is detected. One can simply save
and only calculate A 0(I (N + 1, t) when an exception actually occurs. This avoids requiring an extra

subtractor in the sequencing pipeline.

32

3.5 Extension to Out-of-order Execution

Inline Target Insertion can be extended to handle instruction sequencing for out-of-order execu­

tion machines [Toma67] [Weis84] [Acos86] [Hwu87] [Hwu88] [Smith89] . The major instruction

sequencing problem for out-of-order execution machines is the indeterminate timing of deriving

branching conditions and target addresses. It is not feasible in general to design an efficient se­

quencing pipeline where branches always have their conditions and target addresses at the end of

the sequencing pipeline. To allow efficient out-of-order execution, the sequencing pipeline must

allow the subsequent instructions to proceed whenever possible.

To make Inline Target Insertion and its correctness proofs applicable to out-of-order execution

machines, the following changes should be made to the pipeline implementation.

1. The sequencing pipeline is designed to be long enough to identify the target addresses for

program-counter-relative branches and for those whose target addresses can be derived with­

out interlocking.

2. When a branch reaches the end of the sequencing pipeline, the followimg conditions may

occur:

(a) The branch is a likely one and its target address is not available yet. In this case, the

sequencing pipeline freezes until the interlock is resolved.

(b) The branch is an unlikely one and its target address is not yet available. In this case, the

sequencing pipeline proceeds with the subsequent instructions. Extra hardware must be

added to secure the target address when it becomes available to recover from incorrect

branch prediction. The execution pipeline must also be able to cancel the effects of the

subsequent instructions emerging from the sequencing pipeline for the same reason.

33

(c) The branch condition is not yet available. In this case, the sequencing pipeline proceeds

with the subsequent instructions. Extra hardware must be added to secure the alterna­

tive address to recover from incorrect branch prediction. The execution pipeline must

be able to cancel the effects of the subsequent instructions emerging from the sequencing

pipeline for the same reason.

If a branch is program counter relative, both the predicted and alternative addresses are available

at the end of the sequencing pipeline. The only difference from the original sequencing pipline

model is that the condition might be derived later. Since the hardware secures the alternative

address, the sequencing state can be properly recovered from incorrectly predicted branches. If the

branch target address is derived from run-time data, the target address o f a likely branch may be

unavailable at the end of the sequencing pipeline. Freezing the sequencing pipeline in the above

specification ensures that all theorems hold for this case. As for unlikely branches, the target

address is the alternative address. The sequencing pipeline can proceed as long as the alternative

address is secured when it becomes available. Therefore, all the proofs in this paper remain true

for out-of-order execution machines.

4 Experimentation

The code expansion cost and instruction sequencing efficiency of Inline Target Insertion can only

be evaluated empirically. This section reports experimental results based on a set o f production

quality software from UNIX13 and CAD domains. The purpose is to show that Inline Target

Insertion is an effective method for achieving high instruction sequencing efficiency for pipelined

13UNIX is a trademark of AT&T.

34

processors. All the experiments are based on the an instruction set architecture which closely

resembles MIPS R2000/3000[Kane87] with modifications to accommodate Inline Target Insertion.

The IM PACT-IC Compiler, an optimizing C compiler developed for deeping pipelining and multiple

instruction issue at the University o f Illinois, is used to generate code for all the experiments

[Chan88] [H wu89b] [Chan89b] [Chan89c].

4.1 The Benchmark

Table 3 presents the benchmarks chosen for this experiment. The C lines column describes the

size o f the benchmark programs in number of lines of C code (not counting comments). The runs

column shows the number of inputs used to generate the profile databases and the performance

measurement. The input description column briefly describes the nature of the inputs for the

benchmarks. The inputs are realistic and representative o f typical uses of the benchmarks. For

example, the grammars for a C compiler and for a LISP interpreter are two of ten realistic inputs

for bison and yacc. Twenty files o f several production quality C programs, ranging from 100 to

3000 lines, are inputs to the cccp program. All the twenty original benchmark inputs form the input

to espresso. The experimental results will be reported based on the average and sample deviation

of all program and input combinations shown in Table 1. The use of many different real inputs to

each program is intended to verify the stability of Inline Target Insertion using profile information.

