
IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 5, MAY 1989 705

A Microeconomic Approach to Optimal Resource
Allocation in Distributed Computer Systems

JAMES F. KUROSE, MEMBER, IEEE, AND RAHUL SIMHA

Abstract-Decentralized algorithms are examined for opti-
mally distributing a divisible resource in a distributed computer
system. In order to study this problem in a specific context, we
consider the problem of optimal file allocation. In this case, the
optimization criteria include both the communication cost and
average processing delay associated with a file access.

Our algorithms have their origins in the field of mathematical
economics. They are shown to have several attractive properties,
including their simplicity and distributed nature, the computation
of feasible and increasingly better resource allocations as the
result of each iteration, and in the case of file allocation, rapid
convergence. Conditions are formally derived under which the
algorithms are guaranteed to converge and their convergence
behavior is additionally examined through simulation.

Index Terms-Distributed algorithms, distributed systems, file
allocation, resource allocation, optimization

I. INTRODUCTION

I N THE broadest sense, a distributed computer system can
be thought of simply as a set of interconnected computing

agents which require the use of certain system resources in
order to perform their assigned tasks. Since significant
benefits can often be realized by sharing these system
resources among the distributed agents, a principal challenge
in the area of distributed system design is the development of
efficient and robust resource allocation and access mecha-
nisms .

In this paper, we consider decentralized algorithms for
solving resource allocation problems in distributed computer
systems. In order to study this problem within a specific
context, we consider, as an example, the classical resource
allocation problem of file allocation (FAP) [lo], [25], [9]. We
are particularly interested in studying distributed resource
allocation algorithms for several reasons. First, an inherent
drawback in any nondistributed scheme is that of reliability,
since a single central agent represents a critical point-of-failure
in the network. Second, the optimization problem itself may
be an extremely computationally complex task. A centralized
approach towards optimization ignores the distributed compu-
tational power inherent in the network itself and instead
utilizes only the computing power of a single central agent.
Third, a decentralized approach is more appropriate in a
network in homogeneous processors, each processor interacts

Manuscript received September 1, 1986; revised February 10, 1987. This
work was supported in part by the National Science Foundation under Grant
DMC-8504793 and by a Faculty Development Award from the International
Business Machines Corp.

The authors are with the Department of Computer and Information Science,
University of Massachusetts, Amherst, MA 01003.

IEEE Log Number 8825680.

with others as peers and the computational burden of resource
allocation and access is equitably distributed among the
processors. Finally, and most importantly, the information
required at each step in an optimization process may itself be
distributed throughout the system. Rather than transmistting
this information to a central site at each iteration, the nodes
may exchange this information among themselves and possibly
reduce the communication requirements of the algorithm by
exploiting the structure of the communication system or
structure inherent in the problem itself.

In this paper, we examine distributed, gradient-based
approaches toward resource allocation; the particular al-
gorithms we study are based on a normative model of resource
allocation from the field of mathematical economics [14].
These algorithms are shown to have several attractive features
including their simplicity, distributed nature, provable (and
rapid) convergence, and the computation of successively
better resource allocations at each step. The main results of
this paper are an empirical study and quantitative comparison
of the convergence of various distributed gradient-based
approaches to resource allocation, the derivation of bounds
on stepsize parameters required by discrete versions of these
algorithms for FAP, and a study of how the communication
structure of a distributed system may be effectively exploited
to expedite the optimization process. Resource allocation
algorithms based on the economic models of [14] were first
examined in [151. As in [151, we are interested in decentral-
ized algorithms. Our work differs from [15] primarily in our
focus on second derivative algorithms, empirical studies of the
convergence properties, generalized topology-based commun-
ication structures, and application to the tile allocation
problem.

In this paper, analytic formulas will be used to compute the
system performance realized by a particular resource alloca-
tion; i.e., it is assumed that there is an underlying performance
model of the system which is adequate for the purposes of
resource allocation, an approach which has been adopted in
existing systems (e.g., [4]). This information might alterna-
tively be gained through actual observations and these mea-
surements can then be used in the optimization process (in
which case, we note, the information is naturally distributed
throughout the system). In such cases, problems of estimation
and the use of inexact information in distributed stochastic
approximation (optimization) [26] algorithms must also be
addressed. We feel, however, that it is important to first fully
understand the problems posed by distributed resource alloca-
tion algorithms in the absence of these complicating factors.

The remainder of this paper is structured as follows. In the

001%9340/89/0500-0705$01.00 0 1989 IEEE

706 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 5, MAY 1989

following section, we overview past work on distributed
resource allocation and FAP. In Section III, we then precisely
define our model of FAP. The main results of the paper are
presented in Section IV, in which three decentralized resource
allocation algorithms are presented and studied. Section V
discusses issues related to implementing these algorithms in
distributed systems and Section VI summarizes this paper. The
mathematical derivations of the results in this paper are
presented in the Appendix.

II. DISTRIBUTED RESOURCE ALLOCATION ALCXXITHMS AND FILE
ALLOCATION

The distributed resource allocation algorithms we study in
this paper are based on ideas and methods previously
developed 1141 for another well-established distributed envi-
ronment-an economy. In the past 30 years, mathematical
economists have developed elegant normative models describ-
ing how resources in an economy may be optimally shared in
informationally and computationally decentralized ways. We
believe that the numerous similarities between economic
systems and distributed computer systems suggest that models
and methods previously developed within the field of mathe-
matical economics can serve as blueprints for engineering similar
mechanisms in distributed computer systems. Our current
work and [11, [151, [181, [23] are efforts supporting this belief.

Two basic microeconomic approaches towards developing
decentralized resource allocation mechanisms can be identi-
fied [161: price-directed and resource-directed approaches.
In the price-directed approach [2], an initial allocation of
resources is made and an arbitrary set of systemwide initial
resource prices is chosen. Prices are then iteratively changed
to accommodate the “demands” for resources until the total
demand for a resource exactly equals the total amount
available, at which point the resulting final allocation of
resources is provably Pareto optimal [2]. We note that there
are several drawbacks in adopting this method in a distributed
system, including the fact that the pricing process must
converge before resources can be allocated, a nontrivial
constrained optimization problem must be solved by each
economic agent at each iteration, and finally, only a weakly
(Pareto) optimal allocation of resources is obtained.

