Sorting Large Files on a Backend
Multiprocessor*
Micah Beck
Dina Bitton
W. Kevin Wilkinsont

TR 86-741
March 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

* Support for this work was provided by the National Science Foundation, under grant DCR-
8410889, a Hewlett-Packard faculty development fellowship, and Bell Communication
Research.

t Bell Communications Research, Morristown, NJ 07960

SORTING LARGE FILES
ON A BACKEND MULTIPROCESSOR

Micah Beck
Dina Bitton

Computer Science Department, Cornell University, Ithaca, NY 14853

W. Kevin Wilkinson

Bell Communications Research, Morristown, NJ 07960

ABSTRACT. A fundamental measure of processing power in a database management sys-
tem is the performance of the sort utility it provides. When sorting a large data file on a
serial computer, performance is limited by factors involving processor speed, memory capa-
city and /O bandwidth. In this paper, we investigate the feasibility and efficiency of a
parallel sort-merge algorithm through implementation on the JASMIN prototype, a back-
end multiprocessor built around a fast packet bus. We describe the design and implementa-
tion of a parallel sort utility that may become a building block for query processing in a
database system that runs on JASMIN. We present and analyze the results of measure-
ments corresponding to a range of file sizes and processor configurations. Our results show
that using current, off-the shelf technology coupled with a streamlined distributed operating
system, three and five microprocessor configurations provide a very cost-effective sort of
large files. The three processor configuration sorts a 100 megabyte file in one hour, which
compares well with commercial sort packages available on high-performance mainframes.
In additional experiments, we investigate a model to tune our sort software, and scale our
results to higher processor and network capabilities.

Support for this work was provided by the National Science Foundation, under grant DCR-8410889, a
Hewlett-Packard faculty development fellowship, and Bell Communications Research.

[Nl

bobodoboi=’
Lo bo

oo

® N B QUG RRRRR PWWOWL NON
wobo =

TABLE OF CONTENTS

Introduction

A Backend Multiprocessor
The S/Net
The JASMIN Operating System

A Parallel File Sorting Algorithm
The Algorithm

Implementation on JASMIN
Process Configuration

Memory Configuration

Disk File Layout

Measurements
Parameters Varied
Uniprocessor Efficiency
Backend Sort
Distributed Sort

Tuning and Scaling

Choosing Parameter Values
Scaling Processor Speed
Scaling Network Configuration
Conclusions

Acknowledgements

References

2.

1. Introduction

Sorting of large data files is one of the most important and frequently performed
operations in database management. Output files generated by a report are usually sorted
with respect to an attribute or a combination of attributes that are of interest to the users
of the report. In mass-storage devices, files are often maintained sorted with respect to a
key attribute in order to facilitate subsequent searching and processing. Database manage-
ment systems also pre-sort files in order to eliminate duplicate records [SEL79, BIT83] or to
process complex join and aggregate queries [SEL79]. Thus, one of the fundamental meas-
ures of processing power in a transaction management system is the performance of the sort

utility it provides [ANOS85].

In most systems, sort performance is not satisfactory. For large files, a sort may
require hours of processing time during which it saturates the CPU and I/O devices. As a
consequence, even in high-performance transaction management systems, a large sort will
often be deferred to after-hours processing in order not to interfere with the execution of

short interactive transactions.

What limits the performance of a file sorting operation, and how can this performance
be enhanced? A theoretical machine with a 100 megabyte memory and a 50 nanosecond
Compare instruction could sort one million 100 byte records in 1.5 minutes, including 30
seconds to read the file from a disk with a 3 million-byte per second transfer rate and 30
seconds to write it back to the same disk [ANO85]. In practice, file sizes exceed main
memory capacity by several orders of magnitude, comparisons and record moves are slower,
and the effective I/O bandwidth is well below the maximum bandwidth of the disk channel.
In addition, general purpose operating systems impose processor overhead and limit the
utilization of other resources. The designer of a sort utility must strive to minimize record
moves in memory, overlap I/O latency with computation, and reduce disk seek times. Even

then, the efficiency of file sorting on a serial computer with conventional mass-storage

-3-

remains severely limited. Parallel computation combined with high I/O transfer rates is a
natural approach to overcoming these limits. Indeed, a number of recent database machine
designs use parallel sorting as a fundamental building block for query processing [TANS3,

SZH83, KIT84, KAMS85].

In this paper, we investigate the feasibility of parallel file sorting on a backend mul-
tiprocessor machine. We describe the design of a sort utility that exploits parallel computa-
tion and high [/O bandwidth, and its implementation on the JASMIN multiprocessor. We
consider two schemes which differ in the starting location of the unsorted data (Figure 1),
and inay lead to significant differences in performance. The first scheme corresponds to a
Backend Sort, where a file initially located on the host is downloaded to a backend mul-
tiprocessor for sorting. The file is distributed to the the backend processors, which sort it
and then return the sorted file to the host. The second scheme, a Distributed Sort, assumes
that the source file is initially distributed across a number of disks attached to backend pro-
cessors. The processors sort the file in parallel, then send it to the host or write it to a
backend disk. Basically, the parallel sorting algorithm used in both schemes is the same,
but the design goal of overlaping computation with the distribution of the data in one case
(Backend Sort), is replaced with overlaping computation with disk access in the other (Dis-

tributed Sort).