The IMPACT-I compiler automatically applies trace selection and placement, and have removed

unnecessary unconditional branches via code restructuring [Chan88][Chan89b].

35

name C lines runs input description
bison 6913 10 grammar for a C compiler, etc
cccp 4660 20 C programs (100-3000 lines)
cmp 371 16 similar/dissimilar text files
compress 1941 20 same as cccp
eqn 4167 20 papers with .EQ options
espresso 11545 20 original benchmarks [Rude85]
grep 1302 20 exercised various options
lex 3251 4 lexers for C, Lisp, awk, and pic
make 7043 20 makefiles for cccp, compress, etc
tar 3186 14 save/extract files
tbl 4497 20 papers with .TS options
tee 1063 18 text files (100-3000 lines)
wc 345 20 same as cccp
yacc 3333 10 grammar for a C compiler, etc

Table 3: Benchmarks.

4.2 Code Expansion

The problem of code expansion has to do with the frequent occurrence of branches in programs.

Inserting target instructions for a branch adds N instructions to the static program14 In Figure 8,

target insertion for F and I increases the size o f the loop from 5 to 11 instructions. In general, if Q

is the probability for static instructions to be likely branches (Q = 18% among all the benchmarks),

Inline Target Insertion can potentially increase the code size by N * Q (180% for Q — 18% and

N = 10). Because large code expansion can significantly reduce the efficiency of hierarchical

memory systems, the problem of code expansion must be addressed for pipelines with a large

number of slots.

Table 4 shows the static control transfer characteristics o f the benchmarks. The static cond.

{static uncond.) column gives the percentage of conditional (unconditional) branches among all

14 One may argue that the originals of the inserted instructions may be deleted to save space if the flow of control
allows. We have shown, however, preserving the originals is crucial to the clean return from exceptions in insertion
slots (see Section 3.4).

36

benchmark
static
cond.

static
uncond.

dynamic
cond.

dynamic
uncond.

bison 0.12 0.17 0.19 0.01
cccp 0.10 0.11 0.17 0.04
cmp 0.09 0.15 0.16 0.04
compress 0.09 0.14 0.11 0.01
eqn 0.08 0.12 0.21 0.02
espresso 0.09 0.12 0.13 0.02
grep 0.15 0.19 0.30 0.05
lex 0.15 0.16 0.30 0.01
make 0.12 0.14 0.18 0.01
tar 0.10 0.17 0.12 0.00
tbl 0.18 0.20 0.21 0.05
tee 0.09 0.15 0.29 0.07
wc 0.07 0.10 0.22 0.02
yacc 0.14 0.15 0.23 0.01

Table 4: Static and dynamic characteristics. The high percentage o f static unconditional branches
is due to the code layout optimization in IMPACT-I CC to reduce the number of likely branches.
Note that very few static unconditional branch are executed frequently. This optimization improves
the efficiency of both Inline Target Insertion and Branch Target Buffers[Hwu89a].

the static instructions in the programs. The numbers presented in Table 4 confirms that branches

appear frequently in static programs. This supports the importance of being able to insert branches

in the insertion slots (see Section 3.3). The high percentage of branches suggests that code expansion

must be carefully controlled for these benchmarks.

A simple solution is to reduce the number of likely branches in static programs using a threshold

method. A conditional branch that executes fewer number of times than a threshold value is

automatically converted into an unlikely branch. An unconditional branch instruction that executes

a fewer number of times than a threshold value can also be converted into an unlikely branch whose

branch condition is always satisfied. The method reduces the number of likely branches at the

cost o f some performance degradation. A similar idea has been implemented in the IBM Second

Generation RISC Architecture[Bako89].

37

For example, if there are two likely branches A and B in the program. A is executed 100 times

and it redirects the instruction fetch 95 times. B is executed 5 times and it redirects the instruction

fetch 4 times. Marking A and B to be likely branches achieves correct branch prediction 99 (95+4)

times out o f a total of 105 (100+5). The code size increases by 2 * N . Since B is not executed

nearly as frequently as A , one can mark B as an unlikely branch. In this case, the accuracy of

branch prediction is reduced to be 96 (95+1) times out of 105. The code size only increases by

N . Therefore, a large saving in code expansion could be achieved at the cost of a small loss in

performance.