The decentralized algorithms we examine belong to the
class of resource-directed approaches [141, [151. During each
iteration, each agent computes the marginal value of each
resource it requires given its current allocation of resources
(i.e., computes the partial derivative of its utility function
(performance) with respect to that resource, evaluated at the
current allocation level). These marginal values are then sent
to other agents requiring use of this resource. The “alloca-
tion” of the resource is then changed such that agents with an
above average marginal utility receive more of this resource
and agents with a below average marginal utility are “allo-
cated” less of the resource. We note that when analytic
formulas are used to compute the performance realized by a
given resource allocation, an actual reallocation need not (but
may) take place immediately after each iteration; an agent may
simply compute its new allocation at each iteration and the
resources may then be allocated whenever the algorithm is

terminated. In the case that actual measurements are used,
however, resources must be immediately reallocated in order
for each agent to measure its performance under the new
allocation.

A particularly attractive feature of this process is that if the
initial allocation is feasible (the total amount of resources
allocated equals the total amount available), so too are the later
allocations. Moreover, when analytic formulas are used to
compute performance, successive iterations of the algorithm
result in resource allocations of strictly increasing systemwide
utility. These two properties of feasibility and monotonicity
will be formally established for FAP in Section IV. These
features make the algorithm well-suited for running “in the
background” (when the system nodes would otherwise be
idle) until convergence is eventually achieved. In the mean-
time, the (nonoptimal) allocations computed by the algorithm
can be used (with increasingly superior system performance
levels) as the algorithm moves the system towards an optimal
allocation. Finally, we note that the resource-directed al-
gorithms studied in this paper belong to the more general class
of distributed, gradient-based optimization algorithms, and
that other related algorithms in this class have been used to
solve routing and flow control problems [13], [3], [24] in
computer communication networks; we compare these ap-
proaches to those presented in this paper in Section IV.

In order to study the resource allocation problem within a
specific context, we consider, as an example, the problem of
optimal file allocation (FAP). In FAP, accesses (queries and
updates) to a file or file system are generated by the distributed
agents. Simply stated, the tile allocation problem addresses the
question of how the file or file system should be allocated
among the nodes in a distributed system in order to “opti-
mize” system performance. The term “tile allocation” has
been used to refer to both the problem of distributing a single
file (or copies of a file) over the network [9], [l 11, [25] (in
which case the unit of allocation is a file record, assuming a
file may be fragmented) as well as the problem of distributing
an entire fife system over the network [27] (in which case the
unit of allocation is a tile). In either case, however, there is a
divisible resource (the file or file system), the allocation of
which will cause a certain pattern of accesses to be directed to
the nodes to which the file or file system fragments have been
allocated. The algorithms examined in this paper are applica-
ble to the general problem of resource allocation and thus to
both formulations of the “file allocation” problem. In the
remainder of this paper, we thus refer to the resource being
allocated (the file or file system) simply as a “file resource. ”

The file allocation problem has been the topic of numerous
research efforts and a thorough review can be found in [25]
and [lo]; here, we only briefly overview this past work. One
of two optimization goals has typically been adopted [lo]:
either 1) minimization of the overall communication cost
required to satisfy file accesses or 2) optimization of some
performance-related metric such as the average time delay
associated with file access. When minimization of communi-
cation cost is the primary consideration, it is also often
assumed that a file resource must reside wholly at one node,
i.e., it is not divisible and thus cannot be fragmented between

KUROSEANDSIMHA:MICROECONOMICAPPROACHTORESOURCEALLOCATION 707

various nodes. In this case, FAP can be formulated as an NP-
complete integer (O/l) programming problem [9], [111, for
which heuristics or approximation techniques were investi-
gated in [6], [20], and [7].

When minimization of average time delay or maximization
of throughput is the primary performance metric, queueing-
theoretic models have been adopted and the restriction that a
tile resource be wholly allocated at a node is relaxed [S], [2 11,
[27]. In practice, a process would thus need to use some table
lookup (directory) procedure to determine the node to which it
should address a particular file access. As hypothesized in
[22], and as demonstrated in this paper, performance is
improved over the integer allocation case by permitting
concurrent access of a file resource, since different fragments
(stored in different nodes) can be accessed in parallel.
Fragmentation additionally provides for increased reliability
and graceful degradation since failure of one or more nodes
only means that the portions of the file resource stored at those
nodes cannot be accessed. File accesses are, therefore, not
completely disabled by individual node failures. Centralized
queueing-theoretic FAP algorithms have been examined in [S]
and [21].

III. MODEL FORMULATION

Our model of a distributed computer system is shown in
Fig. 1. The system consists of n nodes interconnected through
a communications network; the network is assumed to be
logically fully connected in that every node can communicate
(perhaps only in a store-and-forward fashion) with every other
node. The processes running at each of the nodes generate
accesses (queries and updates) to the tile resource. If a process
generates an access request which cannot be satisfied locally
(i.e., the information accessed is not stored locally), the access
is transmitted to another node in the network which can satisfy
the request. This requires that each node store the file
fragment locations in its local lookup table and hence results in
larger table sizes over the strictly integer allocation case. Also,
as discussed in Section II, resources may be repositioned in the
network at each iteration of the allocation algorithm, in which
case the table entries must be updated to record the current
location of resources in the system. If, however, the realloca-
tion is performed only upon algorithm termination, the tables
need only be updated once.

To simplify our presentation, we will initially consider the
problem of allocating one copy of a single file resource.
Consider then a network of n nodes, N = { 1, * * * , n }, and
define

x; thefraction of the tile resource stored at node i. Since there
is only a single divisible resource, Cy= iXi = 1. We will
assume that accesses are made on a uniform basis (although
this can be relaxed) and therefore Xi also represents the
probability that a file access (from anywhere in the
network) will be transmitted to node i for processing.
The purpose of the distributed resource allocation al-
gorithms is to compute the optimal (xi, * * . , x,).

As discussed in Section I, it is assumed that the resource
allocation process is driven using some underlying model of

FILE SYSTEM To BE AUGCATED

Fig. 1. A distributed computer system.

the system. We next describe this model and introduce the
relevant notation.

Xi the average rate at which node i generates accesses to the
tile resource. The networkwide access generation rate is
defined, X = Cy= i Xi. The arrival rate is modeled as a
Poisson process with parameter X. We note that X repre-
sents the long-term steady-state arrival rate. The arrival rate
over different given periods of times may vary (i.e., there
will be periods of time in which there are a large number of
accesses and other periods of time in which there are much
fewer accesses) and it is precisely this burstiness that is
modeled well by a Poisson process.

Cij the communication cost of transmitting an access from
node i to nodej and transmitting the response fromj back to
i. Cii is taken to be zero.

