N

Y, 7274 L) 7, /5T
NASA Contractor Report 178150
ICASE REPORT NO. 86-45 e

NASA-CR-178150
| 19860020907

[CASE

DYNAMIC REMAPPING OF PARALLEL COMPUTATIONS
WITH VARYING RESOURCE DEMANDS

David Nicol
Joel Saltz

FOR REFERENCF

et G —————

"OTponerxnnraomrnmnoou

Contract Nos. NAS1~17070, NAS1-18107
July 1986

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

 LUBRARY ROPY
NASN LiBRARY B

National Aeronautics and SEP S 190

Space Administration CH CENTER
. "ANGLEY RESEARCH CEi

Langley Research Center LaN LIBRARY, NASA

Hampton, Virginia 23665 HAMPTON, VIRGINIA

I |
t, NF00187 [

"

Dynamic Remapping of Parallel Computations
with Varying Resource Demands

David M. Nicol
Joel H. Saltz

Institute for Computer Applications in Science and Engineering

Abstract: A large class of computational problems are characterized by frequent synchronization, and
computational requirements which change as a function of time. When such a problem must be solved
on a message passing multiprocessor machine, the combination of these characteristics lead to system
performance which decreases in time. Performance can be improved with periodic redistribution of
computational load; however, redistribution can exact a sometimes large delay cost. We study the
issue of deciding when to invoke a global load remapping mechanism. Such a decision policy must
effectively weigh the costs of remapping against the performance benefits. We treat this problem by
constructing two analytic models which exhibit stochastically decreasing performance. One model is
quite tractable; we are able to describe the optimal remapping algorithm, and the optimal decision pol-
icy governing when to invoke that algorithm. However, computational complexity prohibits the use of
the optimal remapping decision policy. We then study the performance of a general remapping policy
on both analytic models, This policy attempts to minimize a statistic W(n) which measures the system
degradation (including the cost of remapping) per computation step over a period of n steps. We show
that as a function of time, the expected value of W(n) has at most one minimum, and that when this
minimum exists it defines the optimal fixed-interval remapping policy. Our decision policy appeals to
this result by remapping when it estimates that W(n) is minimized. Our performance data suggests that
this policy effectively finds the natural frequency of remapping. We also use the analytic models to
express the relationship between performance and remapping cost, number of processors, and the
computation’s stochastic activity.

This research was supported by the National Aeronautics and Space Administration under NASA Contract
Numbers NAS1-17070, NAS1-18107, while the authors were in residence at ICASE, Mail Stop 132C, NASA
Langley Research Center Hampton VA 23665.

NIl -F637

2t

1. Introduction

Many computational problems assume a discrete model of a physical system, and calculate a set
of values for every domain point in the model. These values are often functions of time, so that it is
intuitive to think of the computation as marching through time. When such a problem is mapped onto a
message passing multiprocessor machine or a shared memory machine with fast local memories,
regions of the model domain are assigned to each processor. The running behavior of such a system is
often characterized as a sequence of steps, or iterations. During a step, a processor computes the
appropriate values for its domain points. At the step’s end, it communicates any newly computed
results required by other processors. Finally, it waits for other processors to complete their computa-

tion step, and send it data required for the next step’s computation.

The computational work associated with each portion of a problem’s subdomain may change over
the course of solving the problem. This may be true because the behavior of the modeled physical
system may change with time. The distribution of computational work over a domain may also change
in problems without explicit time dependence. For example, during the course of solving a problem,
more work may be required to resolve features of the emerging solution. Since time stepping is often
used as a means for obtaining a steady state solution, there is considerable overlap between the above

- mentioned categories. We call these types of problems varying demand distribution problems.
Because of the synchronization between steps, the system execution time during a step is effectively
determined by the execution time of the slowest, or most heavily loaded processor. We can then
expect system performance to deteriorate in time, as the changing resource demand causes some pro-
cessor to become proportionally overloaded. One way of dealing with this problem is to periodically

redistribute, or remap load among processors.

Changing distributions of computational work_ over a domain arise through the use of adaptive

methods in the solution of hyperbolic partial differential equations. These solutions place extra grid

points in some regions of the problem domain in order to resolve all features of the solution to the
same accuracy [71,181,[201,[33], [24],[45]. A number of studies have investigated methods for redistri-
buting load in message passing multiprocessors for this type of problem [6],[21],[22]. Changing distri-
butions of computational work can also occur when vortex methods are applied to the numerical simu-
lation of incompressible flow fields. In these methods, invicid fluid dynamics is modeled by parcels of
vorticity which induce motion in one another [1], [27]. The number of vortices corresponding to a
given region in the domain varies during the course of the solution of a problem. Methods for dynam-

ically redistributing work in this problem have been investigated [2].

In multirate methods for the solution of systems of ordinary differential equations[46], different
variables in the system of equations are stepped forward with different timesteps. The size of the
timesteps in the system is generally equal to that of a globally defined largest timestep divided by an
integer. The size of the different timesteps utilized may vary during the course of solving the problem,
and hence the computational work associated with the integration of a given set of variables may
change. Another class of problems which may have varying resource demands are adaptive methods
for solving elliptic partial differential equations where iterations on a sequence of adaptively defined
meshes are carried out [4]1,[28],[10],[3],{47]. Generally both the total amount of computational work

- required by each of the meshes and the distribution of work within the domain changes as one moves
from one mesh to the next. There are also non-numerical parallel computations which can exhibit
varying computational requirements. in time driven discrete event simulations [18], one simulates the
interactions over time of a set of objects. Responsibility for a subset of objects is assigned to each
processor. Over the course of the simulation, subsets of objects may differ in activity, and hence in
their computational requirements. This problem may also arise in parallel simulations which proceed in

a loosely synchronized manner, such as those described in [11], [13], [26], [32], [34], [30].

There are two fundamentally different approaches to such remapping. The decentralized load
balancing approach is usually studied in the context of a queueing network [17]1,[191,[29],[40],[41],
[43],[44]. Load balancing questions are then focused on "transfer policies"”, and "location policies"[17].
A transfer policy governs whether a job arriving at a service center is kept or is routed elsewhere for
processing. A location policy determines which service center receives a transferred job. Decentral-
ized balancing seems to be the natural approach when jobs are independent, and a global view of

balancing would not yield substantially better load distributions.

However, a large class of computations is not well characterized by a job arrival model, and it
may be advantageous to take a global, or centralized perspective when balancing. We will call a global
balancing mechanism "mapping” to distinguish it from the localized connotations of the term load
balancing. A centralized mapping mechanism can exploit full knowledge of the computation and its
behavior. Furthermore, dependencies between different parts of a computation can be complex, mak-
ing it difficult to dynamically move small pieces of the computation from processor to processor in a
decentralized way. Global mapping is natural in a computational environment where other decisions
are already made globally, e.g. convergence checking in an iterative numerical method. Yet the execu-
tion of a global mapping algorithm may be costly, as may the subsequent implementation of the new
_ workload distribution. A number of authors have considered global mapping policies under varying
model assumptions, for example, see [12], [16], [23], [42], [5], [9]. A comparison between global

and decentralized mapping strategies is reported in [25].

For the types of problems we describe, remapping the load with a global mechanism is tan-
tamount to repartitioning the set of model domain points in regions, and assigning the newly defined
regions to processors. A mapping algorithm of this sort is studied in [6] and the performance of this
mapping algorithm in the context of vortex methods is investigated in [2]. Decision policies determin-

ing when a load should be remapped become quite important. The overhead associated with remapping

can be high, so it is important to balance the overhead cost of remapping with the expected perfor-
mance gain achieved by remapping. While this is a generic problem, the details of load evolution, of
the remapping mechanism, and of various overhead costs are system and computation dependent. In
order to study general properties of remapping decision policies, it is necessary to model the behavior
of interest, and evaluate the performance of decision policies on those models. Remapping is treated
this way in [31] under the assumption that the parallel computation has multi-phase behavior. In the
present paper we consider remapping of varying demand distribution problems using two different sto-
chastic models. An overview by the present authors introducing some of the ideas developed in this

paper is presented in [37].

The evaluation of policies for memory management in multiprogrammed uniprocessor systems
has successfully employed a number of stochastic models to reflect the memory requirements of typical
programs [15], [39]. In these models, the principal of memory reference locality plays a central role.
Evaluating policies for scheduling a remapping in message passing machines is somewhat similar in
spirit to the evaluation of paging algorithms in multiprogrammed uniprocessor systems. The principal
of locality that we attempt to capture here is the locality of resource demand. The computational work
corresponding to the problem region aésigned to a given processor will often vary in a gradual fashion.
In this paper we consider two models which descriﬁe this evolution probabilistically. The first model
assumes that the computational requirements of each partition region behaves as a Markov chain,
independently of any other region; this is called the Multiple Markov chain (MUM) model. The MUM
model has the advantage of being analytically tractable in several ways. However, for many problems
it may not be reasonable to assume independence in load evolution between partition regions. We
address this issue with a second, less tractable model, the Load Dependency (LD) model. These
models attempt to capture the dynamics by which the distribution of computational load changes in
time, and are characterized by a small number of irhportant parameters. Through the use of these load

evolution models, we are able to evaluate policies for deciding when load should be remapped.

In this paper we propose a policy which attempts to minimize the statistic W(n) measuring the
average (over n steps) system degradation per step (including the cost of a remapping). We show that
as a function of n, the expected value of W(n) has at most one minimum, If the minimum occurs at 7,
then we show that the optimal fixed-interval remapping policy is to remap every # steps. These results
support the general philosophy of the heuristic. Empirical studies based on our models show that the
heuristic is effective on different models of load behavior. We also describe analytical work which

looks at the relative effects the model parameters on remapping frequency.

T.his paper is organized as follows. Section 2 describes the Multiple Markov chain model of cdm—
putational variation, and shows how it captures the drifting computational load phenomenon. Section 3
discusses optimal algorithms for both determining how to remap, and for determining dynamically
when to remap. The high computational expense of computing the optimal decision policy leads us to
define a simple inexpensive heuristic policy in section 4, where we also discuss the heuristic’s perfor-
mance. Section 5 then presents an analysis of the statistic used by the heuristic, and shows analytically
that the heuristic is well motivated. Section 6 presents an alternate model of load variation, and shows
how the statistic of section 4 is also éffective with this model. Section 7 summarizes our results, and

the appendices treat technical issues in detail.