The idea is that all static likely branches cause the same amount of code expansion but their

execution frequency may vary widely. Therefore, by carefully reversing the prediction for the

infrequently executed likely branches reduces code expansion at the cost o f slight loss of prediction

accuracy. This is confirmed by results shown in Table 5. The threshold column specifies the

minimum dynamic execution count per run, below which, likely branches are converted to unlikely

branches. The E[Q] column lists the average percentage of likely branches among all instructions

and the SD[Q] column indicates the sample deviations. The code expansion for a pipeline with

N slots is N * E[Q]. For example, for (N = 2) with a threshold value of 100, one can expect a

2.2% increase in the static code size. Without code expansion control (threshold=0), the static

code size increase would be 36.2% for the same sequencing pipeline. For another example, for a

11-stage sequencing pipeline (N = 10) with a threshold value of 100, one can expect about 11%

increase in the static code size. Without code expansion control (threshold—0), the static code

size increase would be 181% for the same sequencing pipeline. Note that the results are based

on control intensive programs. The code expansion cost should be much lower for programs with

simple control structures such sis scientific applications.

38

threshold E[Q] SD[Q]
0 18.1% 3.7%
1 4.8% 2.1%

10 2.1% 1.6%
20 1.8% 1.5%
40 1.5% 1.3%
60 1.3% 1.2%
80 1.2% 1.1%
100 1.1% 1.0%
200 0.9% 0.8%
400 0.6% 0.6%
600 0.5% 0.5%

Table 5: Percentage of likely branches among all static instructions. Unconditional branches are
treated as likely branches in this table.

4.3 Instruction Sequencing Efficiency

The problem of instruction sequencing efficiency is concerned with the total number of dynamic

instructions scratched from the pipeline due to all dynamic branches. Since all insertion slots are

inserted with predicted successors, the cost o f instruction sequencing is a function of only N and the

branch prediction accuracy. The key issue is whether compile-time branch prediction can provide

such a high prediction accuracy that the instruction sequencing efficiency remains high for large N

values.

Evaluating the instruction sequencing efficiency with Inline Target Insertion is straighforward.

One can profile the program to find the frequency for the dynamic instances of each branch to go in

one of the possible directions. Once a branch is predicted to go in one direction, the frequency for

the branch to go in other directions contributes to the frequency of incorrect prediction. Note that

only the correct dynamic instructions reaches the end of the sequencing pipeline where branches

are executed. Therefore, the frequency of executing incorrectly predicted branches is not affected

39

(a)

X\ -f- X2 = 100
x3 + x\ — 100

80%
ITI

Figure 14: Evaluating the efficiency of instruction sequencing.

(b)
E___
F x 1

H’

F z 4

H

I X3

E’
F’ x2

by Inline Target Insertion.

In Figure 14(a), the execution frequencies o f E and F are both 100. E and F redirect the

instruction fetch 99 and 80 times respectively. By marking E and F as likely branches, we predict

them correctly for 179 times out o f 200. That is, 21 dynamic branches will be incorrectly predicted.

Since each incorrectly predicted dynamic branch creates N bubbles in the sequencing pipeline,

we know that the instruction frequencing cost is 21*iV. Note that this number is not changed

by Inline Target Insertion. Figure 14(b) shows the code generated by INI(2). Although we do

not know exactly how many times F and F' were executed respectively, we know that their total

execution count is 100. We also know that the total number of incorrect predictions for F and F'

is 20. Therefore, the instruction sequencing cost o f Figure 14(b) can be derived from the count of

incorrect prediction in Figure 14(a) multiplied by N.

Let P denote the probability that any dynamic instruction is incorrectly predicted. Note

that this probability is calculated for all dynamic instructions, including both branches and non-

40

branches. The average instruction sequencing cost can be estimated by the following equation:

rela tive seq u en cin g cost p er in stru ctio n = 1 + P * N (i)

If the peak sequencing rate is 11K cycles per instruction, the actual rate would be (1 + P * N)/K

cycles per instruction15.