The remainder of this paper is organized as follows. In Section 2, we describe the
hardware and software architecture of the JASMIN system. In Section 3, we describe the
parallel external sort algorithm, and the implementation choices that we have made — in
particular the process structure and the buffering scheme. In Section 4, we present the per-
formance of our algorithm as implemented on JASMIN. We analyze the execution time,
processor utilization, and network traffic as functions of the file size and the multiprocessor
configuration. In Section 5, we investigate a model for tuning our sort utility, and scale our
results to faster hardware and higher degrees of parallelism. Finally, Section 6 contains

our conclusions.

DISTRIBUTED
BACKEND G Ej ﬁ Ej

y Yoy Y
€ @ O (
R& RANRP R

‘A sortphase

-* merge phase

Figure 1: Backend and Distributed Sorting

2. A Backend Multiprocessor

Our parallel external sort algorithm was implemented on a prototype AT&T Bell
Laboratories multiprocessor [AHU83]. This multiprocessor may be configured with up to 12
microcomputers communicating through a fast packet bus. It also has an umbilical connec-
tion to a DEC VAX host running UNIX' System V. The backend processors run the JAS-
MIN distributed operating system kernel, which is under development at Bell Communica-
tions Research. JASMIN is designed to efficiently support distributed applications. In this
section, we briefly describe the hardware characteristics of the multiprocessor and process
management and communication in JASMIN. The reader is referred to [LEE84] for a com-
plete description of the operating system and to [FIS84] for a description of a distributed

database management system which runs on JASMIN.

fUNIX is a trademark of AT&T Bell Laboratories.

2.1. The S/Net

The multiprocessor used in JASMIN is built around the S/Net, a fast (80 Mbit/s)
packet bus developed at AT&T Bell Laboratories. The multiprocessor consists of a set of
Multibus-based microcomputers, each with an S/Net Processor Interface Board. The S/Net
itself consists of a set of Buffer Interface Boards, tied together on a single backplane, each
connected to a Processor Interface Board. A designated Buffer Interface Board is connected
to the VAX host. The VAX downloads the microcomputers via the S/Net and provides some
support, such as file access and debug output, for the execution environment. The micro-
computers consist of a 10 MHz Motorola 68000 CPU and 1 Megabyte of main memory.
Some of the microcomputers also have an SMD disk controller and a Fujitsu Eagle local

disk.

While the total bandwidth of the S/Net is 80 Mbit/s, no single processor can achieve
that speed. The maximum kernel level data transfer rate that a single processor can attain
on the S/Net is approximately 300 Kbyte/sec, or 3% of the network’s total capacity. Operat-
ing system overhead further reduces the effective data transfer rate between processes to

100 Kbyte/sec.

2.2. The JASMIN Operating System

The JASMIN distributed operating system is modeled after DEMOS [BAS77]. The
basic object implemented by the system is an interprocess communication capability called
a path, over which small, fixed length messages can be sent. Holding a path enables a pro-
cess to send a message to the creator of the path. Additionally, bulk data transfers
between processes may be accomplished by attaching a buffer to a path in the creator’s
address space and using kernel primitives to move data into or out of the buffer. The sys-

tem allows any process to create paths and to pass them to other processes via messages.

A set of processes which share text and data address space, but have separate execu-

tion stacks, are said to form a load module. Since memory is shared by these processes, a

-6-

load module cannot span processors. While processes in the same load module share text
and data space, their execution stacks inhabit different memory segments, they hold
different sets of paths, and they receive messages from separate queues. In other words,
paths and messages are exchanged between processes, not load modules. The load module

notion is a convenience to permit cooperating processes to share memory.

JASMIN process scheduling is particularly simple. When created, each process is
assigned a static priority level. Within each priority level, scheduling is strictly
non-preemptive. A running process will execute until it performs a blocking system call, or
until a higher priority process becomes ready-to-run. This guarantees mutual exclusion
among a set of processes operating on shared data structures within a load module, as long

as these processes are run at the same priority level.

3. A Parallel File Sorting Algorithm

Large files cannot usually be sorted in main memory, and so file sorting requires an
external sort algorithm. Most external sort algorithms are based on iterative merging.
They partition the file into subfiles that separately fit in memory, internally sort the indi-
vidual subfiles, and then iteratively merge them into a single sorted file. During each itera-
tion, every record is read and written once to mass-storage. These serial algorithms can be

parallelized in a number of ways [EVE74, BIT82, KWAS86].

3.1. The Algorithm

We have implemented a parallel N-way merge-sort algorithm adapted from [BIT82].
The algorithm assumes a logical tree connection between the processors (Figure 2). Each of
the leaf processors has a disk attached to it, and thus can perform an external sort, indepen-
dently of the host and the other processors in the backend. The parallel algorithm has two
phases. We will refer to the first phase as the sort phase, and to the second as the merge

phase. During the sort phase, each leaf processor creates fixed-length sorted subfiles from

A.

-
R || N
N o

)
O/

-1 wuv
—_
o
—_
F=Y
—_
w

_.
o
-
™o
w|~

Figure 2: A Parallel Merge-Sort
its partition of the file; during the merge phase, these subfiles are merged in parallel.
Parallelism in merging is exploited both through pipelining merge steps between levels of
the tree, and through concurrent merging performed by processors on the same level of the

tree. The two phases of the algorithm are described in more detail below.

-8-

During the sort phase, fixed-length sorted subfiles are created by the leaves as in a
serial sort. Partitions of the file are sorted in memory using Quicksort, and then written to
disk. Available memory is divided between a subfile and an array of pointers to records in
that subfile. During Quicksort, data records are not moved in memory, only pointers are

changed.