2, Multiple Markov Chain Model

A processor is assigned a region of the problem domain. At each step, the processor needs to
perform a certain amount of computation related to that region. Upon completion of this computation,
it may send messages to other processors, reporting newly calculated results. Before advancing to the
next step, the processor then synchronizes as required by the computation. The computational require-
ments of the region may vary gradually from step to step. The MUM model characterizes this varia-
tion by modeling the work demands on each processor using a Markovian birth-death process. The

state s of the chain is a positive integer describing the execution time of the processor at a step. We

also assume that s < L for some L. The transition probabilities out of s reflect the principle of locality,
where all one ste§ transitions are to neighboring states. When s is between 2 and L~1, the probability
that the chain will make a one step transition to state s+1 is p/2, the probability of a one step transition
to s—1 is p/2 and the probability that the chain will not make a transition is 1-p. Fors=1ors=1L,
the state remains the same with probability 1 — p/2, and moves to the single neighboring state with

probability p/2.

The processors are modeled by a collection of independent, identically distributed Markov chains.
We let T(n) represent the time required by the jth processor to complete the nth step. Assuming N

processors, the time required for the system as a whole to complete the nth step is given by

Tran(r) = max{T(m)}.

The average processor execution time during the nth step is

_ 1 N
Tn) = = ZT(n).
=

Then the average processor utilization during the nth step is

- T
p(n) ("

and the average period of time that a processor is idle waiting for other processors to finish step n is
- consequently given by Tpa(n)-T(n). Finally, we assume that the states of every chain at step O are

identical.

An intuitive feel for the behavior of the MUM model is gained by examining graphs of particular
performance measures. Figure la depicts the behavior of the MUM model for varying numbers of
chains. The performance shown is the average (per step) processor utilization as a function of step,
taken over 500 simulations or sample paths, where p = 0.5 and each chain has 19 states. Performance
declines more quickly and to a lower level as one simulates a problem with an increasingly large

number of independent processors. For a given number of chains, the performance decline arises from

the fact that the expected value of T(n) remains relatively constant as n increases, while the expected
value of T,,,(n) increases in n. Figure 1b depicts the performance of single sample paths of the MUM
model using varying numbers of chains, where as before p = 0.5 and each chain has 19 states. Note
that the decline in performance as a function of step is true only in the sense of comprising a long term
trend; each curve has many local maxima and minima. This point is particularly important, because
any dynamic real time remapping policy mechanism is concerned with the current single sample path

defined by the computation’s execution.

3. Optimal MUM Model Load Balancing

We now consider the problems associated with remapping a computation described by a MUM
model. There are two basic issues, how to remap, and when to remap. The tractability of the MUM
model allows us to describe optimal policies for both of these issues. We treat the remapping mechan-
ism by demonstrating that under certain regularity conditions, the obvious technique of assigning equal
loads to each processor is optimal. However, we will note that deviation from these regularity condi-
tions can cause this technique to be sub-optimal. We treat the remapping decision problem in the
framework of a Markov decision process. We are then able to symbolically express an optimal remap-
ping decision policy in terms of a solution to a set of equations. However, the complexity of solving
~ these equations grows exponentially in the size of the problem, so that this technique is not useful for
any but the smallest sized problems. This realization leads us in section 4 to consider a sub-optimal

but computationally simple decision heuristic.

Consider the situation where the computation has completed step n, and we wish to redistribute
the computational load. For every processor j, we can determine its load during step #, and can deter-
mine that step n required T(n) processing time. We then suppose that it is possible to repartition the
problem domain into N regions with equal (or near equal) computational demand during step a. This

new partition is implemented for step n + 1. We call this mechanism average value remapping. While

the optimality of this policy may seem trivially obvious, later reflection shows that this may not always
be the case. For example, if one processor’s computational load tends to evolve faster than others’, we
may want to assign it less than the average value load upon remapping. Called padding [38], such a
policy accepts slightly decreased immediate performance in order to forestall the active processor from
quickly degrading performance. Nevertheless, under certain conditions (which exclude this difficulty),
we can show that the average value load policy is optimal. The proof of this claim is somewhat techn-
ical, and is provided in Appendix A. To formally state the claim, we define

T{n+d,s) = Tfn+d) given that Tin) =s;

and

Trax(ntd,sy, * * 5N) = {nsjg{n(n-*-d’sj)}'
Then

THEOREM 3.1 : Assume that the Markov chains are homogeneous, and unbounded (no max-
imumNnor minimum state), and that the transition probabilities are unaffected by remapping. Sup-

pose 2% T{n,s) =K. Forevery i = 1,2, - - - N, define
J=

|K/IN] +1 ifi<K mod N
%=1 |KIN| ifi2 K mod N

Then for every d 2 0 we have
E[Trax(ntd,sy, * * * SN)] 2 ElTyax(ntd,ay, - - -+ ,an)].

Theorem 3.1 is a strong statement of the average value remapping policy’s optimality. It says that
employing this policy at step » minimizes the expected execution time of every future step, if no
further remapping is permitted after step n.

The second major remapping issue is when to remap. If there were no cost associated with

remapping, then we would remap frequently to maximize processor utilization. With an increasing cost

of remapping, we will want to remap less and less often, to better amortize the cost of remapping over

a larger number of computation steps. We can employ a Markov decision process framework [35] to
formally state the remapping decision issue. Within this framework we are able to symbolically

describe the optimal remapping decision policy.

Our notation concerning Markov decision processes is taken largely from [35]. Consider a sto-
chastic process whose state we observe at each of a sequence of times t=0, 1, - - - . Let I be the set
of all possible states. At each time j, the state of the process is discerned to be some s € I. Then a
decision is made, choosing some action a from a finite set A; the choice of action a while in state s
incurs a cost c(s,a). c(s,a) may be random; we assume that E[c(s,a)] is finite for all states s and actions
a. The decision process then passes i_nto another state. The probability p,,(a) of passing into state g
from s is dependent on the action a chosen in state s, The expected total cost of a decision policy is

the expected sum of the costs incurred at each decision step. An optimal decision policy minimizes the

expected total cost.

We restrict our attention to the class of stationary decision policies, those policies which are
deterministic functions of the discerned state. The following useful theorem concerning optimal sta-

tionary decision policies is given by [35].

Let V(s) be the expected total cost of the process which starts in state s, and which is governed by the

~ optimal stationary policy. Then,

V(s) = :1}511}‘ {c(s,a) + X Psg(@)V(q) } (1)

qe I

a

The function V(s) is known as the optimal cost function. From state s, the optimal stationary decision
is the choice of action which minimizes the right hand side of equation (1). We now formulate the

MUM remapping decision problem in terms of a Markov decision process.

-10-

The state of our decision process at step n is the vector of chain states <Ty(n), - - - ,Tn(n),n>
along with the step number, n. For ahy decision state S = <sy, - - - spy,n>, let J(S) denote the set of
states reachable from <sy, ‘- - sp,n> in one step , and let A(S) denote the system state achieved by
performing average value remapping on §. Each T =<ty, - « - ,ty,n+1> € J(<sy, - - - sy,n>) has a tran-

sition probability

N
Prob{T | §} = I'Il Prob{s; | s;}
=
where Prob{t; | s;} is the probability of chain i passing from state s; into state ¢; in one step. The exe-

cution cost of state S is simply

EC(S) = max {s;},
and the delay cost of doing a remapping is C. This cost includes both the communication costs and
the computational overhead required for performing a remapping operation. This delay cost C is in
general expected to be a function of the state S, although we will suppress this dependence here for the
sake of simplicity. We can observe the system state S only by allowing the system to execute the step
during which state $ is achieved. Thus the decision process state encodes the performance of the last
step’s execution. If we remap from state S, this assumption implies that the next system state will be a

member of J(A(S)). Equation (1) may now be written as

ECS)+C+ ¥ Prob{UV(U)
_ Ue JASH
VI =minl pogy+ 3 Prob{UIV(U)
Ue J(S)

€9

where the top equation on the right-hand side is the cost function associated with remapping, and the
bottom equation is associated with not remapping. According to the theory of Markov decision
processes, the optimal decision to make from state S is the decision which minimizes the right-hand
side of equation (2). If the number of steps taken by the system is some random variable with finite

mean, then the system of equations given by (2) can be solved, at least in theory. In practice, we have

~11-

not found any means of substantially reducing the enormous state space addressed by these equations,
and so the exact solution of the optimal remapping decision policy is restricted to relatively small sys-
tems. Furthermore, the optimal Markov decision process as formulated here is applicable only to the
MUM load model. It depends on foreknowledge of the precise probabilistic structure of the MUM
model and on the independence of the MUM model chains. All of these issues rﬁake this decision
model an unrealistic candidate as a decision mechanism. In the next section we introduce a heuristic

which avoids these difficulties.

4, Stop At Rise Decision Policy

Because of the difficulties inherent in the optimal MUM model remapping decision policy, we
consider a sub-optimal heuristic called the Stop At Rise (SAR) policy. The SAR policy attempts to
minimize the average time per step that a processor spends inactive due to synchronization or remap-

ping delay. In this section we describe SAR and present performance data.

Any remapping decision policy must attempt to reconcile the costs of remapping against the
increasing execution costs suffered by not remapping. However, the increasing execution costs are
future costs, and are consequently uncertain. The optimality of the MUM Markov decision process
policy stems from its explicit consideration of all possible future activity and costs. A real policy can-
" not afford this computational luxury. Instead, we turn to SAR, a "greedy"” policy, which attempts to
remap so that the average long-term processor idle vtime since the last remapping is minimized. This
calculation of idle (or wasted) time includes the time C spent in one remapping operation. Supposing
that the load was last remapped n steps ago (say, just before step 1), the average processor idle time
per step that we achieve by remapping immediately is denoted W(n), and is given by

3 T ~ TG) + €
W(n) = & 1 '

n

~12-

W(n) explicitly embodies two of the costs a remapping policy must manage. C is the delay cost

n
of remapping once, ¥ (Tmax() — T())) is interpreted as the cost of not remapping. However, under the
~l

greedy philosophy we have adopted, this latter cost is a past cost of not remapping, rather than a future

cost.