Table 4 highlights the dynamic branch behavior o f the benchmarks. The dynam ic cond. (dy­

nam ic uncond.) column gives the percentage of conditional (unconditional) branches among all

the dynamic instructions in the measurement. The dynamic percentages of branches confirm that

branch handling is critical to the performance of processors with large number of branch slots. For

example, 20% of the dynamic instructions of bison are branches. The P value for this program is

the branch prediction miss ratio times 20%. Assume that a the peak sequencing rate of a sequenc­

ing pipeline is one cycle per instruction (K = 1) and it requires three slots (N = 3) The required

prediction accuracy to achieve a sequencing rate of 1.1 cycles per instruction can be calculated as

follows:

1.1 > = 1 + (1 — a ccu ra cy) * 0.2 * 3 (2)

The prediction accuracy must be at least 83.3%.

Table 6 provides the P values for a spectrum of threshholds averaged over all benchmarks. The

SD[P] column lists the sample deviations of P Increasing the threshhold effectively converts more

branches into unlikely branches.

With N = 2, the relative sequencing cost per instruction is 1.036 per instruction for threshhold

equals zero (no optimization). For a sequencing pipeline whose peak sequencing rate is one instruc-

15This formula provides a measure of the efficiency of instruction sequencing. It does not take external events such
as instruction misses into account. Since such external events freeze the sequencing pipeline, one can simply add the
extra freeze cycles into the formula to derive the actual instruction fetch rate.

41

threshold m SD[P]
0 0.018 0.010
1 0.018 0.010

10 0.019 0.010
20 0.019 0.010
40 0.020 0.010
60 0.020 0.010
80 0.020 0.010
100 0.020 0.010
200 0.023 0.010
400 0.023 0.010
600 0.025 0.011

Table 6: Probability o f prediction miss among all dynamic instructions.

tion per cycle, this means a sustained rate o f 1.036 cycles per instruction. For a sequencing pipeline

which sequences k instructions per cycle, this translates into 1.036/& (.518 for k = 2) cycles per

instruction. When the threshhold is set to 100, the relative sequencing cost per instruction is 1.04.

With N — 10, the relative sequencing cost per instruction is 1.18 for threshhold equals zero (no

optimization). When the threshhold is set to 100, the sequencing cost per instruction instruction

becomes 1.20. Comparing Table 5 and Table 6, it is obvious that converting infrequently executed

branches into unlikely branches reduces the code expansion at little cost of instruction sequencing

efficiency.

5 Conclusion

We have defined Inline Target Insertion, a cost-effective instruction sequencing method extended

from the work of McFarling and Hennessy. The compiler and pipeline implementation offers two

important features. First, branches can be freely inserted into branch slots. The instruction

sequencing efficiency is limited solely by the accuracy of compile-time branch prediction. Second,

42

the execution can return from an interruption/exception to a program with one single program

counter. There is no need to reload other sequencing pipeline state information. These two features

make Inline Target Insertion a superior alternative (better performance and less software/hardware

complexity) to the conventional delayed branching mechanisms.

Inline Target Insertion has been implemented in the IMPACT-I C Compiler to verify the com­

piler implementation complexity. The software implementation is simple and straightforward. The

IMPACT-I C Compiler is used in experiments reported in this paper. A code expansion control

method is also proposed and included in the IMPACT-I C Compiler implementation. The code

expansion and instruction sequencing efficiency of Inline Target Insertion have been measured for

UNIX and CAD programs. The experiments involve the execution of more than a billion MIPS-like

instructions. The size o f programs, variety o f programs, and variety o f inputs to each program are

significantly larger than those used in the previous experiments. The stability o f code restructuring

based on profile information is proved empirically using diverse inputs to each benchmark program.

The overall compile-time branch prediction accuracy is 92%. For a pipeline which requires

10 branch slots and fetches two instructions per cycle, this translates into an effective instruction

fetch rate of 0.6 cycles per instruction(see Section 4.3). In order to achieve the performance level

reported in this paper, the instruction format must give the compiler complete freedom to predict

the direction of each static branch. While this can be easily achieved in a new instruction set

architecture, it could also be incorporated into an existing architecture as an upward compatible

feature.