After the sort phase completes, each leaf merges its subfiles, producing a single sorted
partition of the file. As it is produced, the partition is transferred to the leafs parent in the
merge tree. The parent processor merges the partitions it receives from its children and
sends the result one level up in the tree. In our implementation, merge streams are
transferred in blocks containing many records. While pipelining of successive merge phases
could be at the record granularity, communication overhead makes such a design prohibi-

tively inefficient. The complete sorted file is produced at the root of the merge tree.

It is interesting to note that, given a fixed topology for the merge tree, most of the
steps in our sort algorithm are linear in terms of the number of comparisons performed.
The partitioning of n records into n/b fixed-size sorted blocks of & records each takes
O(nlog(b)) comparisons. Similarly, merging d sorted streams of n/d records takes
O(nlog(d)) comparisons. Thus, at non-leaf nodes, where the degree of the merge is fixed by
the topology of the tree, the merge is linear. At the leaves, the degree of the merge is equal
to the number of temporary files, which is in turn proportional to the size of input. The
merge phase at the leaves is thus the only point where the number of comparisons is non-
linear. Because comparisons are such a small portion of the total work done in sorting a
large file, even the uniprocessor configuration of our sort only shows significant non-linear

behavior in file sizes over 25 megabytes (see Section 4.2).

3.2. Implementation on JASMIN

In order to concentrate on designing the parallel part of the sort utility, and have a

good baseline for evaluating our implementation, we chose to start with a robust serial sort

-13-

3.2.3. Disk File Layout

The layout of files on disk is central to minimizing access time. We experimented with
two approaches: contiguous files and interleaved files. In contiguous file layout, the logical
disk blocks of a file lie in consecutive physical disk addresses. This means they will be phy-
sically contiguous unless they cross a cylinder boundary. In interleaved file layout, the first
logical block of all files lie in one consecutive set of disk addresses, followed by the second

block of all files, etc. (Figure 5).

Contiguous file layout minimizes seeking when reading or writing an entire sequential
file. It maximizes seeking when multiple sequential files are to be accessed concurrently.
Interleaved layout achieves the opposite: maximal seeking when accessing a single file
sequentially; minimal seeking when accessing many files concurrently. Intermediate
schemes which interleave files in segments larger than one logical block are possible, but
we did not implement any. In our sort algorithm, temporary files are written one at a time
during the sort phase, and then all are read concurrently during the merge phase. Thus,
contiguous layout performs best during the sort phase, while interleaved layout wins in the

merge phase.

¢ylinder 1

eylinder 2

cylinder 3

eic

Contiguous interleaved

Figure 5: Contiguous vs Interleaved File Layout

.9-

program. We considered the Linderman Sort, a program recently developed at Bell Labora-
tories [LIN84]. The program has been extensively tuned, and achieves very good perfor-
mance on UNIX. The algorithm implemented in Linderman’s program is a polymerge sort
[KNU73], where initial runs are generated with Quicksort. We started with adapting this
code for sorting the subfiles in the sort phase of our parallel algorithm, and for merging
subfiles on one processor. Then, we turned our attention to design issues that are critical to

the performance of the parallel sort program:

(1) the process configuration and synchronization protocol
(2) the memory configuration (including buffer allocation),
(3) the layout of files on the local disks.

3.2.1. Process Configuration

On each backend processor, processes were configured so that delays due to data
transfer and processor synchronization would be minimized. In particular, data transfers
(processor-to-disk, or processor-to-processor) had to be overlapped with computation when-
ever possible. To avoid copying data within a processor, we adopted a structure consisting
of a single JASMIN load module per processor. Multiple processes within each load module

share access to a single buffer pool, but communicate and synchronize using messages.

Data transfers are organized as streams of record blocks. Each stream consists of a
series of fixed size blocks containing a number of records. There are three types of streams,
each with its own block size. Input streams carry unsorted record blocks from the root to
the leaves. Disk streams carry sorted temporary files between a leaf and its disk. Merge

streams carry sorted record blocks between processors in the merge tree.

During the sort phase, the records to be sorted are sent as input streams from the root
to the leaf processors. In order to overlap communication latency, leaf processors interact
with multiple communications processes in the root. In the leaf processors, an input spooler

process reads the input stream from the the root, and builds sort buffers, which consist of

-10-

data records and an array of pointers to these records (Figure 3).

Once a sort buffer is built, it is passed to the main sort/merge process. This process
performs a Quicksort on the pointer array, and passes the buffer to the file spooler process.
The file spooler moves records for the first time from the input blocks, in which they were
received, to disk blocks which are then written to disk. Each sorted buffer forms one tem-
porary file on the disk. The use of two sort buffers per processor ensures a high degree of

overlap between input, sorting and writing to disk.

During the merge phase, the sort buffers are unused and so are returned to free
membry for use as disk or merge block buffers. The sort/merge process is central to the
merge phase on both leaf and non-leaf processors (Figure 4). In the leaves, it merges sorted
disk streams from the temporary files, one stream per file. In a non-leaf node, merge
streams from the node’s children in the tree are merged. In the former case, disk streams
are read through the file spooler, which performs double buffering (disk read-ahead). In the

latter case, a special network spooler process synchronizes data transfer from child processes

.
_____ [

| stream ! full buffers |

leaf processor

Figure 3: Sort Phase Leaf Process Structure

-11-

H files 1
L 4

| 2 bl

1
REE | merge H

non-leaf
processor

Figure 4: Merge Phase Process Structure
and implements double buffering of merge streams. On all non-root processors, the output
spooler process implements double buffering of merge streams being sent to the parent in

the merge tree.