It is instructive to consider the behavior of W(n) as a function of n. Figure 2a plots W(r;) for sin-
gle sample paths when p = 0.5, C = 8.0, and the chains have 19 states. Paths from 2, 8, and 32 chain
systems are shown. Figure 2b plots E[W(n)] under these same parameter values. Both graphs show
W(n)’s marked propensity to drop, be minimized over some section of its domain, and then begin and
continue to rise. This behavior can be explained in terms of W(#n)’s definition. There is a tendency for

W(n) to decrease in n, as increasing n amortizes the cost C over a larger number of computation steps.

n
But there is also a tendency for W(n) to increase in increasing n, as we may expect . 1(j)/n to remain
=

n
relatively constant, and Y.T,...(j)/n to increase with n. The tendency to decrease dominates initially,
Fl

but has less effect on W(n) as n grows. The tendency to increase then becomes predominate. We
once again note that this tendency is an expected tendency. The precise behavior of W(n) for a given

sample path will vary with that sample path. Whereas it is reasonable to expect that E[W(n)] has a
| single local minimum (a topic we discuss in section 5), the values of W(#n) for a given sample path
may exhibit multiple local minima. The significant implication of these observations is that we do not
have the option of remapping at a time step 7 with any assurance that W(s) will minimize the statistic.
We can however remap once the first local minimum of W(n) is detected. We thus choose to remap at
the first step A after the last remapping such that W(#A) > W(si—-1). This policy of remapping when a

local minimum of W(n) is first detected is labeled the SAR (Stop At Rise) policy.

We studied the performance of the SAR pdl_icy by comparing it to three other policies: the

optimal policy, the "remap every m steps" policy, and the policy which never remaps. It is possible to

-13-

compute the expected time required to complete small sized problems when the optimal Markov deci-
sion policy is utilized to decide when to remap. Figure 3 compares a performance metric for the Mar-
kov decision policy, SAR, and a non-remapped system for three chains, 100 steps, and various remap-
ping costs. The SAR data is the average of 500 simulation runs for each value of C. As the remap-
ping cost increases, the discrepancy between the performance obtained through the optimal decision
policy and SAR increases. With increasing remapping cost, both the performance of the optimal deci-

sion policy and of SAR approach the performance obtained when no remapping is performed.
The performance metric used in figure 3 for all policies depicted in that figure is an estimate of

n
processor utilization: the ratio of the expected Y T(j) to the expected total time spent by the system to
Fl

solve the problem, including the cost of all remappings. This measure is useful in figure 3 as it is

straightforward in the case of the optimal policy to calculate the expected time required to complete a

. .
problem as well as the expected Y. T(j). For all subsequent figures, performance data is obtained by
1

simulation, and the easily computed average performance over all simulations is utilized, i.e. the mean

. .
of the ratio of the Y. T(j) to the total time spent by the system to solve the problem, including the cost
1

of all remappings. Both performance measures were computed for all simulations, and found to differ

from each other by less than one percent.

One simple but intuitive remapping policj/ is the "remap every m steps" policy, or fixed interval
policy. This policy is insensitive to statistical variations in a system’s performance, and requires pre-
run-time analysis to determine an effective value of m. However, we might well choose to employ a
fixed interval policy if it is costly to measure system performance at every step. In this case, we would
attempt to choose m to optimize the system’s expected performance. In figure 4, we compare the per-
formance obtained through the use of: (1) SAR ,A (2) the fixed interval policy for a wide range of

values of m, and (3) not remapping at all. The performance obtained in a system using the MUM

~14-

model with eight independent processors is depicted. Each problem consists of 400 steps, each data
point is obtained through 200 simulations, and remapping costs of 2 and 8 are assumed. For the SAR
policy, we plotted performance against the calculated average number of steps between consecutive
remappings. In the fixed interval policy, we plotted performance against m, the fixed number of steps
between remappings. The number of steps between remappings has no meaning when no remapping is
done, the performance obtained when no remapping occurs is plotted as a straight horizontal line to
facilitate comparison with the other results. The calculation of the performance obtained through the
use of the optimal Markov decision policy is not practical in this case due to the long run times and

large memory requirements that would be required.

It is notable that SAR’s performance was comparable and in fact slightly higher than that
obtained by remapping at the optimal fixed interval. The average number of elapsed steps between
SAR remappings corresponds closely to the optimal fixed interval remapping policy. Similar results
were obtained in other cases using the MUM load model. These results are encouraging for t.wo rea-
sons. Since SAR adapts to statistical variations in the system’s behavior, we would hope that it can
outperform a non-adaptive policy. Our data shows that SAR outperforms the optimal fixed interval
policy. Secondly, SAR appears to find the "natural frequency" of remapping for a given remapping
- cost. While the exact number of steps between remappings may vary with the system’s sample path,
the average number of steps between remappings is close to that of the optimal fixed interval policy.
Note also that the performance obtained by SAR is markedly superior to the performance obtained
when no remapping is performed. From extensive simulation results not presented here, we found that
the difference between the performance obtained by SAR and the performance obtained when no
remapping is performed increases with the number of chains. This is consistent with the observed

results in figures 3 and 4.

-15-

In the face of uncertainity about future problem behavior, it is reasonable to design a remapping
decision policy which optimizes performance locally in time. The SAR policy does this by attempting
to minimize W(n), a statistic which measures performance since the last remapping. Performance
experiments show that the SAR policy effectively finds the "natural frequency" of remapping as a
function of the rate at which resource demand chanées, and the cost of remapping. As such, SAR is a
promising policy for real remapping situations. In section 6 we demonstrate that the SAR policy can

also be effectively employed with computational models other than the MUM model.

5. Analysis of E[W(n)]

In this section we analyze the behavior of E[W(n)]. First we show that if the difference between
expected maximum load and average load is an increasing function, then E[W(n)] has at most one local
minimum as a function of #n, We then show that if E[W(n)] has a minimum at #, then the fixed-interval
decision policy of remapping every 7 steps minimizes the expected loss per step of any fixed-interval
policy, including the policy which prohibits remapping. These results are independent of the MUM
model; we then present conditions on MUM parameters for which these results apply, and show that
MUM assumptions allow us to compute E[W(n)] exactly for all n. Finally, we analyze the effects that
problem behavior and remapping costs have on optimal (fixed-interval) remapping frequency. This
| analysis gives us both a qualitative and a quantitative grasp of the relationships between the different
factors involved in a decision to remap. Furthermore, since our SAR data indicates that SAR adap-

tively finds the optimal fixed-interval remapping frequency, we expect these relationships to hold true

for SAR.

We will first show that under a reasonable hypothesis, the expected time wasted per step,
E[W(n)], can have no more than one local minimum. Moreover, the step 7 at which the minimum of
E[W(n)] occurs is a monotone increasing function of the cost of remapping C. In order to minimize

wasted time per step, if remapping becomes more costly, the number of steps between successive

=-16-

remappings must increase. After remapping we assume that the expected partitioning of load between
processors becomes increasingly uneven. The hypothesis used in the theorem formalizes this and sup-
poses that the expected difference between the maximum order statistic and the average is monotone

increasing with n.

THEOREM 5.1 : Suppose E; = E[Tp, ()] - E[T(i)] is monotone increasing in i. Then E[W(n)]
has at most one minimum and if this minimum exists, it is a monotone increasing function of the
remapping cost C.

PROOF: Let 8(n) = E[W(n+1)] — E[W(n)], and let

n
K(n) = nE,y - 3 E;
: =
From the definitions of 8(n), E[W(n)] E; and k(n), it is straightforward to show that

on) <0 iff «x@n) < C
and that

&n) >0 iff x(m) > C.

Using the assumption that E; is monotone increasing, we first show that x(n) is monotone increasing.

This follows, since

i=1

n+l n
K(ntl) — x(n) = [(" + 1E, — i Ei] - [”Enﬂ -X Ei]
=1

= (n+1)(En+2"En+l.) 2 0.

For the sake of contradiction, assume that there are local minima at 7, and at 7,; without loss of
generality we suppose that A, > Aj. Since A; is a local minimum, E[W(A;+1)] > E[W(#A,)], so that
8(n;) > 0 and hence x(A;) > C. If A, is also a local minimum, then E[W(#,)] < E[W(#,—1)], so that
3(,~1) < 0 and hence x(A,~1) < C. If A; = A,~1 we have a direct contradiction, since x cannot be
both greater than and less than C at the same point. If 7; <l Aiy—1, we have a contradiction as x(n) is a

monotone increasing function of ».

=-17-

Now, if the minimum 7 exists it is the largest n» for which k(n) < C + 1. Since x(n) is a mono-
tone increasing function of n, it follows immediately that the A minimizing E[W(n)] is a monotone

increasing function of C.

O

One may expect that following a remapping, the difference in the time per step required by the
maximally loaded processor and the éverage proceSsor will tend to increase in time. Theorem 5.1
states that as long as E[T,,,(i)] - E[T(i)] is a monotone increasing function of i, then E[W(n)] has at
most one minimum. Under ideal circumstances, an existing minimum defines the optimal fixed-interval

remapping policy, a fact demonstrated by Theorem 5.2.

THEOREM 5.2 : Suppose that remapping after n steps resets the E; sequence, so that the expect-
n
ed loss between remappings is Y, E; + C. If E[W(n)] is minimized at 7, then the optimal fixed-

i=1
interval remapping policy (including the policy which never balances) is the policy which remaps
every A steps.

PROOF: The average loss at the kth remapping is

n
k[z E+ c]
i=1
—Zk—— = E[W(n)].
n

Thus as k—eo, the limiting average loss is simply E[W(n)], which is minimized when n = 7. To see
that E[W(n)] is less than the limiting average loss per step of never remapping, we observe that

n

% E

Elw(m)] = =—
n

is the average loss per step without remapping, and that

E[W(n)] = E[w(n)] + %
Since E[W(n)] is increasing and the difference between E[W(n)] and E[w(n)] gets arbitrarily small with

increasing n, the fact that E[W(n)] is increasing for n» > 1 ensures that

~18-

EW@®)] € lLim E[w(n)).

0

While recognizing that the reseting assumption upon which Theorem 5.2 rests may not be met in prac-

tice, the theorem’s statement supports the idea of SAR: seeking to remap when W(n) is minimized.

It is reasonable to investigate the conditions under which the simulated loads produced by the
MUM model lead to a sequence of E; that is monotone increasing. We assume that all chains begin at
the "middle" state. We will show that as long as it is relatively unlikely that a processor will requirc;
the maximum possible time L to complete a step, we are guaranteed a monotone increasing sequence
of E; Theorem 5.3 below demonstrates that a sufficient condition that ensures that the situation

described above will prevail is that the transition probability p be less than or equal to 2/3.