It is straightforward to compare the performance of Inline Target Insertion and that of Branch

Target Buffers. For the same pipeline, the performance of both are determined by the branch

prediction accuracy. Hwu, Conte and Chang[Hwu89a] performed a direct comparison between Inline

43

Target Insertion and Branch Target Buffers based on a similar set o f benchmarks. The conclusion

was that, without context switches, Branch Target Buffers achieved an instruction sequencing

efficiency slightly lower than Inline Target Insertion. Context switches could significantly enlarge

the difference[Lee84]. All in all, Branch Target Buffers have the advantages of binary compatibility

with existing architectures and no code expansion. Inline Target Insertion has the advantage of

not requiring extra hardware buffers, better performance, and performance insensitive to context

switching.

The results in this paper do not suggest that Inline Target Insertion is always superior to

Branch Target Buffering. But rather, the contribution is to show that Inline Target Insertion is a

cost-effective alternative to Branch Target Buffer. The performance is not a major concern. Both

achieve very good performance for deep pipelining and multiple instruction issue. Both enable

effective use of high bandwidth low cost instruction memories. The compiler complexity of Inline

Target Insertion is simple enough not to be a major concern either. This has been proved in the

IMPACT-I C Compiler implementation. If the cost of fast hardware buffers and context switching

are not major concerns but binary code compatibility and code size are, then Branch Target Buffer

should be used. Otherwise, Inline Target Insertion should be employed for its better performance

characteristics and lower hardware cost.

Acknowledgements

The authors would like to thank Michael Loui, Nancy Warter, Sadun Anik, Thomas Conte, and
all members of the IMPACT research group for their support, comments and suggestions. This
research has been supported by the National Science Foundation (NSF) under Grant MIP-8809478,
a donation from NCR, the National Aeronautics and Space Administration (NASA) under Contract
NASA NAG 1-613 in cooperation with the Illinois Computer laboratory for Aerospace Systems and
Software (ICLASS), and the Office o f Naval Research under Contract N00014-88-K-0656.

44

References

— [Acos86] R. D. Acosta, J. Kjelstrup, and H. C. Torng, ” An Instruction Issuing Approach to
Enhancing Performance in Multiple Functional Unit Processors” , IEEE Transactions
on Computers, vol. C-35, no.9, pp.815-828, September, 1986.

B [Amd] Advanced Micro Devices, “Am29000 Streamlined Instruction Processor, Advance In­
formation,” Publication No. 09075, Rev. A, Sunnyvale, California.

m [Bako89] Bakoglu et al, “IBM Second-Generation RISC Machine Organization,” Proc. ICCD,
pp.138-142, 1989.

[Birn86] J. S. Birnbaum and W . S. Worley, ’’ Beyond RISC: High Precision Architecture” ,
Spring COMPCON, 1986.

[Clian88] P. P. Chang and W . W. Hwu, ’’ Trace Selection for Compiling Large C Application
Programs to Microcode” , Proceedings of the 21st Annual Workshop on Microprogram­
ming and Microarchitectures, pp.21-29, San Diego, California, November, 1988.

— [Chan89a] P. P. Chang and W. W. Hwu, ’’ Forward Semantic: A Compiler-Assisted Instruction
Fetch Method For Heavily Pipelined Processors” , Proceedings of the 22nd Annual In­
ternational Workshop on Microprogramming and Microarchitecture, Dublin, Ireland,
August, 1989.

1 [Chan89b] P. P. Chang and W . W. Hwu, “ Control Flow Optimization for Supercomputer Scalar
Processing,” Proceedings of the 1989 International Conference on Supercomputing,
Crete, Greece, June 5-9, 1989.

[Chan89c] P. Chang, MS Thesis, “Aggressive Code Improving Techniques Based on Control Flow
Analysis,” Department of Electrical and Computer Engineering, Advisor W. W. Hwu,
1989.

[Chan90] P. P. Chang and W . W. Hwu, “ Control Flow Optimization and Instruction Memory
System Design Tradeoffs,” Unpublished Report, draft available upon request, 1990.