Ci the average (systemwide) communication cost of making
an access at node i. We take this simply as the weighted
sum of the individual communication costs:

ci= c ; cj;
jEN

1 /pi the average service time for an access request at node i. In
order to simplify our presentation, we will also assume CL; =
p for all nodes i and will not distinguish between the service
times for queries and updates. As discussed in Section V,
each of these restrictions can be easily relaxed. We model
the service requirements of each access as an exponential
random variable with mean 11~ a

T; the expected time delay associated with satisfying an access
at node i. This delay results both from the queueing and
processing time at node i. Given our assumptions concern-
ing X, Xi, and CL, we have [17]

1
T.=- .

/J.-Xxi

This provides a formula for the long-term average delay at
node i, as a function of xi for a given arrival rate X and
access service rates 1~.

708

The above quantities define the individual communication
cost and access time delays. Interestingly, each of these two
costs, considered alone, suggest diametrically opposed alloca-
tion strategies. If communication is the sole cost, the optimal
strategy is simply to put the entire resource at that node i
where Ci is minimal. However, concentrating a large amount
of a resource at one node means that a correspondingly large
number of queries will be directed to that node with resulting
large access delays. This would argue for distributing the
resource evenly among the n network nodes. In our overall
cost function, the relative importance of communication costs
and access delays will be characterized by the constant K (in
(1) below). The communication cost is normally taken to be
the average delay incurred in the transmission of messages and
thus, assuming all delays are measured in the same time units,
we take K = 1 in this paper.

Given the individual costs defined above, the overall
expected cost of access to the file resource is given by

C= c (cost of access to xi)prob(accessing xi)

IEN

= z (Ci+KTi)Xi
iEN

= Ci+ (1)

Our optimization problem is thus to minimize C subject to
the constraints CiENXi = 1, Xi L 0, Vi E N, and p > X. (We
note that the weaker assumption h < CieNpi may be made
provided that an initial allocation is made such that tii < gi,
for all i.) Equivalently, we can take the negative of the cost
function to be our objective function and maximize this
function. In order to reflect the microeconomic origins of our
optimization algorithms, we adopt this latter problem formula-
tion and refer to the objective function as the utility of the file
allocation.

U=Utility= -C= -C Ci+
;EN (A) 3. C2)

IV. DECENTRALIZED ALGOFUTHMS FOR OPTIMAL FILE

ALLOCATION

In this section, we present and examine three decentral-
ized algorithms for optimally allocating the file resource. All
three algorithms are variations on the resource-directed
approach discussed in Section II; they differ primarily in the
amounts and structure of the communication and computation
required, and in their convergence speeds.

A. A First Derivative Algorithm
The first algorithm is closely based on Heal’s [14] norma-

tive model of economic planning and is essentially the
algorithm first derived from [141 in [151. Assume some initial
allocation (xi, . * . , xn) of the file resource, where CicNXi =

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 5, MAY 1989

final (optimal) file allocation but will play an important role in
determining the convergence speed of the algorithm.

The algorithm is iterative in nature and consists of a local
computation followed by a communication step. Each node i
first computes its marginal utility (i.e., the partial derivative of
the utility function with respect to Xi), evaluated at the current
allocation. These n individual marginal utilities are then used
to compute the average system wide marginal utility. This can
be done by having all nodes transmit their marginal utility to a
central node which computes the average and broadcasts the
results back to the individual nodes or each node may
broadcast its marginal utility to all other nodes and then each
node may compute the average marginal utility locally. (In a
broadcast environment, e.g., a local area network, these two
schemes require approximately the same number of messages
and thus the second scheme would be more desirable.) Upon
receiving all the marginal utilities, the node (or nodes) checks
to see if the algorithm termination criteria have been met. If
so, the procedure stops and, as discussed below, the resulting
allocation is optimal.

If’the termination criteria are not met, the file resource is
reallocated in such a way as to proportionally increase the
amount of file resource allocated to nodes with a marginal
utility that is above average and decrease the amount of file
resource allocated to a node with a below average marginal
utility. Note that, intuitively, the algorithm simply serves to
iteratively reallocate portions of the file resource to those
nodes where the increase in utility (decrease in cost) will be
greater.

1) Algorithm Statement: A more precise statement of the
algorithm is now given; the notation LI,’ is used to denote
dU(XIy ” *y Xn)/dXi.

1. Initialization. An arbitrary feasible allocation Xi, i E
N, is made.

2. Iteration.
DO a) Each node i E N calculates UC evaluated at the

current allocation and sends Vi’ and Xi to all nodes
j, j # i, j E Nor to the designated central agent.

b) Each node i E A (or the central agent) computes its
change in allocation by

, vi E A (3)

where a! is the stepsize parameter and A is the set of
nodes described below. vi @ A, AXi = 0.

C) Eachnodei E A, setsxi = Xi + AXi+
UNTIL IV; - CJ,!l c e, vi, j E A.

In the above algorithm, we refer to the term which scales the
difference between the average marginal utility and an
individual marginal utility as the stepsize parameter; in this
case, the stepsize parameter is simply the constant (Y. In
Theorem 3 in Appendix B, we derive bounds on the size of cz
to guarantee convergence of the above file reallocation
process. The construction of the set A (shown below) is
required to ensure that no node’s allocation goes below zero as

1. The particular initial allocation selected will not affect the a result of step c) and that nodes receiving a zero allocation

KUROSE AND SIMHA: MICROECONOMIC APPROACH TO RESOURCE ALLOCATION 709

optimal cost

c 2.6.
::
u 2.4.
:
z
z 2.2.
0

without fragmentation

a=0.0005 -

2.0.

optimal cost
1.6 -1

0

with fragmentation
40 60 00 100 120

NO. OF IlERRlIONS

Fig. 2. Access cost versus iteration number for the first derivative algorithm.

have below average marginal utilities. Typically, A is the full
set of nodes, N.

/* Algorithm for computing the set A* at each iteration/
i> For all i, sort U;).
ii) Set A ’ = { i 1 node i has largest U; }.
iii) Do step iv) for each j, j 6 A ’ in descending

order of Uj’ .
iv) If j would receive a positive allocation Xj as a

result of the reallocation defined by (3)
above with A = A’ U {j}, then set A’ =
A’Uj.

v) Set A = A’.

2) Algorithm Properties: Optimality, Feasibility, Mono-
tonicity, and Convergence: The above algorithm has several
properties that make it particularly attractive for file resource
allocation in a distributed environment. The first property is
that when the algorithm converges, (i.e., au/ax, = au/ax,
Vi, j E A), the necessary conditions for optimality have been
satisfied; a proof of this property can be found in [141.
Although these conditions are also satisfied by local optima,
local minima, and points of inflection, the utility function in
(2) has no such points and we need only establish whether the
resulting allocation results in the global maximization or
minimization of utility. As we will see shortly, the above
algorithm results in a strictly monotonic increase in utility
and thus, we can be assured of a globally optimum allocation.