3.2.2. Memory Configuration

Having only one megabyte of main memory attached to each processor restricts the
maximum size of data buffers. After loading the operating system, utility tasks, the text

segment for the sorting program, a stack segment for each sorting process, and

.12-

miscellaneous sort program variables, about 576K remains for buffers. This led us to a
configuration of two 256K sort buffers, resulting in temporary files somewhat smaller than
that (the buffer must hold not only the records, but also an array of pointers to them). In

contrast, a mainframe sort routine will typically use a 1 megabyte sort buffer.

During the merge phase, each leaf processor must read a potentially large number of
disk streams, and merge them to produce a single merge stream. Each stream is double

buffered so the total memory used when merging n files will be
M = 2anisk + 2Bmerge

where the B, are block sizes. Now, the memory used as sort buffers during the sort phase
can be reused as disk and merge blocks during the merge phase. Thus, all 576K are avail-
able for allocation. If we are to sort a 100M file using two leaf nodes, then each leaf must

handle 50M, or 200 temporary files. Rearranging our equation, we see that
By, = (M — 2B 00.) /2n < (576K /400) = 1.4K
So, choosing By, = 1K, we get B,,,,, < 88K.

The constraint on the size of a merge block does not arise at the leaves, but at non-leaf
nodes. If a non-leaf node merges m merge streams to form a single sorted merge stream,
then it requires 2m + 2 merge blocks for buffering. Since non-leaf nodes use no memory for

disk blocks, if we want to handle values of m up to 8, we get
Brerge = M/(2m +2) < 576K /18 = 32K

Thus, the demands of the problem we posed — sorting a 100Mbyte file in configurations
ranging from two to eight leaf processors using varying tree structures — leads to a rather

narrow choice of buffer sizes. We used the closest powers of two:

(desk,Bmerge) = (IK,32K)

13-

3.2.3. Disk File Layout

The layout of files on disk is central to minimizing access time. We experimented with
two approaches: contiguous files and interleaved files. In contiguous file layout, the logical
disk blocks of a file lie in consecutive physical disk addresses. This means they will be phy-
sically contiguous unless they cross a cylinder boundary. In interleaved file layout, the first
logical block of all files lie in one consecutive set of disk addresses, followed by the second

block of all files, etc. (Figure 5).

Contiguous file layout minimizes seeking when reading or writing an entire sequential
file. It maximizes seeking when multiple sequential files are to be accessed concurrently.
Interleaved layout achieves the opposite: maximal seeking when accessing a single file
sequentially; minimal seeking when accessing many files concurrently. Intermediate
schemes which interleave files in segments larger than one logical block are possible, but
we did not implement any. In our sort algorithm, temporary files are written one at a time
during the sort phase, and then all are read concurrently during the merge phase. Thus,
contiguous layout performs best during the sort phase, while interleaved layout wins in the

merge phase.

file 1 @ file2 - file 3

cylinder 1 m
cylinder 2
cylinder 3] [2 7; 7
etc |] [
Contiguous Interleaved

Figure 5: Contiguous vs Interleaved File Layout

.14-

4. Measurements

In this section, we present and analyze our measurements for a range of backend
configurations and file sizes. In order to establish a performance baseline, we start with our
uniprocessor sort (JSI) on JASMIN, and compare it to the Linderman Sort on a fast UNIX
machine (Section 4.2). We then analyze in detail the performance of the parallel Backend
Sort, for different multiprocessor configurations (Section 4.3). Finally, we estimate elapsed

times for the Distributed Sort (Section 4.4).

4.1. Parameters Varied

In our experiments, we varied the following parameters:
(1) Number of processors in the backend:

We configured the backend as a single processor, as a two-level tree with 3 and 5 processors
(2 and 4 leaves), and as a three-level binary tree with 7 processors (4 leaves, 2 internal
nodes). In subsequent tables, these configurations are labeled as JSI, JS3, JS5, and JS7,

respectively. In all the tree configurations, each leaf processor had a local disk.

(2) Structure and size of the data file:

We varied the size of our data file from 1 to 100 megabytes. The data was randomly gen-
erated as a stream of 100 byte records, with a 10-byte ascii-numeric sort key. The record
format included a header consisting of a 2-byte record-length field and a 2-byte key-length
field, which were interpreted by the sort program. Thus, our implementation can also sort
variable length records. In addition to the data records, we used two types of control
records, end of block and end of file, in order to form streams of records. These control
records are four bytes long.

We also varied the memory configuration and the file layout scheme. However, all the

measurements presented below correspond to experiments with double buffering and inter-

leaved file layout, since these appeared to be more efficient.

-15-

4.2. Uniprocessor Efficiency

In order to establish a baseline performance measure for our implementation, we com-
pared a single-processor configuration to the UNIX sort [LIN84] on a faster machine. Fig-
ure 6 shows the times recorded for sorting files of 1 to 50 megabytes on a JASMIN 68000-
based microcomputer and on a CCI Power-6 computer running UNIX 4.2 BSD. In both
cases the disk was a Fuyjitsu Eagle. The JASMIN figures constitute a baseline that we will
use to evaluate the parallel speedup achievable in multiprocessor configurations. We will
use the UNIX-CCI numbers as a baseline for comparing the performance of a fast, general-

purpose serial machine with that of a backend multiprocessor.