[Chow87] P. Chow and M. Horowitz, ’’ Architecture Tradeoffs in the Design of MIPS-X” , Pro­
ceedings of the 14th Annual International Symposium on Computer Architecture,
Pittsburgh, Pennsylvania, June, 1987.

[DeRo88] J. A. DeRosa and H. M. Levy, ” An Evaluation of Branch Architectures” , Proceedings
of the 15th International Symposium on Computer Architecture, Honolulu, Hawaii,
May, 1988.

B [Ditz87] D. R. Ditzel and H. R. McLellan, ’’ Branch Folding in the CRISP Microprocessor:
Reducing Branch Delay to Zero” , Proceedings of the 14th Annual International Sym­
posium on Computer Architecture, pp.2-9, Pittsburgh, Pennsylvania, June, 1987.

f i [Emer84] J. Emer and D. Clark, ” A Characterization of Processor Performance in the VAX-
11/780” , Proceedings of the 11th Annual Symposium on Computer Architecture, June,
1984.

45

[Fost72]

[Tjad70]

[Gros82]

[Henn81]

[Hin86]

[Hors90]

[Hsu86]

[Hwu87]

[Hwu88]

[Hwu89a]

[Hwu89b]

[Inte89]

[Joup89]

[Kane87]

C. C. Foster and E. M. Riseman, “Percolation of Code to Enhance Parallel Dispatching
and Execution” , IEEE Transactions on Computers, Vol. C-21, pp.1411-1415, Decem­
ber, 1972.

G. S. Tjaden and M. J. Flynn, “Detection and Parallel Execution of Independent In­
structions” , IEEE Transactions on Computers, vol.c-19, no.10, pp. 889-895, October,
1970.

T. R. Gross and J. L. Hennessy, ” Optimizing Delayed Branches” , Proceedings of the
15th Microprogramming Workshop, pp.114-120, October, 1982.

J. L. Hennessy, N. Jouppi, F.Baskett, and J. Gill, ’’ MIPS: A VLSI Processor Archi­
tecture” , Proceedings of the CMU Conference on VLSI Systems and Computations,
October 1981.

M. Hill and etal, ” Design Decisions in SPUR” , IEEE Computer, pp.8-22, November,
1986.

R. W . Horst, R. L. Harris, and R. L. Jardine, “Multiple Instruction Issue in the Non-
Stop Cyclone Processor,” Proc. International Symposium on Computer Architecture,
May 1990.

P. Y. T. Hsu and E. S. Davidson, “Highly Concurrent Scalar Processing,” Proceedings
of the 13th International Symposium on Computer Architecture, pp. 386-395, Tokyo,
Japan, June 1986.

W . W . Hwu and Y. N. Patt, ’’ Checkpoint Repair for High Performance Out-of-order
Execution Machines” , IEEE Transactions on Computers, IEEE, December, 1987.

W . W. Hwu, ’’ Exploiting Concurrency to Achieve High Performance in a Single­
chip Microarchitecture” , Ph.D. Dissertation, Computer Science Division Report, no.
UCB/CSD 88/398, University o f California, Berkeley, January, 1988.

W . W. Hwu, T. M. Conte, and P. P. Chang, ’’ Comparing Software and Hardware
Schemes For Reducing the Cost o f Branches” , Proceedings of the 16th Annual Inter­
national Symposium on Computer Architecture, Jerusalem, Israel, May, 1989.

W. W . Hwu and P. P. Chang, “Inline Function Expansion for Compiling Realistic C
Programs,” ACM SIGPLAN ’89 Conference on Programming Language Design and
Implementation, Portland, Oregon, June 21-23, 1989.

Intel, “ i860(TM) 64-bit Microprocessor,” Order No. 240296-002, Santa Clara, Califor­
nia, April 1989.

N. P. Jouppi and D. W . Wall, “Available Instruction-Level Parallelism for Superscalar
and Superpipelined Machines,” Third International Conference on Architectural Sup­
port for Programming Languages and Operating Systems, pp.272-282, April, 1989.