Another important property of the algorithm (Theorem 1 in
Appendix B) is that it maintains a feasible file resource
allocation (CiENXi = 1) at each iteration. Thus, the algorithm
can be terminated prematurely (before convergence) and the
resulting file allocation will be feasible (i.e., the system will be
operational, although its performance would not be optimal).
The third important property is that as a result of each
iteration, AU > 0, that is, the systemwide utility function (2)
monotonically increases as a result of each iteration, except
when the conditions necessary for optimality have been

satisfied. Thus, until the algorithm has converged, the cost
associated with the file allocation computed as the result of the
kth iteration is strictly less than the cost associated with the
file allocation computed at the (k - 1)st iteration. This
property is established in Theorem 3 in Appendix B.

The final property is that for sufficiently small values of the
stepsize parameter, in this case cr, the algorithm can be shown
to converge to the optimal file allocation. A proof of
convergence, initially due to Heal [14] holds for the case of
infinitesimally small values of (Y. In Theorem 3 in Appendix
B, we establish an upper bound on the size of a discrete Q!
which guarantees convergence.

3) Experimental Results: Fig. 2 plots the overall cost of the
computed file resource allocation as a function of the iteration
number for the first derivative algorithm in the network (from
[24]) shown in Fig. 1.

In this experiment, the individual link costs were all taken to
be0.024,K = 1,~ = 1.5, Xi = 1.0/n, vi = 1 *a*, n, and
the initial allocation was xi = 1 .O and Xi = 0.0, vi 2 2. E was
chosen such that all the partial derivatives were within one
tenth of one percent of each other at convergence (a very
stringent convergence criteria). Minimum hop routing was
used for determining the cost of routing accesses between
nodes. The lower curve in the figure is for executing the
algorithm with Q! = 0.1 and the upper curve is for (Y =
0.0005. The optimal cost without fragmentation is also shown.

The figure illustrates several important aspects of the
algorithm. First, the figure demonstrates that fragmenting the
file resource results in a considerable cost decrease over the
integer allocation case. Second, the figure clearly shows the
monotonic cost decrease achieved by the algorithm and
demonstrates that the algorithm can converge upon the optimal
allocation in a small number of iterations.

The figure also demonstrates, however, the importance of
selecting an appropriate value of (Y. For example, with a =
0.1 only 36 iterations were required until all partial derivatives
were within one tenth of one percent of each other, while with
(Y = 0.0005, over 7000 iterations were required. In the

710 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 5, MAY 1989

2nd derivative algorithm(u=l.l)

80 .
r
0 70 . 1st derivative algorithmoJ=1.5)
- z 60.
z - 50.

40 . 2nd derivative algorithm(Lt=1.5)

30 .

20 .

10.

Ol. J
0 0.1 0.2 0.3 0.4 0. 5 0.6 0.7 0.8 0.9 1.0

RLPHR

Fig. 3. Convergence times as a function of (Y.

following subsection, a second derivative algorithm is studied
which results in rapid convergence over a significantly wider
range of stepsize parameter values.

B. A Second Derivative Algorithm
Intuitively, it should be possible to improve the convergence

behavior of the previous algorithm by using a variable stepsize
parameter [3] that is sensitive to the current allocation and
shape of the utility function rather than the constant value of CY
in (3). As shown in Appendix A, the gradient algorithm of
Section IV-A-l can be shown to result from optimizing a first-
order approximation of the change in the utility function (2).
An optimization algorithm based on a second-order approxi-
mation of (2) permits each node to scale its stepsize parameter
by a different amount at each iteration. The additional
overhead incurred by this algorithm is the computation and
communication of this second derivative information.

I) Algorithm Statement: A more precise statement of the
algorithm is now given.

1. Initialization. An arbitrary but feasible allocation Xi, i
E N, is made.

2. Iteration.
DO 1. Each node i E N calculates U; and the inverses of

the second partial derivatives, ki = l/ (a2U/ax: 1,
evaluated at the current allocation and sends Vi’,
ki, and Xi to all nodes j, j # i, j E N or to the
designated central agent.

2. For each node i E A [where A is the same set as
before except that (4) is used in step iv)] the change
in its file resource allocation is given by

AXi= ski
(

U/ -
XieAkiUl

CieAki >
(4)

3. The current allocation for each node i E A is
updated: Xi := Xi + AXi

UNTIL 1 UC - U; 1 c E, vi, j E A.

In Appendix B, it is shown that the second derivative
algorithm (4) also maintains feasible allocations and produces
strictly monotonic increases in utility and again determines a
bound on the constant CY such that the discrete second
derivative algorithm provably converges.

2) Experimental Results: Fig. 3 compares the number of
iterations for convergence as a function of the constant o for
the first and second derivative algorithms and clearly demon-
strates the superiority of the second derivative algorithm.
(With the exception of p, the network parameters are identical
to those in Section IV-A-3.) For example, with p = 1.5, X =
1.0, fewer iterations are required by the second derivative
algorithm and the algorithm converges over a much wider
range of CX. Perhaps even more importantly, the bound on CY
derived in Appendix B is such that it is a relatively simple
matter to choose a practical value of CY which will result in a
guaranteed (and relatively rapid) convergence.

The third curve in Fig. 3 shows algorithmic convergence
with p = 1 .l and X = 1 .O. Note that for these parameter
values, the utility function (2) is quite steep and yet the
algorithm still demonstrates rapid convergence. The corres-
ponding behavior of the first derivative algorithm (not shown)
was considerably worse, at best requiring 241 iterations and
again being very sensitive to the value of CY chosen.

Finally, Fig. 4, compares the convergence behavior of the
above algorithm (algorithm A 1 in Fig. 4) to the performance
of an alternate second derivative algorithm (A2 in Fig. 4)
derived from an approach used in [3] and [13] for optimizing
routing assignments in computer communication networks.
Note that the algorithm of (4) is the more stable of the two with
respect to both changes in cx as well as the shape of the utility
function (as determined, in this case, by the service rate p).
We conjecture that this results from the fact that for larger
values of CY (where faster convergence is achieved), the
reallocation mechanism derived from [3] and [131 makes a
positive reallocation to just one node at each iteration (that
node with the highest marginal utility) and the node receiving
this positive reallocation will change from one iteration to the

KUROSE AND SIMHA: MICROECONOMIC APPROACH TO RESOURCE ALLOCATION 711

IO0

50

0

C’

algorithm A2 (p = 1.1)

algorithrri A2 (p = 1.5)

algorithm Al (p = 1.1)

algorithm Al (p = 1.5)

t 4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0

RLPWR

Fig. 4. Comparision of convergence behavior of two second derivative algorithms.

next. The algorithm under study in this paper, however,
makes a more balanced reallocation at each iteration.

C. A Pairwise Interaction Algorithm
During each iteration of the previous two algorithms, all

nodes perform a simple gradient calculation (in parallel) using
local information followed by a networkwide exchange of
information. If all partial derivatives are reported to a central
agent, O(n) messages are required at each iteration; if partial
derivatives are broadcast to all nodes, O(n*) messages are
required in a nonbroadcast environment. Since in many cases,
the communication overhead may dominate the time required
by each iteration, it is of interest to investigate algorithms
which decrease this communication overhead while incurring
only a slight increase in the computation (number of iterations)
required at each node.

The third algorithm studied is based on localized exchange
of gradient information among neighbors, a problem also
considered earlier in [15] in which a symmetric communica-
tion structure among nodes was assumed. In this algorithm,
the iterative process is refined into major and minor
iterations. At each minor iteration, the nodes in the network
are paired according to a pairing relation (see below). Each
pair of nodes then computes a pairwise reallocation based on
their difference in marginal utilities. Several minor iterations,
each governed by a pairing relation, are performed sequen-
tially and constitute a major iteration. We note that numerous
pairs may proceed concurrently with their pairwise exchanges
and that considerable asynchrony may thus be achieved. We
now define the following terms:

@--an unordered pairing relation, 6 c N x N, such that
if (i,, i2), (i3, i4) E 6’ then il # i2 # i3 # i4. Stated more
simply, each node must belong to at most one pair.

G-the number of minor iterations in a major iteration.
9X-a major iteration-a sequence of t? pairing relations, 32

= (61, @2, -*-> (Pl), each of which defines a minor
iteration, and such that for any pair of two distinct nodes

(il, id E N X N, (il, i2) E (‘Jlrjr&‘j)+, the
transitive closure of the union of all the pairing
relations. This restriction ensures that portions of the
file can eventually be transferred between any two nodes
in the network given a sufficient number of iterations.

A neighbor of a node i is a node j such that (i, j) E 6 for at
least one 6 E 3K.

The pairwise algorithm can be derived mathematically
following the same arguments as those presented in Appendix
A for the previous two algorithms. We construct the sequence
of minor iterations by solving t’ problems of the form

max AU

subject to AXi + AXj = 0, v(L.0 E @ k

for each pairing relation ~3’~ E 92, k = 1, * * * , t’. The
resulting pairwise reallocation process at the kth minor
iteration can be shown to be

akikj
AXi=- k,+ k. <u; - u;> v(i,j) E @ k (5)

1 J

where a! is again a constant and ki = l/) a*U/ax: 1. Thus, at
each minor iteration every pair of nodes in the pairing relation
performs an exchange of file resource according to (5). Note
that the algorithm requires communication only between direct
neighbors.

A sequence of minor iterations corresponding to a major
iteration is executed and the process is repeated until conver-
gence. The termination criteria are identical to those in our
previous algorithms but are slightly more complicated to
implement in practice. Periodically, all nodes must be polled
to determine whether their marginal utility equals that of each
of their neighbors (assuming both have a nonzero allocation).
If this condition is true for all nodes, the algorithm terminates
since by the transitive closure property, it must be true that the
nodes have equal marginal utilities, the necessary condition
for an optimum.

712 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 5, MAY 1989

1. 6
10 20 30 40 50

ND. OF ITERRTIDNS
Fig. 5. Access cost versus iteration number for the painvise algorithm.

pairwise algorithm

g 60.
z
z SO- uz
ii - 40.

30

2nd derivative algorithm .

20 .

10.

OL, &I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1

ALPHR
Fig. 6. Convergence time comparison of pairwise and second derivative algorithms.

I) Experimental Results: The pairwise algorithm was
studied using the same network parameters as in Sections IV-
A-3 and IV-B-2 and the three pairing relations-@, = { (1,2),
(5,6), (7, Q (3, 1% (4, 91, (15, 1% (17, 1% (12, 13), (149
W}, 62 = {@,4), (1, 3), (6, 7), (8, 13)s (12, 14), (11, 13,
(9, 17), (10, 16)}, 6’3 = ((1, 8h (2, 5)s (3, 7), (9, 1% (14,
15), (13, 18)s (17, 1% (10, 16)).

Fig. 5 plots the file resource access cost as a function of the
number of minor iterations and shows the same convergence
behavior as the previous two algorithms: a rapid performance
increase to a region around the optimum in relatively few
iterations and then a slower approach towards the optimum.
We observed, however, that when e is very small, the pairwise
algorithm caused small portions of the file to thrash from one
node to another during the final approach to the optimum,
resulting in longer convergence times. For these studies, E was
thus chosen so that the convergence criterion was that the
partial derivatives be within five percent of each other. In this

case, the allocation upon which the algorithm converged was
insignificantly different from the true optimal allocation.

Fig. 6 plots the total number of (minor) iterations required
for convergence as a function of (Y for the second derivative
algorithm and the pairwise algorithm. Note that although the
pairwise algorithm requires up to twice as many iterations to
converge, each iteration requires only a constant order of
communication (due to the pairwise communication structure
of the algorithm) rather than the O(n) or O(n*) communica-
tion required by the second derivative algorithm. This would
indicate that a pairwise algorithm would perform well in all
but the smallest of distributed systems.

Finally, with pairwise interaction, it now becomes practica-
ble to have each set of paired nodes search for a more effective
value of 01 during an iteration. For example, let (Y, be some
initial (fixed) small value for CY and let the subscript m be
defined such that r/i = min(UC , U;) for two paired nodes i
and j. If 1 AXi 1 = 1 aX, (is the amount of resource exchanged

KUROSEANDSIMHA:MICROECONOMICAPPROACHTORESOURCEALLOCATION 713

between nodes i and j at the current value of (II, then define the
endpoints of a line search to be

lower limit = min

upper limit=max (oC, &)

During an interaction, each interacting pair of nodes may then
conduct a binary search of a predetermined number of
iterations within this interval to attempt to locate a value of ff
that results in a one-step reallocation (5) which maximizes, the
sum of the utilities of nodes i and j. Our simulation studies (not
reported here) have shown that using even two iterations of
this process may significantly accelerate convergence.