We state two lemmas, which are used to prove Theorem 5.3. An essential tool used in the state-

ment of one of these lemma’s is the theory of stochastic variability (see [36]). A random variable X
is said to be stochastically more variable than random variable Y, denoted X 2, Y, if E[g(X)] = E[g(Y)]
for every increasing convex function g. X 2, Y intuitively means that X places more probability on
occurrences of high sample values than does Y. For our purposes, a result given in [36] is very impor-
tant: if X, - - - X is a group of independent randoxﬁ variables, Y, - - - ,Y, is a group of independent

random variables, and X; 2, ¥; fori = 1,2, - - * ,k, then

Efmax(X;, * * - ,Xp] = E[max(¥y, - - - ,¥pl. (3)

Also, for every j = 1,2,..., L, and step n, we denote the probability mass function

pj(sin) = Prob{Tn) = s}.
The proofs of the following two lemmas are detailed, and have been relegated to Appendix B.

-19-

LEMMA 5.1 : Assume that at step 0, all chains are in state (L+1)/2, ie., for all j
P{(L+1)/2;0) = 1; also assume that p < 2/3. Then for all steps n, we have p(k—1;n) < pj(k;n) for
k < (L+1)/2, and p{k+1;n) < pi(k;n) for k 2 (L+1)/2.

O

Lemma 5.1 simply identifies conditions which ensure that the probability mass function for a chain’s
state distribution is unimodal at every step. The next lemma shows that if the probability bf chain j
being in state L is always less than or equal to the probability of its being in any other given state,
then T(n) is stochasﬁcally more variable than Ti(n—1).
LEMMA 5.2 : If for every n,

IWMU@=H=H?{meW=H}

then Ti(n) 2, T{(n~1) for all n.
O

Note that if the conditions of Lemma 5.1 are satisfied, then the conditions of Lemma 5.2 are also

satisfied. In this case, we also have

THEOREM 5.3 : If Prob{T{0) = (L+1)/2} = 1, and p < 2/3, then E[W(n)] has at most one local
minimum. If the minimum exists, it is a monotone increasing function of the remapping cost C.

PROOF: The condition that Prob{T{n)=L}= m’zn {Prob{TJ(n) =k} } follows immediately from

Lemma 5.1, hence by Lemma 5.2 we have the conclusion that T(n) 2, T{n—1) for all n, and all j.
Since the chains are independent, it follows from (3) that
E[Tiax(m] 2 E[Tpax(n-1)].

The average time spent by the processors performing computations during step i is

T4,

M=

T() = %-1

‘\l

so that the expected value of T(i) is

~20~

= 1Y :
E[T()] = WZ E[T{)].
=1
Because we assumed that all chains j are initially in the middle state (L+1)/2, and the chains are sym-
metric, it follows that E[Ti)] = (L+1)/2 for all i. But since E[Ty,y()] increases in i and E[T(3)] is con-

stant, we see that E; is monotone increasing in i. Our conclusion then follows from Theorem 5.1.

(]

It is interesting to note that the result above does not depend on the MUM chains being identically dis-

tributed; Theorem 5.3 applies if every chain’s transition probability is less than 2/3.

The simplicity of the MUM model allows us to derive an exact expression for E[W(n)]. In
theory, we could use this expression to find the A which minimizes E[W(n)]. However, this expression
is computationally cumbersome, and does not immediately lend itself to useful interpretation. We there-
fore also present two more tractable approximations to E[W(n)], and comment on the relationships they

show between MUM model parameters.

It is straightforward to compute E[W(n)] for the MUM model. For each processor j, we define
the probability state vector describing.the distribution of T{m) as p{m) = (p{l;m), - - - ,pJ(L;m)) We
also define M as the matrix of the Markov chain’s one step transition probabilities. The probability
~ state vector for the mth step is given by the vector-matrix product

pi(m)=p{O)M"™.
Note that this expression depends on the distribution of chain j’s initial state. The cumulative dis-

tribution function for T(m) may be written as

3
P{s;m) = Prob{T{m) < s} = Z;. pi(im).
=
The time required by a N processor system to complete step m is given by the distribution of the max-
imum order statistic of the processors’ states at step m. For every state s and step m, the probability

that the maximum state exceeds s is equal to one minus the probability that all processors have a state

-21-

less than s at step m. The cumulative distribution function for the maximum order statistic at step m

is thus
Prob{max{T{m)} > s} = 1= Prob{T(m)<s, j= 1,2, - - N}
J

N
=1~ I P(sim).
Fl

It is well known that for any non-negative discrete random variable X, E[X] = Y,Prob{X > a}. The

a0
mean time for the system to compute step m is thus expressed as
L N
E[Tpa(m)] = 3 [1-TTP{(s-1;m)|.
s=1 1

As mentioned previously in this section, the expected value of T(m) is

_ N
EfT(m)] = 13, EITfm).
Furthermore, E[T{m)] may be written as

L

ETmI= (1-Pfs-1im).

s=1

We can now derive an expression for E[W(n)]. By definition,

5. [E[Tmax(m)]-E[T(rn)]] +C
E[W(n)]="=2

n
Substituting the expressions derived above into (4), we obtain

2 2| 2P (s=1imy-T]P{s-1m) | + C
m=1=1{ N =21 A

EW(n)] =

n

@

(5)

The expression above may be used to calculate the expected value of the time lost per processor

as a function of the number of steps since the last remapping. In principle, we could then compute the

n = i which minimizes expression (5). However, this precise formulation does not give us any insight

-22-

into the qualitative effects that the MUM model parameters have on A. To attempt to gain this insight,
we considered two approximations for E[W(n)] which better express relationships between the MUM
model parameters. Since SAR appears to adaptively find the optimal fixed-interval remapping fre-
quency, we expect that these relaﬁonships affect SAR remapping frequency in the same way. The first
approximation we describe is asymptotic in the number of processors; the second approximation uses

an upper bound on the max order statistic of a symmetric random variable.

Our first approximation assumes that the number of states in a processor’s chain is odd, and
denotes the "middle" state by K = (L + 1)/2. The following lemma shows how 7/ depends on the

MUM model parameters L and C as the number of processors gets large.

LEMMA 5.3 : As N—=co, then

2
\2C if c< = 1;—1
< —1)2 —
A=)| L-K-1 if ———)-(L"‘;l < ¢ < {LKENEK) 12)(L‘K)
| no minimum otherwise

The proof of Lemma 5.3 is given in Appendix B.

Lemma 5.3 shows that for small values of C, 7 increases in C as a square root, until C reaches a
threshold. For values of C larger than this threshold, E[(W)] cannot be minimized, which implies that
the cost of remapping is too high to ever consider remapping. We recognize this critical threshold as
essentially the expected processor state squared, divided by two. Lemma 5.3 thus helps to quantify the
role that the remapping cost plays in the MUM model. It identifies a relationship between permissible
remapping costs and processor execution time, showing that remapping improves performance even if

the remapping cost is relatively large compared to processor execution time.

-23-

The asymptotic assumptions underlying Lemma 5.3 lead to one discomfitting effect: the variation
in the Markov chains does not play a role in determining 7. A second approximation to E[W(n)] is
more sensitive to this variation. Lemma 5.4 states the general dependence of /i on the number of pro-

cessors N, the cost C of remapping, and the MUM transition parameter p.

, where

LEMMA 5.4 : Using an approximation given by [14], 7 is a function of —< __
NdN)p

d(N) = N"12,

O

The proof of Lemma 5.4 is also given in Appendix B.

We have noted that as the cost of remapping increases, it makes sense to remap less frequently so

as to better amortize the cost of remapping over a larger number of computational steps. For the

MUM model, 7 is actually a function of the expression , where d(N) = N"'2, The cost C of

—C
Nd(N)p
remapping, the number of processors N and the activity p of the processors together determine the
value of /. One can see that increasing the number of processors, and increasing the activity associ-
ated with each processor leads to a reduction in the number of steps between remappings analogous to

that obtained by decreasing the cost of remapping.

This section has examined the statistic W(n). We have demonstrated general conditions which
ensure that E[W(n)] has at most one minimum, and that the existence of the minimum at 7/ implies that
remapping every 7 steps is the optimal fixed-interval remapping policy. This result supports our use of
the SAR policy by suggesting that performance gains are achieved by minimizing W(n). We then
looked at E[W(n)] specifically under the MUM model assumptions. We showed general conditions
ensuring that E[W(n)] has at most one minimum; we showed that E[W(n)] is computable, and analyzed
the interrelationships between MUM model parameters by looking at how they affect the expected fre-

quency of remapping.

6. Load Dependency Model

While the MUM model is analytically tractable, some of its assumptions may not be realized in
practice. For example, MUM assumes that a processor’s load drift is stochastically independent of any
other processor’s load drift. It is easy to construct examples where this assumption is violated. This
flaw could be corrected by allowing correlation between chains’ transitions, but then an appropriate
model of correlation would have to be determined. MUM also assumes homogeneous Markov chains;
there is no problem in allowing heterogeneous chains, but the analysis we have developed does not
apply to such a model. More seriously, the MUM model implicitly assumes that the transitional
behavior of a processor’s computational load is determined by the processor, rather than the load. This
assumption is embodied in the assumption of transitional invariance under remapping, used to prove
Theorem 3.1. This flaw is corrected in a model where the distinction between a processor and its load

is clearly drawn. We call this the Load Dependency (LD) model.

The LD model directly simulates the spatial distribution of computational load in a domain. We
consider a two dimensional plane in which activity occurs, for example, a factory floor. To simulate
this activity we impose a dense regular grid upon the plane; each square of the grid defines én activity
point. We suppose that activity in the plane is discretized in simulation time, and model the behavior
- of activity as follows. Each time step a certain amount of activity may occur at an activity point. This
activity is simulated (for éxample, arrival of parts to a manufacturing assembly station), causing a cer-
tain Amount of computation. By the next time step some of that activity may have moved to neighbor-
ing activity points. This movement of activity simulates the movement of physical objects in a physi-
cal domain, and is modeled by the movement of work units. A work unit is always positioned at some
activity point, and has a weight describing its computational demand at that activity point. From one
time step to the next, a work unit may move from an activity point to a neighboring activity point; this

movement is governed probabilistically. In the LD model, the probability that a work unit will move

—25~

from one activity point to another, as the problem goes from one time step to the next is called the

transition probability linking the two activity points.