The 68000-based microcomputer is rated at 0.6 MIPS, while the CCI processor is rated
at 5 to 6 MIPS. Considering the difference in processor capabilities, the comparison greatly
favors the JASMIN sort. The UNIX-CCI sort is 1.6 times faster for small files, but only
1.2 times faster for large files. From Figure 6, we observe that, up to 35M, the rate of the

JASMIN sort is almost constant at 18 Kbyte/sec. On the other hand, the rate of the

Uniprocessor Sort Speed
with elapsed sort times (in seconds)

35

32 164 47

30 T
973

25|)
1600 2390

20[1

O ST TR TR—

1382 1971 2930

Sort Speed in Kbytes/s

1 1 1 1 1
o0 20 40 60

File Size in Mbytes
O Unix O Jasmin

Figure 6: Serial Sort Times in Seconds on JASMIN and UNIX

.16-

CCI-UNIX sort degrades rapidly for file sizes above 20M. This degradation is at least
partly due to the limit of 20 on the number of open files in a UNIX process, which necessi-
tates multiple N-way merge passes in the merge phase. The comparison illustrates the lim-
its imposed by a general-purpose operating system (UNIX) compared to JASMIN. The
JASMIN kernel essentially gives an application the full power of the underlying computer.

In this application, we observed a processor utilization rate of 90%.

4.3. Backend Sort

In Table 1, we show the total execution time of the Backend Sort for 4 processor
configurations, and for file sizes of 5, 12.5, 25, 50 and 100 megabytes. The times shown
correspond to the root’s elapsed time, which was only slightly higher than the leaves’ or
internal nodes’. Figure 7 compares the sorting speed achieved in these experiments to the

UNIX-CCI sort.

The most striking observation from this table is how fast the 100M sort is, for both
JS3 and JS5. The backend multiprocessor sorts 100M in 1 hour with 3 processors, and in 52
minutes with 5 processors. This performance is comparable to that of highly-tuned commer-
cial sort packages such as the IBM SYNC-SORT on a high-performance mainframe (e.g. an
IBM 3081, rated at approximately 7 MIPS). It is thus clear that our parallel Backend Sort

provides a very cost-effective alternative to main-frame, serial sorting of large files.

File Size | JS1 | JS3 | JS5 | JS7 |
5M | 269 | 178 | 178 | 173
125M | 682 | 439 | 419 | 427
25M | 1384 | 884 | 836 | 869
50M | 2930 | 1782 | 1584 | 1682
100M | * | 3625 | 3131 | 3305

Table 1: Total Sort Times In Seconds
1, 3, 5 and 7 Processor Configurations

* This number is unavailable due to processor memory limitations.

17-

<
8
>
02 .
X
€
© .
[
a
(73]
£ 10} .
o
[72]
5t]
o 1 1 1 1 1 1 1 1
10 30 50 70 90 100

File Size in Mbytes

O Unix O JSl v JS3
8 JS5 X JS7

Figure 7: Parallel and Uniprocessor Sort Speeds

Further analysis of the data in Table 1 leads us to the following observations on paral-
lel speedup:

(1) The 3 processor configuration is faster than the 1 processor configuration by a factor of
1.5 for small files to 1.6 for a 50M file.

(2) Using two additional leaves (i.e. the 5 processor configuration) further improved the
sort time by up to 16%.

(3) Using a two-level merge tree with 7 processors does not improve performance. In fact
JS7 shows slightly higher overall times than JS5.

The added processing power and I/O bandwidth in JS3, with 3 processors and 2 disks,
proved very effective in reducing up the elapsed time of the sort. However, as more proces-
sors and disks were added, the additional performance enhancement was limited. These
observations suggest that the parallel sort is limited by network data transfer rather than
by computation or disk activity. We tested this hypothesis by instrumenting the sort pro-
gram to record idle and elapsed times for both the sort and merge phases. Table 2 shows

these measurements for a 25 megabyte sort with 3 processors, and a 50 megabyte sort with

5 processors.

.18-

JS3-25M JS5-50M
leaf root leaf root

Sort Phase elapsed time 638 639 | 1004 1005
disk busy 2 0 0 0
idle time 320 162 680 26

Merge Phase elapsed time 937 938 | 1871 1873
disk busy 53 - 55 -
idle time 598 629 | 1534 1274 |

Total elapsed time | 1575 1577 | 2875 2878
(Both Phases) disk busy 55 - 55 -
idle time 918 791 | 2217 1300

Table 2: Sort, Merge and Idle Time In Seconds
3 and 5 Processor Backend Sort

The times in Table 2 are for the root, and one of the leaves. (Since all leaves had

similar elapsed and idle times, we only present our measurements for one.) Discrepancies

between the elapsed times shown in Table 1 and Table 2 for the same configurations are

due to distortions introduced by measuring idle time. The additional data in Table 2 sup-

ports our hypothesis in the following ways:

1)

(2)

3)

The sort phase of the 50M sort lasts almost twice as long as the sort phase of the 25M
sort, although the leaves do exactly the same work in both. The additional time shows
up as idle time at the leaves, while they wait for data from the root. In both
configurations, the root shows little idle time during the sort phase. I/O delays (shown
as Disk Busy time) are almost null during the sort phase.

The merge phase of the 50M sort lasts almost exactly twice as long as that of the 25M
sort, and substantial idle time accumulates at both the leaves and the root. Unlike
the sort phase, where the root processor is saturated, both root and leaves appear to be
waiting on the network. Disk waiting during the merge phase accounted for less than
10% of the idle time, in both configurations. Furthermore, it did not decrease with the
use of two additional disks (JS5 versus JS3).

The non-idle time at the leaves during the sort and merge phases, is approximately
the same on both configurations: sort phase 320 seconds, merge phase 340 seconds.
The non-idle time at the root varied linearly with the amount of data in both phases.
The sort phase might be speeded up by starting with a distributed file (see Section
4.4), or increasing the power of the root processor. However, it is clear that a higher
network transfer rate is necessary in order to speed up the merge phase.