G. Kane, MIPS R2000 RISC Architecture, Prentice Hall, Englewood Cliffs, NJ, 1987.

46

[Kogg81] P. M. Kogge, The Architecture o f Pipelined Computers, pp.237-243, McGraw-Hill,
1981.

[Kuck72] D. J. Kuck, Y. Muraoka, and S. Chen, “ On the Number of Operations Simultaneously
Executable in Fortran-like Programs and Their Resulting Speedup” , IEEE Transac­
tions on Computers, Vol. C-21, pp.1293-1310, December, 1972.

[Lee84] J.K.F. Lee and A. J. Smith, ” Branch Prediction Strategies and Branch Target Buffer
Design” , IEEE Computer, January, 1984.

[McFa86] S. McFarling and J. L. Hennessy, ’’ Reducing the Cost o f Branches” , The 13th Inter­
national Symposium on Computer Architecture Conference Proceedings, pp.396-403,
Tokyo, Japan, June, 1986.

[Mele89] Charles Melear, ’’ The Design of the 88000 RISC Family” , IEEE MICRO, pp.26-38,
April, 1989.

[Nico88] J-D. Nicoud, “Video RAMs: Structure and Applications,” IEEE MICRO, pp.8-27,
February, 1988.

[Nico84] A. Nicolau and J. A. Fisher, “Measuring the Parallelism Available for Very Long
Instruction Word Architectures” , IEEE Transactions on Computer, vol.C-33, n o .ll ,
pp.968-976. November, 1984.

[Patt85] Y. N. Patt, W . W. Hwu, and M. C. Shebanow, ” HPS, A New Microarchitecture: Ra­
tionale and Introduction” , Proceedings of the 18th International Microprogramming
Workshop, pp.103-108, Asilomar, CA, December, 1985.

[Patt82] D. A. Patterson and C. H. Sequin, ” A VLSI RISC” , IEEE Computer, pp.8-21, Septem­
ber, 1982.

[Ples87] A. R. Pleszkun, J. R. Goodman, W .-C. Hsu, R. T. Joersz, G. Bier, P. Woest, and
P. B. Schechter, ” WISQ: A Restartable Architecture Using Queues” , Proceedings of
the 14th International Symposium on Computer Architecture Conference, pp.290-299,
June, 1987.

[Ples88] A A. R. Pleszkun, G. S. Sohi, Multiple Instruction Issue and Single-chip Processors,
Proceedings of the 21st Annual Workshop on Microprogramming and Microarchitec­
ture, San Diego, California, Nov. 1988.

[Radin 82] G. Radin, ’’ The 801 Minicomputer” , Proceedings of the Symposium on Architectural
Support for Programming Languages and Operating Systems, pp.39-47, March, 1982.

[Rude85] R. Rudell, ” Espresso-MV: Algorithms for Multiple-Valued Logic Minimization” , Proc.
Cust. Int. Circ. Conf., May, 1985.

[Smith81] J. E. Smith, ” A Study of Branch Prediction Strategies” , Proceedings of the 8th Inter­
national Symposium on Computer Architecture, pp.135-148, June, 1981.

47

[Smith85]

[Smith89]

[Sun87]

[Toma67]

[Weis84]

Smith, J. E. and Pleszkun, ’’ Implementation of Precise Interrupts in Pipelined Pro­
cessors” , Proceedings of the 11th Annual Symposium on Computer Architectures,
Boston, Massachusetts, June 17-19, 1985.

M. D. Smith, M. Johnson, and M. A. Horowitz, “Limits on Multiple Instruction Issue” ,
Third International Conference on Architectural Support for Programming Languages
and Operating Systems, pp.290-302, April, 1989.

SUN Microsystems, “The SPARC(TM) Architecture Manual,” SUN Microsystems,
Part No. 800-1399-07, Revision 50, Mountain View, California, August 1987.

R. M. Tomasulo, ” An Efficient Algorithm for Exploiting Multiple Arithmetic Units” ,
IBM Journal o f Research and Development, v o l.ll, pp.25-33, January, 1967.

S. Weiss and J. E. Smith, ’’ Instruction Issue Logic in Pipelined Supercomputers” ,
IEEE Transactions on Computers, vol.C-33, pp.1013-1022, IEEE, November, 1984.

48