We employ binary dissection [6] to partition the activity points into N activity regions, where the
points in an activity region form a rectangular mass. The weight of an activity point is taken to be the
sum of the weights of work units at the point, at the time that the partitioning is performed. The com-
putational load on a processor during a time step is found by adding the weights of all work units

resident on activity points assigned to that processor.

In a wide variety of problems, including those mentioned in section 1 as examples of varying
demand distribution problems, data dependencies are quite local. Decomposition of a domain into con-
tiguous regions with a relatively small perimeter to area ratio is thus generally desirable for reducing
the quantity of information that must be éxchanged between partitions. Furthermore, due to the local
nature of the data dependencies, the communication required between partitions in a binary dissection
will generally be greatest in partitions that are in physical proximity. The analysis in [6] shows that
this type of partition is effective for static remapping, and is easily mapped onto various types of
parallel architectures. Estimates are also obtained of the communication costs incurred when binary
dissection is used to partition a problem’s domain, and the resulting partitions are mapped onto a given
- architecture. The communication cosf estimates obtained by such analysis are inevitably problem,

mapping and architecture dependent. This binary dissection is briefly described in Appendix C.

A processor’s load changes from one time step to the next when a work unit either moves to an
activity point assigned to another processor, or similarly moves from an activity point in a different
processor. This explicit modeling of work unit movement removes the most serious flaw with the
MUM model. Unlike the MUM model, the change in a processor’s computational load from one time
step to the next is explicitly dependent on its own load, and on the loads of processors with neighbor-

ing activity regions.

26~

To ensure the correctness of the simulation, we require that all computation associated with a
time step be completed before the simulation advances to the next time step. Thus, as in the MUM
model, the time required to complete a time step is the maximum computation time among all proces-
sors. Again like the MUM model, as time progresses any initial balance will disappear, and average
processor utilization will drop. This is particularly true if the work unit movement probabilities are

anisotropic.

The SAR policy can also be used with the LD model, since the W(n) statistic requires only the
mean processor execution time, the maximum processor execution time per time step, and the remap-
ping cost C. The performance of SAR on the LD model was examined by once again comparing SAR
to the performance of fixed interval polices. Figure 5 plots expected processor utilization as a function
of time for remapping costs of 50 and 100 work units, when a 64 by 64 mesh of activity points is ini-
tialized with oné work unit per activity point, and 16 processors are employed. The transition proba-
bilities are anisotropic (given in the figure legend), so that the work tends to drift to the upper right
portion of the mesh over time. Not taken into account here is the cost of the interprocessor communi-
cation that occurs at the end of each step when partitions exchange newly computed results. As was
observed in the MUM model the the ;;erformance of the SAR rule and the average number of elapsed

steps between SAR remappings corresponded closelyv to that of the fixed interval leading to the optimal
performance. In figure 5, the performance of SAR for a given cost is superior to that obtained from
fixed load balancing at the optimal frequency. In other simulations, the performance obtained from
SAR was comparable to, but slightly below that obtained from the optimal fixed load balancing
method. Note that the performance obtained by SAR in figure 5 is markedly greater than that obtained

when no remapping is performed.

-27~

7. Summary

To date, most load balancing problems addressed in the literature concern systems which can be
modeled by a queueing network. A large class of parallel computations are not well modeled by
queues and job arrivals, particularly those solving scientific problems. Yet the time-variant behavior of
these computations, coupled with their synchronization needs, creates the following performance prob-
lem. Good processor utilization requires that the computational load be balanced between processors,
yet a good balance can’t be sustained because of the variation in the computational workload. To treat
this problem, we need to both model the phenomenon of performance degradation, and develop remap-
ping decision policies which effectively determine when the computational load should be remapped
onto the parallel machine . This paper has addressed both issues. We describe two different models
of load evolution. One model is simpler than the other, and can be analyzed. The other model better
captures a means by which a processor’s load changes in time, We have developed and studied an
adaptive remapping decision policy SAR which proves to be effective on both models. SAR does not
depend on the details of the model structure; rather, it attempts to minimize a statistic which measures
the long-term average system degradation (including that due to remapping) as a function of time. We
have also analytically demonstrated conditions ensqring that the statistic’s mean has a single local
~ minimum, and that the optimal fixed-interval remapping policy is to remap when the statistic’s mean is
minimized. These analytic results validate SAR’s approach. Because of its appealing empirical and

analytical properties, SAR is a promising candidate for use in an actual parallel system.

-28-

Appendix A

In this appendix we prove Theorem 3.1. The assumptions we use for its proof are
e The Markov chains are homogeneous, and unbounded (no maximum nor minimum state).

e The Markov chains’ transition probabilities are unaffected by remapping.

Both assumptions are used for analytic tractability. Under these assumptions, we will show that the
average value remapping policy is opﬁmal in the sénse that among all remapping schemes we could
apply at time n, the average value remapping scheme minimizes E[T,,,,(n+d)] for all d >0. The use of
the average remapping scheme therefore minimizes the expected duration of every future computation

step.

Our basic tool for establishing the average value policy’s optimality is the theory of stochastic
variability, alluded to in section 5. Recall that a random variable X is said to be stochastically more
variable than random variable Y, denoted X 2, Y, if E[g(X)] 2 E[g(Y)] for every increasing convex
function g. This definition immediately implies that if X 2, Y, then E[X] 2 E[Y]. For non-negative ran-

dom variables, an equivalent definition [36] is that

].' Prob{X >t} dt = } Prob{Y >1t}dt for all a=0.

, a a -

. For our purposes, the following result, also from [36], is important. if X;, --- X, is a group of
independent random variables, Y, - - - ,Y, is a group of independent random variables, and X; 2, Y; for
i=12,---,n, then

8(Xys - - v Xp) 2, 8(Yy, - - 0 WY p) (6)

for all increasing convex functions g.

We will first show that average value remapping is optimal in a system with two chains. We
observe that if [Ty(n) — Tp(n)| < 1, then there is no benefit'to be gained from remapping. We conse-

quently assume that if we remap at n, then |Ty(n) — Ty(n)| > 1. Our results stem principally from the

-29-

following lemma,

LEMMA A-1 : Let X and Y be independent, identically distributed, integer valued random vari-
ables. If a >b—1, then

max{a+X, b+Y} 2, max{a—14X, b+1+Y}.

PROOF: Let g be any increasing convex function, and let

Dy(x,y) = g(max{atx, b+y}) — g(max{a—1+x, b+1+y}).
We will argue that E[Dy(X,1)] 2 0, which will prove the lemma. We consider the value of

max{a+x, b+y} — max{a—1+x, b+14y} O]
as a function of x and y. When a—1+x 2 b+1+y this difference is easily seen to be 1. When
a—1+x < b+1+y and a+x > b+y expression (7) is equal to (a—b—1) + (x—y); furthermore, b—a < x—y.
But since x and y are integer valued, we have b—a+1 < x—y, so that expression (7) is non-negative. In
the cases considered, the increasing nature of g ensures that D,(x,y) 2 0. Finally, when a+x < b+y,
expression (7) equals -1. Suppose then that X = £, ¥ = ¥, and a-b < y—£. Since X and Y are indepen-
dent and identically distributed, we have

Prob{X =x,Y =y} =Prob{X =y, Y =x}.
Thus for any samples of X = £ and Y = y which cause (7) to be -1, it is equally likely that X = y and
~ Y =2Z, in which case (7) is equal to 1. Since y 2 £, we have max{a+y, b+£} = max{a+x, b+y}. It then
follows from the increasing convexity of g that Dy (3, £) 2 | Dy(%, ¥) |. The importance of this observa-
tion is that every sample of X and Y which causes D,(x,y) to be negative is counter-balanced by an
equally probable sample of X and Y which yields D(x,y) with a larger positive magnitude. It follows

then that E[D(X, Y)] 2 0, which proves the lemma.

O

To apply this lemma to our problem, we note that if X is the Markov chain single step random

variable, and if X(d) denotes a d-fold convolution of X, then

-30-

Trnax(n+d,a,b) = max{a+X,(d), b+X,(d)}
where X;(d) and X,(d) are independent. It follows immediately from Lemma A-1 that

Toax(ntd,ab) 2, T, (ntd,a—1,b+1). We then use this result to show that average value remapping is

optimal for a N chain system.

THEOREM 3.1 : Assume that the Markov chains are homogeneous, and unbounded (no max-
imum nor minimum state), and that the transition probabilities are unaffected by remapping. Sup-
pose Ty(n,s1) + To(n,s3) + -« + + Tp(n,sy) =K. For every i = 1,2, - - - N, define

|KIN] + 1 if i <K mod N
%=1 |KIN| ifi2K mod N

Then for every d 2 0,
E[Tpax(ntd,sy, - * + SN 2 E[Tya(ntday, -+ - ap))

PROOF: Without loss of generality, assume that s; 2 5, 2 - - - 2 sy. Note first that

Tm(n+d,s1, ¢ ,SN)
= max{ max{T(n+d,5)),Tn(n+d,s\)}, To(nt+d,s,), -+« Ty—1(ntd,sy—1)}.
Now

max{T;(n+d,s;), Tn(n+d,sp)} =, max{Tj(n+d,s;—1),Tp(ntd,sp+1)},
so that by (6),

Tmax(n+d,s1, s ,SN) 2, Tmax(n+d,sl—l, <0 Sy
N
This argument applies to any set of sy, - - * ,sy such that 3, s; = K. We may therefore apply the argu-
: A ‘ A

ment repeatedly to find that

Tmax(ntd,sy, -« © 5N) 2y Tmax(ntd,ay, - - ¢ ,ay)-

The theorem’s conclusion follows immediately.

O

-31-

Appendix B

In this appendix we prove Lemmas 5.1, 5.2, 5.3, and 5.4. Lemmas 5.1 and 5.2 are used in sec-
tion 5 to prove Theorem 5.1. That theorem gives sufficient conditions for the difference

E[T max(D)] — E[T(i)] arising from the MUM model to be monotone increasing.

LEMMA 5.1 : Assume that at step 0, all chains are in state (L+1)/2, ie. for all j,
p{(L+1)/2;0) = 1; also assume that p < 2/3. Then for all steps n, we have pfk=1;n) < pi(k;n) for
k < (L+1)/2, and pi(k+1;n) < p{k;n) for k 2 (L+1)/2.