We conclude that for the Backend Sort, the limitation of a low network transfer rate

means that the use of more than 4 processors as leaves can speed the sort phase only margi-

nally, and the extra processor power is not used efficiently. Similarly, use of additional pro-

.19-

cessors as interior merge nodes in the 7 processor configuration only reduces non-idle time
at the root, which does not improve the overall merge speed. A network which delivered
data at the faster rate would be able to increase the utilization of the leaves and root during

the merge phase, and so could effectively utilize more processors.

4.4. Distributed Sort

The above discussion of Table 2 indicates that the distribution of the file from the root
to the leaf processors created a bottleneck. In a Distributed Sort, where the file is initially
distributed across the local disks at the leaves, the sort phase would be much faster. In
fact, since, during this phase, the computation is fully partitioned and every leaf processor
has its own disk, the sort phase time at the leaves is simply the uniprocessor sort phase
time for one partition. Thus, a good estimate of the sort phase time in the Distributed case
is the sort phase time of one partition in the JS1 configuration. Merge phase time in the
Distributed Sort is identical to that in the Backend case. By combining these estimates of
the sort and merge phase times, we obtained the total times for the Distributed Sort. The

results obtained are shown in Table 3.

Sort Merge Total
JS3 10M | 147 158 305
50M | 738 828 1566

JS5 10M 74 157 231
50M | 370 696 1066

Table 3: Distributed Sort Estimate
Sort, Merge and Total Times in Seconds

While in the Backend Sort, the bottleneck at the root made the use of more than 3
processors inefficient, we now observe a substantial speedup with 5 processors. For a file of
50M, the elapsed time is 1566 seconds for a distributed 3 processor sort and 1066 seconds

for a 5 processor sort. This is a speed-up of 1.5 compared to 1.1 for the Backend Sort.

-20-

5. Tuning and Scaling

In the experiments reported above, we adopted the buffer configuration and file layout
that appeared to be most efficient. In this section, we will describe our experience with tun-
ing these parameters. Based on the results of our analysis and on additional experiments,
we propose a model for tuning and scaling a sort utility that could exploit higher processor

utilization, more parallelism and higher network transfer rates.

5.1. Choosing Parameter Values

‘We experimented with various ways to partition the 576K of memory that were avail-
able for buffer configuration in each processor. The parameter to which the sort time was
most sensitive was merge block size. Larger merge blocks decreased the overhead during
the merge phase, and reduced the number of interprocessor synchronization points. With
double buffering, the maximum size of a merge block that we could choose was 32K (see
Section 3.2). To a lesser extent, increasing the input block size also increased sort speed
and we settled on an input block size of 8K. Larger input blocks caused wasteful fragmen-

tation of sort buffers.

The large amount of idle time in the leaves during the merge phase suggests that dou-
ble buffering of disk blocks may not be advantageous. It may be better to consolidate the
two buffers into one large buffer to reduce the number of disk accesses. Additional
enhancement could also come from improving the scheduling of network data transfers. In
the current implementation, the network spooler in a parent node transfers merge blocks
from the node’s children in the order in which they are requested. However, at the same
time, double buffering may cause network traffic that blocks the transfer of data which is
needed for merging to proceed. Children are serviced in approximately round-robin order,

giving no priority to a transfer which is holding up the merge.

We compared the performance of our sort with the two alternative file layouts: con-

tiguous and interleaved. Using the interleaved scheme provided an overall improvement of

21-
5% in elapsed time.

5.2. Scaling Processor Speed

Processor speed affects the performance of the sort in two ways. One is by determin-
ing the time for comparing and moving records in memory. The other is by determining the
time needed to handle the communication tasks. Furthermore, because of the tree structure
of the merge, different CPU loads are placed on different nodes in the tree. We designed an
experiment to determine which components of the sort utilized the most processing power in

merging and eventually, constituted a bottleneck.

We varied the merge speed by artificially increasing the time of the comparison rou-
tine. This was achieved by inserting a do-nothing loop before each Compare statement. In
an initial experiment, we quantified the effect of the comparison delay on the merge speed
of a leaf processor. We configured a 2-processor sort, with one leaf and the root, and varied
the comparison delay from 0 to 300 loop iterations. We observed that the non-idle merge
time at the leaf increased linearly and varying the delay from O to 300 decreased the merge
speed from 100% to 20% of the undelayed speed. Once we established this rate, we pro-
ceeded to measure the effect of varying the merge speed at the leaves, in the 3-processor
(JS3) and the 5-processor (JS5) configurations. In both cases, we kept the amount of data

merged by a single leaf equal to 2.5M. The results of this experiment are shown in Table 4.

From the numbers in the Idle column for JS3 and JS5, we observe that the idle time
at the leaves decreases steadily, up to a delay of 100 for JS3 and 300 for JS5, while the root
merge time remains constant. This confirms our expectation that, without any performance
degradation, the leaf processor could be slower. This experiment shows that the merge time
would not be affected by using leaf processors that are 50% as fast in JS3, or only 20% as

fast in JS5.

In JS3, we also observe that for delays greater than 100 (thus less than half the merge

speed), the leaf idle times remain small while the root idle time starts to increase. This

.22.