V. DISCUSSION

Having examined three decentralized algorithms for allocat-
ing a file resource, we now discuss several issues relating to
these algorithms.

Generalizations: Let us first consider extending our pre-
vious formulation of FAP to more general file resource
allocation problems. Different costs for queries and .updates
can be easily taken into account by splitting the cost function
into two separate costs (one for processing updates and one for
processing queries) in (2) and weighting these costs appropri-
ately. Different access processing rates can also be trivially
incorporated by replacing the p in (2) by the individual pi’s
Note that alternate queueing models (e.g., such as M/G/l
queues) can be directly used to model the access generation
and service mechanisms without affecting the feasibility or
monotonicity properties of the algorithm, although the conver-
gence criteria on the size of (Y would have to be established for
these new objective functions.

In the case of a single copy of A4 multiple distinct file
resources, the utility function can be easily extended by
introducing variables for additional resources, xj, j E { 1 * * *
M}. We may now define xi as the fraction of file resource j
allocated to node i, define XJ as the access rate to this resource,
and redefine the objective function using these variables in a
straightforward manner. Unfortunately, the extensions for
multiple copies of a file resource are not as simple. In the
single copy case, knowing the fraction of the resource
allocated to a node was sufficient to determine the rate at
which it would receive access requests from the other nodes in
the system. In the most general case of multiple copies, the
contents (records in the case of tile allocation, or files in the
case of file system allocation) of the fraction of file resources
allocated to a node must be considered in determining these
rates.

One possible solution to this problem is to impose additional
structure onto the system. In particular, we may order the
network nodes into a unidirectional virtual ring with copies of
the file laid out contiguously around the ring. If each node is
constrained to direct its accesses in a given direction along this
virtual ring, a node may easily determine the rate at which it
will receive accesses. Our experiments have indicated, how-
ever, that this problem formulation may result in nonmono-

tonic changes in the cost function at successive iterations,
particularly as the algorithm nears convergence. One way to
mitigate these effects is to decrease the value of (Y, although as
(Y is decreased, the number of iterations needed to converge to
within a region around the optimum will increase.

Roundoff Analysis: In the previous discussion, it was
assumed that a file resource is an infinitely divisible resource.
In practice, however, the file resource may only be broken on
atomic boundaries (a record in the case of a file or a file in the
case of a file system). Thus, the real-number fractions
determined as a result of the optimization process will have to
be rounded so that the file resource will fragment at atomic
boundaries.

To provide a worst case analysis of the error introduced by
this process, let xf be the rounded fraction for node i. Then) Xi
- x(I is the magnitude of the roundoff error for each i, and
the error in the overall resulting utility can be approximated to
first order by AU,, = CiENUI /Xi - X(I. When each fraction
is rounded to the nearest atomic unit boundary, the error in
that particular fraction will be less than one atomic unit. If
there are R atomic units in a resource, the maximum value of
(Xi - XI (is l/R, th e worst case error in utility is given by

AU& c U,
n iEN

and the worst case error tends to zero as the number of records
tends to infinity. Our experiments with the network of Fig. 1
resulted in a tive percent roundoff with a 20 atomic-unit
resource, decreasing to a 1.5 percent error with 60 units and to
less than 1 percent error for a resource with a hundred atomic
units.

Integration with Higher Level Mechanisms: In a distrib-
uted system, the layer of software that handles any resource
typically serves higher level layers that, for consistency, may
require operations on data to have properties of atomicity and
serializability [12]. When fragmentation of a resource is
permitted, the effects of such. fragmentation on these higher
level mechanisms should be considered.

If locking is required on the basis of atomic units, then
fragmentation incurs no additional overhead for supporting the
higher level mechanisms. However, if an entire file resource
needs to be locked and is fragmented over several nodes,
additional message overhead is required to ensure the serial-
izability of concurrent transactions, to avoid deadlock, and/or
preserve atomic@. Thus, there do exist situations in which
file fragmentation is not desirable. However, if these opera-
tions are relatively infrequent, fragmentation provides an
attractive alternative to integral file allocation policies from
both a performance and reliability point of view.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented several algorithms which

provide simple, decentralized procedures for distributing a
resource in a distributed system. The problem of file resource
allocation was studied in order to provide a context in which
these algorithms could be considered. These algorithms were
developed using models of resource allocation previously

714 IEEETRANSACTIONSON COMPUTERS,VOL.38.N0,5,MAY 1989

developed within the field of mathematical economics and
were shown to have the attractive properties of maintaining
feasibility, strict monotonicity, and fast convergence. These
properties were both formally established and studied through
simulation.

The importance of monotonicity arises in distributed operat-
ing sytems where successive iterations of the algorithm can be
run at freely spaced intervals (depending on load conven-
ience), producing at each step a better allocation. One can
easily envision a system where the algorithm is run whenever
the system is lightly loaded in order to gradually improve the
allocation.

Our algorithm was based on the use of an underlying model
to predict System performance for a given resource allocation.
The possibility also exists of using observed measurements of
gradient information [5] to control the reallocation process.
We note, however, that there will be uncertainty associated
with these measurements and thus stochastic approximation
techniques will be required in the optimization process. We
believe this is an important problem rind a promising direction
for future research.

Finally, we note that microeconomics could play an
important role in the evolution of distributed operating
systems. The benefits of controlling resource usage in a
distributed computer system using microeconomic methods
are many. The methods are well understood and tested
already. Simplicity in implementation is achieved by treating
nodes as individual agents in an interacting society. We also
believe that with the use of mechanisms such as pricing,
intermediate and public goods, many factors affecting the
usage of the resources can be easily integrated into the overall
scheme. Such an approach holds great promise in that it
provides a simple and decentrsilized framework which may
reduce the complexity of designing and implementing the large
distributed systems of the future.

APPENDIX A

THEFRAMEWORRFORGRADIENTALGORITHMS

The approach towards designing our algorithms is based on
the gradient projection method [19] with the addition of
constructing the feasible set A. This technique has been
previously employed in the area of computer networks [3] and
general resource allocation [151. An iterative resource alloca-
tion algorithm is defined as a list of expressions Ax;, one for
each node in the distributed system (i.e., in the same manner
as (3) defines an algorithm). We obtain a particular algorithm
by expressing the change in utility AU (resulting from a
reallocation of file resources) as a function of the individual
Ax;‘s and then solving the problem

maximize: AU= c UC Ax;+ A ,x UF Axf
iEN IEN

+; ,-& U;Ax;+.. (6)
*CA/

maximization problem, we obtain expressions for Ax; and
consequently, an algorithm. Note that there are no cross
partial derivatives a2U/axjxj in the Taylor series expansion of
AU. This is true of the file resource allocation cost model
described earlier but need not be the case with other utility
functions.

When only limited derivative information is available, an
iterative process is generated by solving the above maximiza-
tion problem. For example, the second derivative algorithm
studied in this paper is obtained using a second-order Taylor
expansion of AU and solving

maximize c Uf AXi + f 8 UF AX:
iEN IEN

(7)

subject to the constraint Ci,,&xj = 0. Note that the inequality
constraints Xi 1 0 are enforced by the computation of the set
A. Using the Lagrange multiplier technique to solve for each
individual AXi, we obtain the second derivative algorithm of
(4)) where the stepsize parameter CY is used in discretizing what
would otherwise be a continuous process. Note that the first
derivative algorithm may be obtained by taking the second-
order Taylor expansion in (7) and setting ki equal to unity.

APPENDIX B

FEASIBILITY AND MONOTONICITY

The theorems below demonstrate that the algorithms studied
in this paper maintain a feasible file resource allocation at each
iteration while improving, monotonically, the value of the
utility. Upper bounds are also obtained for a value of a! which
guarantees convergence. These theorems are proved for the
second derivative algorithm; at the end of each proof we
describe briefly how the proofs may be modified for the first
derivative and pairwise algorithms. Theorems 1 and 2 below
were proven for the first derivative algorithm in [14]; we
follow this approach in establishing the theorems for the
second derivative and pairwise exchange algorithms.

Theorem I: If the initial allocation of the file is feasible,
i.e., EigNXi = 1, then each iteration of the algorithm results in
a feasible distribution of the file resource.

Proof: To prove that a feasible allocation is maintained
we show that the sum total change in allocation remains zero
[14]. From (4),

z AXi= C ski (U, -“~~~k~)
EN iEA

=C akiU/-zaki (“~~~k~)
iEA IEA

CiEAki
= C akiU;- CakjU,(m,

IEA jEA

=o.
Setting each ki = 1 provides a proof of feasibility for the

subject to the given feasibility constraints. In solving the above first derivative algorithm. For the pairwise algorithm, for each

KUROSE AND SIMHA: MICROECONOMIC APPROACH TO RESOURCE ALLOCATION 715

(i, j) E 6 we have AXi + AXj = 0 and hence feasibility is
maintained.

Theorem 2: When the changes in allocation are infinitesi-
mally small, the second derivative algorithm results in a
strictly monotonic increase in utility except when the neces-
sary conditions for optimality are satisfied.

Proof: Following [141, we show that the rate of change
for a first-order approximation of an arbitrary utility function
is greater than zero, except when the necessary conditions for
optimality are satisfied.

CJ=C U(ki UC-
CjcAkjU,!

iEA CjEA kj >

= c ki(u;)2A”i;ki;)2

iEA rEA I

= C ki(Ul)“-2
(CiEAkiUI)* (CicAkiUI)*

iEA CiEAki + CicAki

=C ki(Uc)*-2

IEA
c, k.

JEA J

+ (x;;Ezky)2)

CjcAkjU,! 2
= u:- C, k,

/CA J >

which is greater than zero, with equality when all the Vi’ are
equal. Note that we require that Vi, ki # 0 for a second
derivative algorithm to be used. Setting each ki # 1 results in
a proof of monotonicity for the first derivative algorithm [141.
In the case of the pairwise algorithm, we note that each pair of
nodes behaves like a two-node network executing the second
derivative algorithm.

Also note that in the proof of Theorem 2, the following
identity, which will be used shortly, was also established:

= (8)

Although the above theorem holds for arbitrary utility
functions, it essentially requires that CY be infinitesimally
small. In the theorem below, we derive a more realistic upper
bound on (Y for the particular problem of file resource
allocation.

of CY, depending on the parameters of the problem, for which
each iteration results in strict monotonic increase in utility,
except when the algorithm termination conditions hold.

Proof (first and second derivative algorithms): Our goal
is to determine conditions on the value of CY under which the
overall change in systemwide utility AU will be greater than
zero as a result of the reallocations {AXi} made at each
iteration. We begin by expressing the overall change in utility
as the result of each iteration as a Taylor series:

AU=EieAU:AXi+h CiEAU;(AXi)*

+&Ei,,U~(Ax,)l+“‘. (9)

Noting that

aflu TI! x
(>

n-2 a*u
-=- -9 vn=2, 3, ***
ax; 2 /L-hi ax;

(9) may be rewritten:

Au= C UlAXi+i
IEA

+(2$)‘+(-!!5)‘+...). (10)

In order for the series within the second sum to converge, we
must have

XAXi I I - <l
/Ja-AXi

for all i. A sufficient condition to satisfy

l+]AXi]<X

(11)

this inequality is

(12)

for each i. Recall from (4) that for the second derivative
algorithm

AXi= ski UC -
(

CicAkiUI

EiEA ki >
(13)

and that taking ki = 1 yields the first derivative algorithm.
Substituting (13) into inequality (12) and taking bounds on its
components gives the following upper bound on the value of
ct.

CL--h CXC-
x9

where

UC-

And thus for the first derivative algorithm

9= (Gax- Gin) +

hK(2p - A)

du - A)* I r-.r I I

(14)

Theorem 3: for the cost function of (l), there exists a value

716 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 5, MAY 1989

and for the second derivative algorithm Rearranging inequality (15) we have

The above bound on CY guarantees that the Taylor series

(y maXi 1 U: kil

2 (l-&Yq)cl
(17)

expansion of AU converges. However, we must still ensure
that AU > 0. By (8), the first term of the series in (10) is

which, by (1 l), must also be greater than zero. We thus have

positive and thus, a sufficient condition to ensure that AU > 0
is

C U;AXi>i 7 U~AX~
iEA IEA

’

AUZ(a mm (ki)) (1 -2~~~a~j)

u; -
CjcAkjUi 2

> CjeAkj *
(18)

which itself will hold when
Finally, it may be easily verified that given that the algorithm
has not converged, the sum in (18) is minimized when all 17,’ ,
I E A are equal to CicAkiUi/EieAki, 1 f i # j and UC and
U; each lie a distance e/2 from this weighted average. We
thus have after evaluating the various terms

Substituting for Ax from (13) and using (8) to replace the sum
containing Vi’ , we get after some manipulation

2
CX< 9, (15)

It may be easily verified that the upper bound on (Y in
inequality (15) is always stricter than that of inequality (14)
and thus inequality (15) provides an upper bound on (Y that
ensures that AU > 0.

Finally, Theorem 4 establishes the fact that each increase in
utility is always bounded below by some finite value. Together
with Theorem 3 (which states that the increase in utility is
always nonnegative) this ensures that the algorithm will not
produce an infinite sequence of allocations which results in a
sequence of changes in utility which become increasingly
smaller and smaller. Since the utility of an optimal allocation
is finite, this then guarantees that the file resource allocation
algorithm eventually converges.

Theorem 4: The second-order expansion of AU is bounded
below given a fixed E and CX.

Proof: Providing that we choose the value of a! to satisfy
inequality (15) we have from (10) that

ill

121

[31

141

151

161

F71

181

[91

1101

is nonnegative. Substituting for hxi from (13) and rearranging
terms using Theorem 2, we get

(16)

1131

1141

1151

1161

u71

1181

REFERENCES

C. Agnew, “The dynamic control of congestion prone systems through
pricing,” Ph.D. dissertation, Stanford Univ., Nov. 1973.
K. Arrow and F. Hahn, General Competitive Analysis. San
Francisco, CA: Holden Day, 1971.
D. Bertsekas, E. Gafni, and R. Gallager, “Second derivative al-
gorithms for minimum delay distributed routing in networks,” IEEE
Trans. Commun., vol. COM-32, pp. 911-919, Aug. 1984.
D. Bettsekas and R. Gallager, Data Networks. Englewood Cliffs,
NJ: Prentice-Hall, 1987.
C. G. Cassandras and Y. C. Ho, “An event domain formalism for
sample path perturbation analysis of discrete event dynamic systems,”
IEEE Trans. Automat. Contr., vol. AC-30, no. 12, 1985.
R. Casey, “Allocation of copies of files in an information network,”
AFIPS Proc., vol. 40, pp. 617-625, 1973.
S. Ceri, G. Pelagatti, and G. Martella, “Optimal tile allocation in a
computer network: A solution based on the knapsack problem,”
Comput. Networks, vol. 6, pp. 345-357, 1982.
P. Chen, “Optimal file allocation in multilevel storage systems,”
Proc. AFIPS, vol. 42, no. 2, pp. 277-282, 1973.
W. W. Chu, “Optimal tile allocation in a multiple computer system,”
IEEE Trans. Cotnput., vol. C-18, pp. 885-889, 1969.
L. Dowdy and D. Foster, “Comparative models of the file assignment
problem,” ACMComput. Surveys, vol. 14, pp. 287-314, June 1982.
K. Eswaran, “Placement of records of a tile and file allocation in a
computer network,” IFIP Conf. Proc., pp. 304-307, 1974.
K. Eswaran, J. Gray, R. Lorie, and I. Traiger, “The notions of
consistency and predicate locks in a database system,” Commun.
ACM, pp. 624-633, Nov. 1976.
R. G. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Trans. Commun., pp. 71-85, Jan. 1977.
G. Heal, “Planning without prices,” Rev. Econ. Studies, vol. 36, pp.
346-362, 1969.
Y. C. Ho, L. Servi, and R. Suri, “A class of center-free resource
allocation algorithms,” Large Scale Syst., vol. 1, pp. 51-62, 1980.
L. Hurwicz, “The design of mechanisms for resource allocation,”
Amer. Econ. Rev., vol. 63, no. 2, pp. l-30, 1973.
L. Kleinrock, Queueing Systems: Vol. I: Theory. New York:
Wiley-Interscience, 1975.
J. F. Kurose, M. Schwartz, and Y. Yemini, “A microeconomic
approach to optimization of channel access policies in multiaccess

KUROSE AND SIMHA: MICROECONOMIC APPROACH TO RESOURCE ALLOCATION 717

1191

WI

Pll

Pa

1231

[241

[251

WI

1271

networks,” in Proc. 5th Int. Conf. D&rib. Comput. Syst., Denver,
CO, May 1985, pp. 70-80.
E. S. Levitin and B. T. Polyak, “Constrained minimization prob-
lems,” USSR Comput. Math. Math. Phys., vol. 6, pp. l-50, 1966.
M. Mahmoud and J. Rio&n, “Optimal allocation of resources in
distributed information networks,” ACM Trans. Database Syst., vol.
1, no. 1, pp. 6678, 1976.
C. V. Ramamoorthy and K. M. Chandy, “Optimization of memory
hierarchies in miltiprogrammed systems,” J. ACM, vol. 17, pp. 426-
445, July 1970.
J. Rothnie and N. Goodman, “A survey of research and development
in distributed database management,” in Proc. 1977 Conf. Very
Large Databases, 1977.
R. Suri. “A decentralized anoroach to ootimal file allocation in
computer networks,”

.L .

m Proc. 18th IEEE Conf. Decision Contr.,

James F. Kurose (S’81-M’84) received the B.A.
degree in physics from Wesleyan University, Mid-
dletown, in 1978 and the MS. and Ph.D. degrees in
computer science from Columbia University, New
York, NY, in 1980 and 1984, respectively.

Since 1984, he has been an Assistant Professor in
the Department of Computer and Information Sci-
ence, University of Massachusetts, Amherst, where
he currently leads several research efforts in the
areas of computer communication networks, dis-
tributed systems, and modeling and performance

Dr. Kurose is a member of Phi Beta Kappa, Sigma Xi, and the Association
for Computing Machinery.

IEEE Press, 1979, pp. 141-146.
G. H. Thaker and J. B. Cain, “Interactions between routing and flow
control algorithms,” IEEE Trans. Commun., vol. COM-34, Mar.
1986.
B. Wah, “File placement in distributed computer systems,” IEEE
Computer, vol. 17, pp. 23-33, Jan. 1984.
M. Wasan, Stochastic Approximation, Cambridge Tracts in Mathe-
matics and Mathematical Physics No. 58. Cambridge, MA: Cam-
bridge, Univ. Press, 1969.
M. Woodside and S. Tripathi, “Optimal allocation of file servers in a
local area network,” IEEE Trans. Software Eng., vol. SE-12, pp.
844-845, 1986.

Rahul Simha received the B.S. degree in computer
science from the Birla Institute of Technology and
Science (BITS), Pilani, India, in 1984 and the M.S.
degree in computer science from the University of
Massachusetts, Amherst, in 1985.

He is currently working towards the Ph.D.
degree and his research interests include distributed
systems, computer networks, and stochastic optimi-
zation.