PROOF:

We induct on n. For n=0, the claim is trivially true since p{(L+1)/2;0) = 1. Assume that the claim
is true for n, we shall show that it is also valid for n+1. By the symmetry of the probability mass
function p(k;n) , it suffices to only prove that pk—1;n) < p(k;n) for k < (L+1)/2. There are three
cases to consider. Each case will employ the Chapman-Kolmogorov difference equations [36] to
describe the state probabilities at step n+1 in terms of the state probabilities at step n.

Case 1: 2 < k < (L+1)/2: Now

pfkintl) = pillintl) = E(pk=1n) - pik=2;n))
+ (1 = p)pkin) = pk=1;n) + - (pet1in) pikin))

20

since pfs;n) 2 ps—1;n) for 1 < s < (L+1)/2 by the induction hypothesis.

Case 2: k= 2: Noting that

pALntl) = (1= Eypttin) + Ep2in)

= Epttiny + (1 = ppflin) + Lp2im)

we have

pi2int+l) — p(lintl) = *;—(p,(l;n) = p{L;n)) + (1 — p)pf2;n) = p{1;n))
+ L3 - p2ny

=20

again by the induction hypothesis.

Case 3: k= (L+1)/2:

Here we must make assumptions on the allowable values of p. Utilizing the induction hypothesis to
assume that p{(L+1)/2 — 1;n) 2 p((L+2)/2 — 2;n), we obtain the following bound on

PALA2 = 1;nt1).
PALA2 — Lintl) = %p,((L+1)/g;n) +(1- p)p{((L+1)/2 - Lin) + %pj((L+l)/2 - 2n)
< %p,((ul)/z;n) +(1- %)p_,((L+1)/2 - L;n).
Utilizing the symmetry of the probability mass function we obtain:
PALA+1)/2;n41) =‘-%p]((L+l)/2 + 13n) + (1-p)p,((L+1)/2;n) + -%p,((L+l)/2 - 1;n)
= (1-p)p((L+1)2;m) + (P)p((L+1)/2 — 1m).

Thus when -% < 1-p, or equivalently p < -g'—, we obtain p{((L+1)/2 — 1;n) < p{((L+1)/2;n).

a

Note that when p > 4;‘-, Lemma 5.1’s conclusion is not true for a three state chain. When

p=%+€ and n=1, it is straightforward to verify that p_,(l;l)=%+-§—, p,(2;1)=-;--e, and

=14+ £
p](3!l)_ 3 + 2 M

-33-

Next we prove Lemma 5.2,

LEMMA 5.2 : If for every n
Prob{T{n) =L} = mkin {Prob{TJ(n) = k} },

then T(n) 2, T(n~1) for all n.

PROOF: The 2, order relation is discussed in Appendix A. We will simplify notation in this proof

by writing T(n) simply as T(n), suppressing the index j. We will demonstrate that

| Prob{T(n) > s} dt = [Prob{T(n~1)>1t}dr for all a2 0. ©)
a . a
We first note that this relationship is true for 0 < a < 1. This follows since the case where a=0
describes the means (which are equal), and T(k) 2 1 for all k implies that

1 1
| Prob{T(n) > s} dt = [Prob{T(n~1) > 1} dt.

Supposing that a > 1, we observe that for any ¢,
Prob{T(n) > t} = Prob{T(n-1) + X, > £} (10)
where X, is the random step taken by the chain between steps n—1 and n. By the theorem of total pro-

bability,

Prob{T(n-1) + X, > t } = Prob{X, = —=1}Prob{T(n-1) > t+1 | X, = -1}
+ Prob{X, = 0}Prob{T(n—1) > t | X, = 0}

+ Prob{X, = 1}Prob{T(n-1) > t-1 | X, = 1}.

We then integrate this expression with respect to ¢ from a to . By adjusting the bounds of integration

so that every inequality is expressed with respect to ¢ alone, then factoring out integrals from a to oo,

o0

and finally combining those factored integrals into the term I Prob{T(n-1) > ¢} dt, it is shown directly
. a

that

-34-

[Prob{T(n) > ¢} ar = | Prob{T(n-1) > 1} de

a
+ Prob{X, = 1} j Prob{T(n-1) > t | X, = 1} dt

a-1

a+l

— Prob{X,=-1} [Prob{T(n-1) > t|X, = -1} d.

Noting that Prob{X, = —1} = Prob{X, = 1}, we see that relation (9) in this case is satisfied if and only
if

a+l

a
| Prob{T(n-1)>t|X,=1} dr 2 | Prob{T(n-1) > t| X, = -1} .
a

a-1

The knowledge that X, = 1 implies only that T(n—1) # L; thus

Prob{T(n-1) > t| X, = 1} = Prob{T(n-1) >t | T(n—1) # L}.
It is then mechanical to show that
Prob{T(n-1) > t} — Prob{T(n—-1) = L}

Prob{T(n-1) # L}
Since X, = —1 only if T(n—1) # 1, a similar exercise demonstrates that

Prob{T(n-1)>¢t|X,=1} =

Prob{T(n-1) > t}
Prob{T(n-1) # 1}

- 'We then note that by symmetry of T(n~1)’s distribution, the denominators of these last two quotients

Prob{T(n-1)>¢t| X, =-1} =

are equal. Thus we see that to satisfy (9), we need only show that
a | atl
J'l Prob{T(n-1) > 1} dt — Prob{T(n-1)=L} 2 [Prob{T(n-1)> 1} dt. (11)
a— a
Since T(n—1) is an integer valued random variable, Prob{T(n—1) > ¢} is a decreasing step function of ¢,
with steps occurring at integer values of ¢. Furthermore, the change in the function’s value at ¢ = is

precisely —Prob{T(n—1) = j}. Letting j(#) denote the smallest integer larger than ¢, we see that the

assumption that Prob{T(n—1) = k} is minimized at k=L implies that for all positive ¢,

-35-

Prob{T(n—1) > £} — Prob{T(n—1) = L} = Prob{T(n—1) > £} — Prob{T(n-1) = j(£)} (12)

= Prob{T(n-1) > t+1}.

We can now integrate both sides of (12) from a-1 to a, change variables and obtain (11). This shows

that (9) is satisfied, so that T(n) 2, T(n—1) as claimed.

W]

We next provide. proofs to Lemmas 5.3 and 5.4, which describe how the 7 minimizing E{W(n)]
behaves as a function of MUM model parameters. Lemma 5.3 gives 7 as the number of processors
approaches oo. The basic idea behind Lemma 5.3’s proof is that with an infinite number of processors,
the maximum state will always advance forward one state until the maximum state L is reached. After

this point, the maximum state will always be L. We now substantiate these claims.

‘We have assumed that the Markov chains are all identical, have a odd number of states and that
the initial state K of each Markov chain is equal to (L+1)/2. We hence assume that P{s;0)=0 for
1<s<K and P(s;0)=1 for K< s<L. Again to simplify notation, we suppress the dependence of
the cumulative distribution function P{s;n) on j, since all chains are identical. Then rewﬁﬁng equation
5):

n L

2Dy {P(s—l;m)—w(s-l;m»”] +C

13
E[W(n)] = m=1s=1 ()

n

For m < L-K-1, all chains must be in states numbered less than or equal to K + m as the state
number of a chain can increase by at most one per step. Consequently for s 2 K + m, the probability
that T(m) is equal to s is zero, and hence P(s;m) =1 for s 2 K+m—1. When m > L~-K-1, every state

has a non-zero probability of occupancy so that P(syn) = 1 only for s = L. Thus

36~

‘ N 1 ifK+m+1<s<L
lim P(s—1;m)" = 0
N—oyoo

otherwise

It follows that as N — oo,

L
Y PV(s-1;m)=L—(K+m) m<L-K-1

s=1
L .
Y, PV(s—1;m) = 0 m>L - K -1
s=1
The expected state of each chain is equal to K for all n due to the symmetry of the Markov chains’

transition probabilities and the symmetry of the initial probability distribution. Hence,

L L '
Y. (1-P(s—1;m)) = KX for all s and thus Y} P(s—1;m) = L-K. Substituting the above into (13) yields

s=1 s=1

+ 1. C n<L—K-—1 (B.1)
2 n

L — K4 2C — (L-K-1)(L-K)
2n

Note that (B.1) and (B.2) take on identical values at L-K—1, and hence (14) is continuous.

o

E[W@n)] = (14)

n2L-K-1 (B.2)

We are now in a position to find the 7 that minimizes the asymptotic form of E[W(n)]. In order
to derive simple expressions for /i we shall allow n to assume any real value. The location of the

minimum #, if it exists, depends on the remapping cost C in a way that is stated by Lemma 5.3.

LEMMA 5.3 : As N—oo, then

2
NoTel if C< iL—"%L
< : a 2 N
A= | L-K-1 ifib%?-50<”“2b‘
| no minimum otherwise

PROOF: We will find the minimum values n; of (B.1) and n, of (B.2) when either exist. The con-
tinuity of (14) is then used to make statements about the location and existence of the minimum value

of (14). Simple calculus shows that if C is positive, then n/2 + 1/2 + C/n has a local minimum at

142
ny = V2C. This local minimum lies in (B.1)’s functional range only if C < iL—‘Ig-—lL; (B.1) is other-

-37-
wise minimized at its domain endpoint n; = L-K—1. Having established n;’s form, we consider the

minimization of (B.2) at n,. We observe that (B.2) is a strictly increasing function of n when

&ﬂilzﬂk@. Consequently (B.2) is minimized at its domain endpoint m; = L-K-1. For

cz2 (L_K_;)(L_ , (B.2) is a constant or decreasing function, and hence has no minimum,

— 2 .
Thus when C< L—I; 1) , we have n; = V2€ < L-K—1 and n, = L-K-1; it follows that 4 = V2C.

—1)2 a _
For L—I; D <c< LK;L[’;K—)-, both n; and n, equal L-K-1. For C 2 -(i;)(ﬂ, (B.1)

is increasing over [0, L-K-1], and (B.2) is non-decreasing over [L-K—1, «]. Recalling that (14) is

continuous, we see then that under these conditions (14) has no local minimum.

O

Lemma 5.4 shows how different MUM model parameters affect the optimal static remapping fre-
quency 7. Unlike Lemma 5.3, it specifically incorporates the "activity parameter” p. The analysis lead-
ing to Lemma 5.4’s statement makes use of the bounds on the expectation of the maximum order
statistic of a set of random variables with the same symmetric distribution. These bounds prove to be
quite tight for relatively small numbers of chains and consequently provide a useful approximation for
- the expectation [14]. We also make the approximation that each Markov chain has an infinite number
of states. As before, the one step transition probability from state s to state s+1 is p/2, from state s to
state s—1 is p/2, and the probability of remaining in s is 1-p. This analysis takes into account the
effect of the number of chains on the form of E[W(n)], and allows an exploration of the relationship

between the steps between remappings, and the cost of remapping, the number of chains and the

chains’ activities.

-38-

LEMMA 54 : Using an approximation given by [14], # is a function of -A_Id(lc\'l)_\/_’ where
d(N) = N1, p

PROOF: Since the state distribution for a chain T(n) at time n is symmetric, we may apply analysis in

[14] to obtain

E[Tax(m) — T(m)]

- < Nd(N)/2.
(Var(T(m))* ™
This expression is equivalent to
_ %
ETa(m) = Tomy) s NARNV2rT(m) (15)
where
12
1
2[1 SN_1 1
_ N-1
d(N) = IN—1
Now for any time step n, E[W(n)] may be written as
Y, (ElTpax(m) — T(m)]) + C
EW(n)] = == :
n
which may be approximated using equation (15) by
Nd(N) i\/(Var(T(m))"* +C 6
E[W(n)] = m=1 > ()

The next step is to use the properties of the MUM model to rewrite the expression for E[W(n)] in
a closed form that depends on the Markov chain transition probabilities. In order to do this we must

derive an expression for Var(T(m)). Under the assumption that a processor’s state is not bounded from

above or below, T(m) may be written as

T(m) = TOWY, X,
k=1

where for all k,

-39~

—1 with probability p/2
X =X, = | 0 with probability 1-p.
1 with probability p/2
Under the MUM model, Prob{T(0) = K} = 1; i.e. we have deterministically specified T(0). It follows

that

m
Var(T(m)) Y, Var(X))
k=1
= mVar(X) = mp.
We then obtain the following approximation for E[W(n)],

NANWp 37 + C
(N)p”é.‘.lm+ . a7

n

E[W(n)]=
Analysis entirely similar to that establishing Theorem 5.1 verifies that the expression above has at most

local minimum. Since

n
C

3V —S

d(NWp

EWer) o 2= VIO
n
the point 7i minimizing E[W(n)] (if that point exists) is determined by a function F of -L:
NdWNYp

.| c
" F[Nd(N)\/E]'

To evaluate the degree to which the approximations made affect the predicted form of E[W(n)], a
comparison between expression (17) and simulation results are depicted in figure 6. This figure por-
trays results for eight chains and a variety of remapping costs. Each simulation curve depicting
E[W(n)] is obtained from 100 sample paths. Equation (17) yields a good approximation for eight or
fewer chains; for larger numbers of chains the upper bound d(N) becomes an increasingly poor approx-

imation. In tests using twenty chains, we noticed a large discrepancy between simulation results and

—40-

the values given by (17).

Appendix C

In this appendix we outline the binary partitioning algorithm described by [6]. When the LD
model is partitioned by this algorithm, every activity point is assigned a weight equal to the sum of its
current work units’ weights. This gives rise to a matrix of weights, where each matrix entry
corresponds to an activity point. For every column &, we let CL(k) be the sum of weights in all
columns j < k. Similarly, we let CR(k) be the sum of weights in all columns m = k. The first step in
the binary dissecion is to determine the column k which minimizes
min{|CL(k) — CR(k+1)|, |CL(k) — CR((~1)j}. The matrix is split between the two columns minimizing
the magnitude of this difference. The column partitioning of a matrix is illustrated by figure 7a. Then
the same procedure is applied to the two resulting matrices, except that the sum of row weights is con-
sidered, rather than the sum of column weights. As illustrated by figure 75, at the completion of this
step there will be four matrices of potentially varying dimensions, such that the sums of weights in the
matrices are approximately equal. The procedure of dividing once by columns and twice by rows may
be applied recursively to each of the resultant matrices. If the ratio of matrix points to number of parti-
tions is small, binary dissection may yield partitions which are relatively imbalanced. We can expect

. increasingly balanced partitions as this ratio increases.

(11

[2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

- [10]

[11]

[12]

(13]

[14]

41—

References

C. Anderson and C. Greengard, "On Vortex Methods", SIAM J. Numer. Anal. 22,,413-440,
1985.

S. Baden, "Dynamic Load Balancing of a Vortex Calculation Running on Multiproces-
sors", University of California Berkley Computer Science Technical Report, 1986.

R. E. Bank, "A Multi-Level Iterative Method for Nonlinear Elliptic Equations” In Elliptic
Problem Solvers ed. Martin Schultz, Academic Press, New York, 1981.

D. Bai and A, Brandt, "Local Mesh Refinement Multilevel Techniques", Dept of Appl.
Math., Weizmann Institute of Science Report, 1984

J. A. Bannister, K. S. Trivedi, "Task Allocation in Fault-Tolerant Distributed Systems",
Acta Informatica, 20, 1983, 261-281.

M.J. Berger and S. Bokhari, "The Partitioning of Non-Uniform Problems",JCASE Report
No. 85-55, November 1985.

M.J. Berger and A. Jameson, "Automatic Adaptive Grid Refinement for the Euler
Equations",AIAA Journal, 23, 1985, 561-568.

M.J. Berger and J. Oliger, "Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations", J. Comp. Phys., 53, 1984, 484-512.

S. Bokhari, "Partitioning Problems in Parallel, Pipelined, and Distributed Computing”,
ICASE Report No. 85-54, November 1985,

A. Brandt, "Multilevel Adaptive Solutions to Boundary Value Problems", Math. Comp. 31,
1977, 333-390.

K. M. Chandy, J. Misra, "Distributed Simulation: A Case Study in Design and Verification
of Distributed Programs", IEEE Trans. on Software Engineering, SE-5, 5, (September
1979), 440-452,

W. W, Chu, L. J. Holloway, M. Lan, K. Efe, "Task Allocation in Distributed Data Pro-
cessing", Computer, 13, 11, November 1980, 57-69.

A. 1. Concepcion, Distributed Simulation on Multi-Processors: Specification, Design, and
Architecture, Ph.D. Dissertation, Wayne State University, January 1985.

H. A. David, Order Statistics, John Wiley and Sons, New York, 1981.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

- [25]

[26]

[27]

(28]

[29]

42—~
P. J. Denning, "Working Sets Past and Present", IEEE Trans. on Software Engineering,

SE-6, 1, January 1980, 64-84.

A. Dutta, G. Koehler, A. Whinston, "On Optimal Allocation in a Distributed Processing
Environment", Management Science, 28, 8 (August 1982), 839-853.

D.L. Eager, E.D. Lazowska, J. Zahorjan, "Adaptive Load Sharing in Homogeneous Distri-
buted Systems", IEEE Trans. on Software Eng., SE-12, (May 1986), 662-675.

G. S. Fishman, Principles of Discrete Event Simulation, Wiley & Sons, New York, 1978.

G. J. Foschini, "On Heavy Traffic Diffusion Analysis and Dynamic Routing in Packet
Switched Networks", in.Computer Performance, K. M. Chandy and M. Reiser Eds., New
York, North-Holland, 1977. '

W.D. Gropp, "Local Uniform Mesh Refinement with Moving Grids", Yale Technical
Report YALEU/DCS/RR-313, April 1984,

W.D. Gropp, "Local Uniform Mesh Refinement on Loosely-Coupled Parallel Processors ",
Yale Technical Report YALEU/DCS/RR-352, December 1984.

W.D. Gropp, "Dynamic Grid Manipulation for PDEs on Hypercube Parallel Processors ",
Yale Technical Report YALEU/DCS/RR-458, March 1986.

D. Gusfield, "Parametric Combinatorial Computing and a Problem of Program Module
Distribution", Journal of the ACM, 30, 3, July 1983, 551-563.

A. Harten and J.M. Hyman, "Self-Adjusting Grid Methods for One-Dimensional Hyper-
bolic Conservation Laws", Los Alamos Report LA-9105, 1981.

M. A. Igbal, J. H. Saltz, S. H. Bokhari, "Performance Tradeoffs in Static and Dynamic
Load Balancing Strategies", Proceedings of the 1986 International Conference on Parallel
Processing.

D. R. Jefferson, H. Sowizral, "Fast Concurrent Simulation Using the Time Warp Mechan-
ism", Rand Report to the Air Force FN-1906-AFFR, Dec. 1982.

A. Leonard, "Vortex Methods for Flow Simulation”, J. Comp. Phys. 37, , 289-335,1980.

S. McCormick and J. Thomas, "The Fast Adaptive Composite Grid Method for Elliptic
Equations", Math. Comp., 46 , 1986, 439-456.

L. M. Ni, C. Xu, and T.B. Gendreau, "A Distributed Drafting Algorithm for Load Balanc-
ing", IEEE Trans. on Software Engineering, SE-11, 10, October 1985, 1153-1161.

(30]

31]

[32]

(33]

[34]

[35]

[36]

(371

[38]

(391

[40]

[41]

[42]

—43-

D.M. Nicol, P.F. Reynolds Jr,"The Automated Partitioning of Simulations for Parallel Exe-
cution", University of Virginia Dept. of Computer Science Technical Report TR-85-15,
August 1985.

D. M. Nicol, P. F. Reynolds, Jr., "An Optimal Repartitioning Decision Policy", ICASE
Report 86-7, February 1986.

J. K. Peacock, E. Manning, J. W. Wong, "Synchronization of Distributed Simulation Using
Broadcast Algorithms", Computer Networks, 4, 1980, 3-10. ‘

M. M. Rai, T.L. Anderson, "The Use of Adaptive Grid Generation Method for Transonic
Airfoil Flow Calculations", AIAA Paper 81-1012, , June 1981.

P. F. Reynolds, Jr., "A Shared Resource Algorithm for Distributed Simulation", Proceed-
ings of the Ninth Annual International Computer Architecture Conference, Austin, Texas,
April 1982, 259-266.

S. Ross, Applied Probability Models with Optimization Applications, Holden and Day, San
Fransisco, 1971.

S. Ross, Stochastic Processes, Wiley and Sons, New York, 1983.

J.H. Saltz and D.M. Nicol, "Statistical Methodologies for the Control of Dynamic Remap-
ping", ICASE Report 86-46, July 1986, to appear in the Proceedings of the Army Research
Workshop on Parallel Processing and Medium Scale Multiprocessors , Palo Alto, Califor-
nia, January 1986.

R. Smith, J. Saltz, "Performance Analysis of Strategies for Moving Mesh Control",
Proceedings of the CMG XV International Conference on the Management and Perfor-
mance Evaluation of Computer Systems, 1984, 301-308.

J. R. Spirn, Program Behavior: Models and Measurements, Elsevier North-Holland Inc,
New York, 1977.

J. A. Stankovic, "An Application of Bayesian Decision Theory to Decentralized Control of
Job Scheduling”, IEEE Trans. on Computers, C-34, 2 (Feb 1985), 117-130.

J. A. Stankovic, K. Ramamritham and S. Cheng, "Evaluation of a Flexible Task Schedul-
ing Algorithm for Distributed Hard Real-Time Systems", IEEE Trans. on Computers, C-
34, 12 (December 1985), 1130-1143.

H. S. Stone, "Critical Load Factors in Distributed Computer Systems", IEEE Trans. on
Software Engineering, SE4, 3 (May 1978), 254-258.

[43]

[44]

[45]

[46]

[47]

~4ly=

D. Towsley, "Queueing Network Models with State-Dependent Routing", Journal of the
ACM, 21, 2 (April 1980) 323-337.

A. N. Tantawi and D. Towsley, "Optimal Static Load Balancing", Journal of the ACM, 32,
2 (April 1985), 445-465.

W. Usab and E.M. Murman, "Embedded Mesh Solutions of the Euler Equation Using a
Multiple-Grid Method" ,Proceedings of the AIAA Computational Fluid Dynamzcs Confer-
ence , Danvers, Mass., Paper 83-1946, July 1983.

D.R. Wells, "Multirate Linear Multistep Methods for the Solution of Systems of Ordinary
Differential Equations",University of Illinois Report UIUCDCS-R-82-1093, July 1982.

O.C. Zienkiewicz and A.W. Craig, "Adaptive Mesh Refinement and A Posteriori Error
Estimation for the p-Version of the Finite Element Method" In Adaptive Computational
Methods for Partial Differential Equations, edited by Ivo Babuska, SIAM, Philadelphia,
1983.

me>xma >

ACOCwLuWLMHMOOX T

ZC~HH>NHRAPPHMNSQ

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55

0.5

2 chains

8 chains

/

/

32 chains

| L | .. |

_9'7-

STEPS

0 20 40 60 80 100 120

MUM Model: Expected Average Processor Utilization as a Function of Step Estimated from 500

Sample Paths. Each chain has 19 states, p = 0.5.
Figure 1la

mao>xTmn< >

TouwuwumOC x =T

ZOrHHPNFREMaC

0.6

0.5

!
\
2 chains
L
32 chains
I I l l l
0 20 40 60 80 100 120
STEPS

MUM Model:

Average Processor Utilization as a Function of Step-Single Sample Path.
Each chain has 19 states, p = 0.5,

Figure 1b

—917—

(2] il w B] DO MWLM OOWY MmO >t <> IO ZOTr

== o B

Nima »n

M=

47—

from Single Sample Path.

Each chain has 19 states, p = 0.5, load balancing cost = 8.

Figure 2a

“10 T I T T T T T i
o -
8M —
7 -
32 chains
6 M -
Sk b
!
i
G —
3+ | iy
\ -
\ ﬂ//
\ - ’
2 7 =
2 ch,ains
1- :
|
) | | | ! i | | 1
0 10 20 30 40 50 60 70 80 90 100
STEPS
MUM Model: Longterm Average Processor Idle Time per Step w(n)

oOmH oY MKE

MRHA HEUH HOUMMEMAOAONY HMOPWHCP EOmHOZO0 M

W

TE AW

-48-

10 T T T | T T l T I
9 T =]
8 H -
32 chains
yal
6]
8 chains
S5t b
o
N \‘\\/
_
3
\ 2 chains
\
\ ' | —
21 \\ —
“
1 -
I i ! ! ! [L | !
0- 10 20 30 40 50 60 70 80 90 100
STEPS
MUM Model: Expected Longterm Average Processor Idle Time per Step E[w(n)], Estimated
from 500 Sample Paths.

Each chain has 19 states, p = 0.5, load balancing cost 8.

Figure 2b

ANWOE—~mM

O™

X HemN—ZZmrwoxmg

o~ O

— XM wow

1.0

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

-49-

optimal remapping

no remapping.—/ﬂ

L.

! ! ! | {

5 10 15 - 20 25 30
COST OF REMAPPING
MUM Model: Performance of Optimal Remapping Decision Policy Compared with Performance
of SAR. ’

Three chains, 100 steps, each chain has 19 states, p =.0.5, SAR performance
calculated from 500 sample paths. '

Figure 3

HOZ>XWOMDWEY

-50-

0.8

0.75

0.7

1 |

SAR cost = 2

x¢”

«—Periodic remapping,
N\ cost = 2

SAR cost = 8

X

Periodic
remapping-—/”
cost = 8

0.65
no remapping !
I !
0.6 J[
| |
0.55| | B
i
i
% |
0.5 1 1 l 1 ! | |
0 10 20 30 40 50 60 70
PERIODIC: STEPS BETWEEN REMAPPINGS/SAR: AVERAGE STEPS BETWEEN REMAPPINGS
MUM Model: Performance of SAR Compared with Performance of Periodic Remapping.

Eight chains, 400 steps, each chain has 19 states, p = 0.5, each data point
calculated from 200 sample paths.

Figure 4

“l.0°

mO2ApPpRRXOYWWMNY

0.9

0.8

0.7

0.6

0.5

-51~

] i [} I I i T T T

SAR, SAR,
(;fost = 50 cost = 100
b3

Periodic remapping,
cost = 50

/

Periodic remapping,
cost = 100

de—w_1

no remapping

] ! | | - { | ! |

10 20 30 40 50 60 70 80 90 100
PERIODIC: STEPS BETWEEN REMAPPINGS/SAR: AVERAGE STEPS BETWEEN REMAPPINGS

LD Model: Performance of SAR Compared with Performance of Periodic Remapping
64 by 64 activity array initialized with one work unit per activity point.

Work unit transition probabilities: wup - 0.1, right - 0.1, down - 0.05,
left - 0.05. ~Each data point calculated from 50 sample points.

Figure 5

OoEHOERAROQRENNXE

mowmwwmEOO R 2w Zor

HeEOH

HEHA

W

YUERa wn

22

For each cost, the upper curve
represents Ef[w(n)] for the analytic
approximation.

16 —

cost = 20

I | |

I‘.\-cost =2
|
5

0

STEPS

. MUM Model: Analytic Approximation vs. Simulation Derived Values for Expected Longterm

Average Processor Idle Time per Step E[w(n)]. Eight chains, each chain has
19 states, p = 0.5, each simulated curve estimated from 100 sample paths.

Figure 6

|
0 15 20 25 30 35 40 45

.—zg_

-53-

ANONOCNOWVnn<

AT T NN

NNITNT OO

~“~ NN~ O 00

<t N\D ™)

ANt N0~

NNV NO ~m

et N~

AN O N — o<

AR NMNA N

NNITENTFT OO

NN =<t O

<t N \D W) -

AT N FT O~

NNOVNANO—MN

— N -~ O

Figure 7a: Column Partition

Figure 7b: Column and Row Partitions

ANC N NN
O\ O\ 0O [l SR ol o\ Mol
N on <t NNt OO
—_—_ NN — <t O 00
— <t N \O —) = -
<t NN <t oo~
NNOm NO =N
— — < N Ll RN}

Standard Bibliographic Page

1. Report No. NASA CR-178150 2. Government Accession No. 3. Recipient’s Catalog No.
ICASE Report No. 86-45

4. Title and Subtitle 5. Report Date
DYNAMIC REMAPPING OF PARALLEL COMPUTATIONS July 1986
WITH VARYING RESOURCE DEMANDS 6. Performing Organization Code

7. Author(s)
David M. Nicol, Joel H. Saltz

8. Performing Organization Report No.

86-45

9. %etforming Orga]g_izatio Name and Addre; 10. Work Unit No.

nstitute’ for Computer Appf&cations in Science

and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

11. Cont. G, No.
NASIZP7670" "Ras1-18107

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered

Contractor Report

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546 505-31-83-01

15. Supplementary Notes

Langley Technical Monitor: Submitted to IEEE Transactions on
J. C. South .Computers

Final Report

16. Abstract A large class of computational problems are characterized by frequent
synchronization, and computational requirements which change as a function of time.
When such a problem must be solved on a message passing multiprocessor machine, the
combination of these characteristics lead to system performance which decreases in
time. Performance can be improved with periodic redistribution of computational
load; however, redistribution can exact a sometimes large delay cost. We study the
issue of deciding when to invoke a global load remapping mechanism. Such a deci-
sion policy must effectively weigh the costs of remapping against the performance
benefits. We treat this problem by constructing two analytic models which exhibit
stochastically decreasing performance. One model is quite tractable; we are able
to describe the optimal remapping algorithm, and the optimal decision policy
governing when to invoke that algorithm. However, computational complexity pro-
hibits the use of the optimal remapping decision policy. We then study the per-
formance of a general remapping policy on both analytic models. This policy
attempts to minimize a statistic W(n) which measures the system degradation (in-
cluding the cost of remapping) per computation step over a period of n steps. We
show that as a function of time, the expected value of W(n) has at most one mini-
mum, and that when this minimum exists it defines the optimal fixed-interval re-
mapping policy. Our decision policy appeals to this result by remapping when it
estimates that W(n) is minimized. Our performance data suggests that this policy
effectively finds the natural frequency of remapping. We also use the analytic
models to express the relationship between performance and remapping cost, number o

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement
load balancing, dynamic load 61 — Computer Programming and
balancing, remapping, adaptive Software
computation, optimal partitioning, - 62 - Computer Systems
multiprocessors ‘

Unclassified - unlimited

19. Security Classif.(of this report) 20. Security Classif.(of this page) |21. No. of Pages|22. Price

Unclassified Unclassifie 55 AQ4

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA Langley Form 63 (June 1985)

End of Document