JS3 JS5
Merge Idle | Merge Idle |
d=0 leaf | 178 116 377 313

root 179 120 377 246

10 leaf | 180 110 364 290
root 181 123 364 242
d=100 leaf | 184 40 379 240
root 178 107 379 249

d=200 leaf | 243 36 368 145
root 231 162 373 247

d=300 leaf | 319 40 398 115
root 306 237 378 243

d=400 leaf | 375 6 452 105
root 376 310 412 272

(-}
I

Table 4: Merge Time in Seconds
No Root Delay, Leaf Delay From 0 to 400

indicates that the root begins to wait, not only for the network but also for the leaves.

We performed another experiment to determine the effect of decreasing the root merge
speed. In the JS3 configuration, we held the leaf merge delay at 200 and varied the root
delay from O to 500. The corresponding measurements of one leaf and the root merge and

idle times are shown in Table 5.

JS3

Merge Idle

leaf 230 6

d=0 root 231 162
leaf 230 5

d=100 root 232 122
leaf 228 6

d=200 root 230 73
leaf 228 6

d=300 root 230 31
leaf 238 22

d=400 root 240 7
leaf 279 61

d=500 root 284 6

Table 5: Merge Times in Seconds
Leaf Delay Fixed at 200, Root Delay From 0 to 500

.23

Interestingly, the delay at the root had no effect until it increased to approximately
400, which is twice the delay at the leaf. However, the root idle time steadily decreased,
indicating a higher processor utilization. This constitutes further evidence that the
bottleneck at the root is caused by communication overhead, rather by the merge operation.
The processor load due to record comparisons is actually lower on the root than on the

leaves.

5.3. Scaling Network Configuration

In our implementation, the efficient exploitation of parallelism was limited by an
operating system maximum of eight processors, and by high latency in data transfer
between processors. It is interesting to project how much faster our sort could be, were
these constraints lifted. We propose a simplified model to determine, given a file size and a

target sort time, how many processors and what tree configuration would be required.

From our measurements of idle time (Table 2, above), we observe that the absolute
rate of merging is 27 Kbyte/sec, while 80K bytes are merged for every second of non-idle
time. Thus, even if network latency were reduced to zero, the merge rate would be limited
to 80 Kbyte/sec, about three times its present rate. However our experiments with scaling
processor speed demonstrated that most of the CPU time at the root is spent in network
overhead, rather than on merging. Faster merge rates would be possible if the burden on
processors due to network communication were reduced. In that case, additional parallel-
ism could be exploited, because increasing the numbers of leaves would decrease the sort

time, rather than merely increasing idle time at each leaf.

If we assume that the merge phase is not bound by network latency, then we may
derive an "efficient" processor topology for a given target sort goal. By "efficient", we mean
that the configuration would guarantee that the times for the local sort of temporary files,
the serial merge at the leaves, and the concurrent merge at the internal nodes and the root,

all remain a linear function of the size of the data processed by each node.

-24.

When we assume that no component of our configuration exhibits non-linear behavior,
we can characterize each component by two parameters: its linear rate, and the constraints
within which it functions at that rate before non-linear behavior appears. From our experi-

ments we derived the following parameters:

Rio: = 20Kbyte/sec, linear rate of leaves during the sort phase
Rmerge = 35Kbyte/sec, linear rate of leaves during the merge phase

imerge = 10Mbyte, maximum data a leaf can merge at that rate
R, = 80Kbyte/sec, linear rate of non-leaves during the merge phase
D perge = 16, maximum degree of a merge at that rate

We used this model to compute how many processors and which tree topology would be
required to achieve higher sort rates. A straightforward computation leads to the tree
configurations shown in Table 6, for 50Kbyte/sec and 75Kbyte/sec target sort rates, and file

sizes equal to 100 and 500 megabytes.

In configurations for the lower sort target rate (50 Kbyte/sec), the limiting factor is the
need to keep the leaves linear in the merge phase. Hence, when the file size increases from
50 to 100 megabytes, a larger merge tree (50 leaves and 2 levels) is required. For the 75
Kbyte/sec sort target rate, the speed of the inherently linear sort phase is the limiting fac-
tor. Consequently, the optimal configuration is less dependent on the file size. Our compu-
tation leads to the same tree configuration (60 leaves, 4 processors at level 1) for both file

sizes.

Target Processor Config.

Sort rate File size | level 0 level 1 level 2
50KB/s 100M 10 1 -
500M 50 4 1
75KB/s 100M 60 4 1
500M 60 4 1

Table 6: Efficient Processor Configurations (Scaling)

.25-

6. Conclusions

We have described our experience with developing and evaluating a parallel sort util-
ity. Our goal was to explore the feasibility of fast file sorting algorithms under limited
parallelism, limited inter-processor communication bandwidth and the constraints of con-
ventional /O devices. Our testbed was a multiprocessor that can be configured with up to
12 microprocessors, communicating through a fast packet-switched bus and running a dis-
tributed operating system kernel. Multiple disk drives, each attached to one microproces-

sor, provided high I/O bandwidth.

We implemented a parallel external merge-sort algorithm, and measured its perfor-
mance for a range of file sizes and processor configurations. After detailed analysis of our

measurements, and scaling of our results, we reach a number of conclusions:

(1) Using current off-the-shelf technology, 3 and 5 processor configurations provide a very
cost-effective solution to sorting a large file. The 3 processor configuration sorts a 100
megabyte file in 3625 seconds (1 hour), which compares well with commercial sort
packages available on high-performance mainframes. The 5 processor sort is 16% fas-
ter for large files. This level of performance, at a low hardware cost, results from a
design which makes effective use of a streamlined, distributed operating system to

exploit a limited amount of parallelism in computation and I/O.

(2) Latency in network data transfer prevents the effective use of higher levels of parallel-
ism in the backend sort model, where the data file is not distributed. Interestingly,
the 10 Mbyte/sec physical bandwidth of our network was not the limiting factor: Only
300 Kbyte/sec of that is available to any one processor, and operating system overhead
reduces that to approximately 100 Kbyte/sec for the actual process-to-process data
transfer rate. At this rate, network latency allows even a microprocessor (rated at 0.6
MIPS) to sort and merge data as quickly as it can be moved between machines.

Adding processors to the backend configuration simply increased idle time.

-26-

(3) We observed that distributed storage of files provides a substantial benefit in sorting.
For instance, with the 5-processor configuration, a 50-megabyte distributed file could
be sorted in 17 minutes, compared to 26 minutes needed for a non-distributed file.
Our distributed sort model makes efficient use of additional leaf processors to

accelerate the sort phase, which the backend model is unable to do.

(4) Additional tuning of the sort program, and scaling to higher processor and network
capabilities would result in substantial improvement of the performance. We have

presented experiments and a simple analytical model of this enhancement.

This study demonstrates that, with current microprocessor and communication technology,
parallel sorting of large files is a viable, cost-effective alternative to highly tuned sort utili-
ties on mainframes. Our analysis indicates that its efficiency can be expected to increase

dramatically due to improvements in local area network technology in the next few years.

7. Acknowledgements

We wou]d like to acknowledge the early work of Bill Burnette and Susan Fontaine at
AT&T-Bell Laboratories in developing the JASMIN operating system (then called MAX).
U. Premkumar was responsible for developing the network interface which distributes JAS-
MIN across processors. His work with the JASMIN and S/Net software and hardware made
this project possible. Hikyu Lee also made significant contributions to the JASMIN S/Net
implementation. We would also like to thank Ming-Yee Lai for graciously allowing us to

disrupt his use of the S/Net, and for helping us with an early draft of this paper.

We are grateful to two managers who have been especially supportive of our work.
Dan Fishman saw JASMIN through its early days at Bell Laboratories, and, although now
at HP Labs, he continues to encourage our efforts. Mike Lesk, of Bell Communications
Research, has generously supported the collaboration with Cornell University which has
made this research possible. Finally, we thank Jim Gray from TANDEM Computers for his

helpful comments and suggestions.

References

[ANOS85] Anon et al.,, A Measure of Tran-
saction Processing Power, Tandem TR
85-2, February, 1985.

[AHUS83] Ahuja, S.R.,, S/NET: A High
Speed Interconnect for Multiple Com-
puters, IEEE J on Selected Areas in
Communications, SAC-1, 5, November,
1983.

[BAS77] Baskett, FH, Howard, JH, Mon-
tague, JT, Task Communication in
DEMOS. Proceedings of the 6th ACM
Symposium on Operating System Prin-
ciples, November, 1977, pp. 23-31.

[BIT82] Bitton, D, Design, Analysis and
Implementation of Parallel External
Sorting Algorithms, Ph.D. Thesis,
University of Wisconsin-Madison, TR
464, January, 1982.

[BIT83] Bitton, D, and DeWitt D.J., Dupli-
cate Record Elimination in Large Data
Files, ACM Trans. on Database Sys-
tems, June, 1983, pp.255-265.

[EVE74] Even S., Parallelism in Tape Sort-
ing, Comm. ACM, Vol.17, No. 4, April,
1974, pp.202-204.

[FIS84] Fishman, DH, Lai, MY, Wilkinson,
WK, An Overview of the JASMIN
Database Machine. Proceedings of the

ACM SIGMOD Conference, Boston,
MA, June, 1984, pp.234-239.
[KIT84] Kitsuregawa, M., Tanaka, H,

Moto-oka, T., "Architecture and Perfor-
mance of Relational Algebra Machine
GRACE," Proceedings of the 1984 Inter-
national Conference on Parallel Pro-
cessing, 1984.

[KAMS5] Kamiya, S., Matsuda, S., Iwata,
K., Shibayama, S. Sakai, H,
Murakami, K, "A Hardware Pipeline
Algorithm for Relational Database
Operation,” The 12th International
Symposium on Computer Architecture,
June, 1985.

-27-

[KWAS86] Kwan S.C., External Sorting: I/O
Analysis and Parallel Processing Tech-
niques, Ph.D. Thesis, University of
Washington, TR 86-01-01.

[KNU73] Knuth D., The Art of Computer
Programming III, Searching and Sort-
ing, Addison-Wesley 1973.

[LEE84] Lee, H, Premkumar, U, The
Architecture and Implementation of
Distributed JASMIN Kernel. Bell
Communications Research Technical
Memo, TM-ARH-000324, October, 1984,
Morristown, N.J.

[LIN84] Linderman, JL, Theory and Prac-
tice in the Construction of a Working
Sort Routine. AT&T Bell Laboratories
Technical Journal, Vol. 63, No. 8, Part
2, pp. 1827-1845, October, 1984.

[SEL79] Selinger P.G. et al., Access Path
Selection in a Relational Database
Management System, Proceedings of
SIGMOD, pp. 23-34, May, 1979.

[SZH83] Schweppe, H, Zeidler, H.Ch., Hell,
W., Leilich, H.-O., Stiege, G., Teich, W,
"RDBM - A Dedicated Multiprocessor
System for Database Management," in
Advanced Database Machine Architec-
ture, (D.K. Hsiao, ed.), Prentice-Hall,
1983.

[TAN83] Tanaka, Y. "A Data-Stream
Database Machine with Large Capa-
city,” in Advanced Database Machine
Architecture, (D.K. Hsiao, ed.),
Prentice-Hall, 1983.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif

