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A Microeconomic Approach to Optimal Resource 
Allocation in Distributed Computer Systems 

JAMES F. KUROSE, MEMBER, IEEE, AND RAHUL SIMHA 

Abstract-Decentralized algorithms are examined for opti- 
mally distributing a divisible resource in a distributed computer 
system. In order to study this problem in a specific context, we 
consider the problem of optimal file allocation. In this case, the 
optimization criteria include both the communication cost and 
average processing delay associated with a file access. 

Our algorithms have their origins in the field of mathematical 
economics. They are shown to have several attractive properties, 
including their simplicity and distributed nature, the computation 
of feasible and increasingly better resource allocations as the 
result of each iteration, and in the case of file allocation, rapid 
convergence. Conditions are formally derived under which the 
algorithms are guaranteed to converge and their convergence 
behavior is additionally examined through simulation. 

Index Terms-Distributed algorithms, distributed systems, file 
allocation, resource allocation, optimization 

I. INTRODUCTION 

I N THE broadest sense, a distributed computer system can 
be thought of simply as a set of interconnected computing 

agents which require the use of certain system resources in 
order to perform their assigned tasks. Since significant 
benefits can often be realized by sharing these system 
resources among the distributed agents, a principal challenge 
in the area of distributed system design is the development of 
efficient and robust resource allocation and access mecha- 
nisms . 

In this paper, we consider decentralized algorithms for 
solving resource allocation problems in distributed computer 
systems. In order to study this problem within a specific 
context, we consider, as an example, the classical resource 
allocation problem of file allocation (FAP) [lo], [25], [9]. We 
are particularly interested in studying distributed resource 
allocation algorithms for several reasons. First, an inherent 
drawback in any nondistributed scheme is that of reliability, 
since a single central agent represents a critical point-of-failure 
in the network. Second, the optimization problem itself may 
be an extremely computationally complex task. A centralized 
approach towards optimization ignores the distributed compu- 
tational power inherent in the network itself and instead 
utilizes only the computing power of a single central agent. 
Third, a decentralized approach is more appropriate in a 
network in homogeneous processors, each processor interacts 
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with others as peers and the computational burden of resource 
allocation and access is equitably distributed among the 
processors. Finally, and most importantly, the information 
required at each step in an optimization process may itself be 
distributed throughout the system. Rather than transmistting 
this information to a central site at each iteration, the nodes 
may exchange this information among themselves and possibly 
reduce the communication requirements of the algorithm by 
exploiting the structure of the communication system or 
structure inherent in the problem itself. 

In this paper, we examine distributed, gradient-based 
approaches toward resource allocation; the particular al- 
gorithms we study are based on a normative model of resource 
allocation from the field of mathematical economics [14]. 
These algorithms are shown to have several attractive features 
including their simplicity, distributed nature, provable (and 
rapid) convergence, and the computation of successively 
better resource allocations at each step. The main results of 
this paper are an empirical study and quantitative comparison 
of the convergence of various distributed gradient-based 
approaches to resource allocation, the derivation of bounds 
on stepsize parameters required by discrete versions of these 
algorithms for FAP, and a study of how the communication 
structure of a distributed system may be effectively exploited 
to expedite the optimization process. Resource allocation 
algorithms based on the economic models of [14] were first 
examined in [ 151. As in [ 151, we are interested in decentral- 
ized algorithms. Our work differs from [15] primarily in our 
focus on second derivative algorithms, empirical studies of the 
convergence properties, generalized topology-based commun- 
ication structures, and application to the tile allocation 
problem. 

In this paper, analytic formulas will be used to compute the 
system performance realized by a particular resource alloca- 
tion; i.e., it is assumed that there is an underlying performance 
model of the system which is adequate for the purposes of 
resource allocation, an approach which has been adopted in 
existing systems (e.g., [4]). This information might alterna- 
tively be gained through actual observations and these mea- 
surements can then be used in the optimization process (in 
which case, we note, the information is naturally distributed 
throughout the system). In such cases, problems of estimation 
and the use of inexact information in distributed stochastic 
approximation (optimization) [26] algorithms must also be 
addressed. We feel, however, that it is important to first fully 
understand the problems posed by distributed resource alloca- 
tion algorithms in the absence of these complicating factors. 

The remainder of this paper is structured as follows. In the 
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following section, we overview past work on distributed 
resource allocation and FAP. In Section III, we then precisely 
define our model of FAP. The main results of the paper are 
presented in Section IV, in which three decentralized resource 
allocation algorithms are presented and studied. Section V 
discusses issues related to implementing these algorithms in 
distributed systems and Section VI summarizes this paper. The 
mathematical derivations of the results in this paper are 
presented in the Appendix. 

II. DISTRIBUTED RESOURCE ALLOCATION ALCXXITHMS AND FILE 
ALLOCATION 

The distributed resource allocation algorithms we study in 
this paper are based on ideas and methods previously 
developed 1141 for another well-established distributed envi- 
ronment-an economy. In the past 30 years, mathematical 
economists have developed elegant normative models describ- 
ing how resources in an economy may be optimally shared in 
informationally and computationally decentralized ways. We 
believe that the numerous similarities between economic 
systems and distributed computer systems suggest that models 
and methods previously developed within the field of mathe- 
matical economics can serve as blueprints for engineering similar 
mechanisms in distributed computer systems. Our current 
work and [ 11, [ 151, [ 181, [23] are efforts supporting this belief. 

Two basic microeconomic approaches towards developing 
decentralized resource allocation mechanisms can be identi- 
fied [ 161: price-directed and resource-directed approaches. 
In the price-directed approach [2], an initial allocation of 
resources is made and an arbitrary set of systemwide initial 
resource prices is chosen. Prices are then iteratively changed 
to accommodate the “demands” for resources until the total 
demand for a resource exactly equals the total amount 
available, at which point the resulting final allocation of 
resources is provably Pareto optimal [2]. We note that there 
are several drawbacks in adopting this method in a distributed 
system, including the fact that the pricing process must 
converge before resources can be allocated, a nontrivial 
constrained optimization problem must be solved by each 
economic agent at each iteration, and finally, only a weakly 
(Pareto) optimal allocation of resources is obtained. 

The decentralized algorithms we examine belong to the 
class of resource-directed approaches [ 141, [ 151. During each 
iteration, each agent computes the marginal value of each 
resource it requires given its current allocation of resources 
(i.e., computes the partial derivative of its utility function 
(performance) with respect to that resource, evaluated at the 
current allocation level). These marginal values are then sent 
to other agents requiring use of this resource. The “alloca- 
tion” of the resource is then changed such that agents with an 
above average marginal utility receive more of this resource 
and agents with a below average marginal utility are “allo- 
cated” less of the resource. We note that when analytic 
formulas are used to compute the performance realized by a 
given resource allocation, an actual reallocation need not (but 
may) take place immediately after each iteration; an agent may 
simply compute its new allocation at each iteration and the 
resources may then be allocated whenever the algorithm is 

terminated. In the case that actual measurements are used, 
however, resources must be immediately reallocated in order 
for each agent to measure its performance under the new 
allocation. 

A particularly attractive feature of this process is that if the 
initial allocation is feasible (the total amount of resources 
allocated equals the total amount available), so too are the later 
allocations. Moreover, when analytic formulas are used to 
compute performance, successive iterations of the algorithm 
result in resource allocations of strictly increasing systemwide 
utility. These two properties of feasibility and monotonicity 
will be formally established for FAP in Section IV. These 
features make the algorithm well-suited for running “in the 
background” (when the system nodes would otherwise be 
idle) until convergence is eventually achieved. In the mean- 
time, the (nonoptimal) allocations computed by the algorithm 
can be used (with increasingly superior system performance 
levels) as the algorithm moves the system towards an optimal 
allocation. Finally, we note that the resource-directed al- 
gorithms studied in this paper belong to the more general class 
of distributed, gradient-based optimization algorithms, and 
that other related algorithms in this class have been used to 
solve routing and flow control problems [13], [3], [24] in 
computer communication networks; we compare these ap- 
proaches to those presented in this paper in Section IV. 

In order to study the resource allocation problem within a 
specific context, we consider, as an example, the problem of 
optimal file allocation (FAP). In FAP, accesses (queries and 
updates) to a file or file system are generated by the distributed 
agents. Simply stated, the tile allocation problem addresses the 
question of how the file or file system should be allocated 
among the nodes in a distributed system in order to “opti- 
mize” system performance. The term “tile allocation” has 
been used to refer to both the problem of distributing a single 
file (or copies of a file) over the network [9], [l 11, [25] (in 
which case the unit of allocation is a file record, assuming a 
file may be fragmented) as well as the problem of distributing 
an entire fife system over the network [27] (in which case the 
unit of allocation is a tile). In either case, however, there is a 
divisible resource (the file or file system), the allocation of 
which will cause a certain pattern of accesses to be directed to 
the nodes to which the file or file system fragments have been 
allocated. The algorithms examined in this paper are applica- 
ble to the general problem of resource allocation and thus to 
both formulations of the “file allocation” problem. In the 
remainder of this paper, we thus refer to the resource being 
allocated (the file or file system) simply as a “file resource. ” 

The file allocation problem has been the topic of numerous 
research efforts and a thorough review can be found in [25] 
and [lo]; here, we only briefly overview this past work. One 
of two optimization goals has typically been adopted [lo]: 
either 1) minimization of the overall communication cost 
required to satisfy file accesses or 2) optimization of some 
performance-related metric such as the average time delay 
associated with file access. When minimization of communi- 
cation cost is the primary consideration, it is also often 
assumed that a file resource must reside wholly at one node, 
i.e., it is not divisible and thus cannot be fragmented between 
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various nodes. In this case, FAP can be formulated as an NP- 
complete integer (O/l) programming problem [9], [ 111, for 
which heuristics or approximation techniques were investi- 
gated in [6], [20], and [7]. 

When minimization of average time delay or maximization 
of throughput is the primary performance metric, queueing- 
theoretic models have been adopted and the restriction that a 
tile resource be wholly allocated at a node is relaxed [S], [2 11, 
[27]. In practice, a process would thus need to use some table 
lookup (directory) procedure to determine the node to which it 
should address a particular file access. As hypothesized in 
[22], and as demonstrated in this paper, performance is 
improved over the integer allocation case by permitting 
concurrent access of a file resource, since different fragments 
(stored in different nodes) can be accessed in parallel. 
Fragmentation additionally provides for increased reliability 
and graceful degradation since failure of one or more nodes 
only means that the portions of the file resource stored at those 
nodes cannot be accessed. File accesses are, therefore, not 
completely disabled by individual node failures. Centralized 
queueing-theoretic FAP algorithms have been examined in [S] 
and [21]. 

III. MODEL FORMULATION 

Our model of a distributed computer system is shown in 
Fig. 1. The system consists of n nodes interconnected through 
a communications network; the network is assumed to be 
logically fully connected in that every node can communicate 
(perhaps only in a store-and-forward fashion) with every other 
node. The processes running at each of the nodes generate 
accesses (queries and updates) to the tile resource. If a process 
generates an access request which cannot be satisfied locally 
(i.e., the information accessed is not stored locally), the access 
is transmitted to another node in the network which can satisfy 
the request. This requires that each node store the file 
fragment locations in its local lookup table and hence results in 
larger table sizes over the strictly integer allocation case. Also, 
as discussed in Section II, resources may be repositioned in the 
network at each iteration of the allocation algorithm, in which 
case the table entries must be updated to record the current 
location of resources in the system. If, however, the realloca- 
tion is performed only upon algorithm termination, the tables 
need only be updated once. 

To simplify our presentation, we will initially consider the 
problem of allocating one copy of a single file resource. 
Consider then a network of n nodes, N = { 1, * * * , n }, and 
define 

x; thefraction of the tile resource stored at node i. Since there 
is only a single divisible resource, Cy= iXi = 1. We will 
assume that accesses are made on a uniform basis (although 
this can be relaxed) and therefore Xi also represents the 
probability that a file access (from anywhere in the 
network) will be transmitted to node i for processing. 
The purpose of the distributed resource allocation al- 
gorithms is to compute the optimal (xi, * * . , x,). 

As discussed in Section I, it is assumed that the resource 
allocation process is driven using some underlying model of 

FILE SYSTEM To BE AUGCATED 

Fig. 1. A distributed computer system. 

the system. We next describe this model and introduce the 
relevant notation. 

Xi the average rate at which node i generates accesses to the 
tile resource. The networkwide access generation rate is 
defined, X = Cy= i Xi. The arrival rate is modeled as a 
Poisson process with parameter X. We note that X repre- 
sents the long-term steady-state arrival rate. The arrival rate 
over different given periods of times may vary (i.e., there 
will be periods of time in which there are a large number of 
accesses and other periods of time in which there are much 
fewer accesses) and it is precisely this burstiness that is 
modeled well by a Poisson process. 

Cij the communication cost of transmitting an access from 
node i to nodej and transmitting the response fromj back to 
i. Cii is taken to be zero. 

Ci the average (systemwide) communication cost of making 
an access at node i. We take this simply as the weighted 
sum of the individual communication costs: 

ci= c ; cj; 
jEN 

1 /pi the average service time for an access request at node i. In 
order to simplify our presentation, we will also assume CL; = 
p for all nodes i and will not distinguish between the service 
times for queries and updates. As discussed in Section V, 
each of these restrictions can be easily relaxed. We model 
the service requirements of each access as an exponential 
random variable with mean 11~ a 

T; the expected time delay associated with satisfying an access 
at node i. This delay results both from the queueing and 
processing time at node i. Given our assumptions concern- 
ing X, Xi, and CL, we have [17] 

1 
T.=- . 

/J.-Xxi 

This provides a formula for the long-term average delay at 
node i, as a function of xi for a given arrival rate X and 
access service rates 1~. 
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The above quantities define the individual communication 
cost and access time delays. Interestingly, each of these two 
costs, considered alone, suggest diametrically opposed alloca- 
tion strategies. If communication is the sole cost, the optimal 
strategy is simply to put the entire resource at that node i 
where Ci is minimal. However, concentrating a large amount 
of a resource at one node means that a correspondingly large 
number of queries will be directed to that node with resulting 
large access delays. This would argue for distributing the 
resource evenly among the n network nodes. In our overall 
cost function, the relative importance of communication costs 
and access delays will be characterized by the constant K (in 
(1) below). The communication cost is normally taken to be 
the average delay incurred in the transmission of messages and 
thus, assuming all delays are measured in the same time units, 
we take K = 1 in this paper. 

Given the individual costs defined above, the overall 
expected cost of access to the file resource is given by 

C= c (cost of access to xi)prob(accessing xi) 

IEN 

= z (Ci+KTi)Xi 
iEN 

= Ci+ (1) 

Our optimization problem is thus to minimize C subject to 
the constraints CiENXi = 1, Xi L 0, Vi E N, and p > X. (We 
note that the weaker assumption h < CieNpi may be made 
provided that an initial allocation is made such that tii < gi, 
for all i.) Equivalently, we can take the negative of the cost 
function to be our objective function and maximize this 
function. In order to reflect the microeconomic origins of our 
optimization algorithms, we adopt this latter problem formula- 
tion and refer to the objective function as the utility of the file 
allocation. 

U=Utility= -C= -C Ci+ 
;EN ( A) 3. C2) 

IV. DECENTRALIZED ALGOFUTHMS FOR OPTIMAL FILE 

ALLOCATION 

In this section, we present and examine three decentral- 
ized algorithms for optimally allocating the file resource. All 
three algorithms are variations on the resource-directed 
approach discussed in Section II; they differ primarily in the 
amounts and structure of the communication and computation 
required, and in their convergence speeds. 

A. A First Derivative Algorithm 
The first algorithm is closely based on Heal’s [14] norma- 

tive model of economic planning and is essentially the 
algorithm first derived from [ 141 in [ 151. Assume some initial 
allocation (xi, . * . , xn) of the file resource, where CicNXi = 
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final (optimal) file allocation but will play an important role in 
determining the convergence speed of the algorithm. 

The algorithm is iterative in nature and consists of a local 
computation followed by a communication step. Each node i 
first computes its marginal utility (i.e., the partial derivative of 
the utility function with respect to Xi), evaluated at the current 
allocation. These n individual marginal utilities are then used 
to compute the average system wide marginal utility. This can 
be done by having all nodes transmit their marginal utility to a 
central node which computes the average and broadcasts the 
results back to the individual nodes or each node may 
broadcast its marginal utility to all other nodes and then each 
node may compute the average marginal utility locally. (In a 
broadcast environment, e.g., a local area network, these two 
schemes require approximately the same number of messages 
and thus the second scheme would be more desirable.) Upon 
receiving all the marginal utilities, the node (or nodes) checks 
to see if the algorithm termination criteria have been met. If 
so, the procedure stops and, as discussed below, the resulting 
allocation is optimal. 

If’the termination criteria are not met, the file resource is 
reallocated in such a way as to proportionally increase the 
amount of file resource allocated to nodes with a marginal 
utility that is above average and decrease the amount of file 
resource allocated to a node with a below average marginal 
utility. Note that, intuitively, the algorithm simply serves to 
iteratively reallocate portions of the file resource to those 
nodes where the increase in utility (decrease in cost) will be 
greater. 

1) Algorithm Statement: A more precise statement of the 
algorithm is now given; the notation LI,’ is used to denote 
dU(XIy ” *y Xn)/dXi. 

1. Initialization. An arbitrary feasible allocation Xi, i E 
N, is made. 

2. Iteration. 
DO a) Each node i E N calculates UC evaluated at the 

current allocation and sends Vi’ and Xi to all nodes 
j, j # i, j E Nor to the designated central agent. 

b) Each node i E A (or the central agent) computes its 
change in allocation by 

, vi E A (3) 

where a! is the stepsize parameter and A is the set of 
nodes described below. vi @ A, AXi = 0. 

C) Eachnodei E A, setsxi = Xi + AXi+ 
UNTIL IV; - CJ,!l c e, vi, j E A. 

In the above algorithm, we refer to the term which scales the 
difference between the average marginal utility and an 
individual marginal utility as the stepsize parameter; in this 
case, the stepsize parameter is simply the constant (Y. In 
Theorem 3 in Appendix B, we derive bounds on the size of cz 
to guarantee convergence of the above file reallocation 
process. The construction of the set A (shown below) is 
required to ensure that no node’s allocation goes below zero as 

1. The particular initial allocation selected will not affect the a result of step c) and that nodes receiving a zero allocation 
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Fig. 2. Access cost versus iteration number for the first derivative algorithm. 

have below average marginal utilities. Typically, A is the full 
set of nodes, N. 

/* Algorithm for computing the set A* at each iteration/ 
i> For all i, sort U;). 
ii) Set A ’ = { i 1 node i has largest U; }. 
iii) Do step iv) for each j, j 6 A ’ in descending 

order of Uj’ . 
iv) If j would receive a positive allocation Xj as a 

result of the reallocation defined by (3) 
above with A = A’ U {j}, then set A’ = 
A’Uj. 

v) Set A = A’. 

2) Algorithm Properties: Optimality, Feasibility, Mono- 
tonicity, and Convergence: The above algorithm has several 
properties that make it particularly attractive for file resource 
allocation in a distributed environment. The first property is 
that when the algorithm converges, (i.e., au/ax, = au/ax, 
Vi, j E A), the necessary conditions for optimality have been 
satisfied; a proof of this property can be found in [ 141. 
Although these conditions are also satisfied by local optima, 
local minima, and points of inflection, the utility function in 
(2) has no such points and we need only establish whether the 
resulting allocation results in the global maximization or 
minimization of utility. As we will see shortly, the above 
algorithm results in a strictly monotonic increase in utility 
and thus, we can be assured of a globally optimum allocation. 

Another important property of the algorithm (Theorem 1 in 
Appendix B) is that it maintains a feasible file resource 
allocation (CiENXi = 1) at each iteration. Thus, the algorithm 
can be terminated prematurely (before convergence) and the 
resulting file allocation will be feasible (i.e., the system will be 
operational, although its performance would not be optimal). 
The third important property is that as a result of each 
iteration, AU > 0, that is, the systemwide utility function (2) 
monotonically increases as a result of each iteration, except 
when the conditions necessary for optimality have been 

satisfied. Thus, until the algorithm has converged, the cost 
associated with the file allocation computed as the result of the 
kth iteration is strictly less than the cost associated with the 
file allocation computed at the (k - 1)st iteration. This 
property is established in Theorem 3 in Appendix B. 

The final property is that for sufficiently small values of the 
stepsize parameter, in this case cr, the algorithm can be shown 
to converge to the optimal file allocation. A proof of 
convergence, initially due to Heal [14] holds for the case of 
infinitesimally small values of (Y. In Theorem 3 in Appendix 
B, we establish an upper bound on the size of a discrete Q! 
which guarantees convergence. 

3) Experimental Results: Fig. 2 plots the overall cost of the 
computed file resource allocation as a function of the iteration 
number for the first derivative algorithm in the network (from 
[24]) shown in Fig. 1. 

In this experiment, the individual link costs were all taken to 
be0.024,K = 1,~ = 1.5, Xi = 1.0/n, vi = 1 *a*, n, and 
the initial allocation was xi = 1 .O and Xi = 0.0, vi 2 2. E was 
chosen such that all the partial derivatives were within one 
tenth of one percent of each other at convergence (a very 
stringent convergence criteria). Minimum hop routing was 
used for determining the cost of routing accesses between 
nodes. The lower curve in the figure is for executing the 
algorithm with Q! = 0.1 and the upper curve is for (Y = 
0.0005. The optimal cost without fragmentation is also shown. 

The figure illustrates several important aspects of the 
algorithm. First, the figure demonstrates that fragmenting the 
file resource results in a considerable cost decrease over the 
integer allocation case. Second, the figure clearly shows the 
monotonic cost decrease achieved by the algorithm and 
demonstrates that the algorithm can converge upon the optimal 
allocation in a small number of iterations. 

The figure also demonstrates, however, the importance of 
selecting an appropriate value of (Y. For example, with a = 
0.1 only 36 iterations were required until all partial derivatives 
were within one tenth of one percent of each other, while with 
(Y = 0.0005, over 7000 iterations were required. In the 
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Fig. 3. Convergence times as a function of (Y. 

following subsection, a second derivative algorithm is studied 
which results in rapid convergence over a significantly wider 
range of stepsize parameter values. 

B. A Second Derivative Algorithm 
Intuitively, it should be possible to improve the convergence 

behavior of the previous algorithm by using a variable stepsize 
parameter [3] that is sensitive to the current allocation and 
shape of the utility function rather than the constant value of CY 
in (3). As shown in Appendix A, the gradient algorithm of 
Section IV-A-l can be shown to result from optimizing a first- 
order approximation of the change in the utility function (2). 
An optimization algorithm based on a second-order approxi- 
mation of (2) permits each node to scale its stepsize parameter 
by a different amount at each iteration. The additional 
overhead incurred by this algorithm is the computation and 
communication of this second derivative information. 

I) Algorithm Statement: A more precise statement of the 
algorithm is now given. 

1. Initialization. An arbitrary but feasible allocation Xi, i 
E N, is made. 

2. Iteration. 
DO 1. Each node i E N calculates U; and the inverses of 

the second partial derivatives, ki = l/ ( a2U/ax: 1, 
evaluated at the current allocation and sends Vi’, 
ki, and Xi to all nodes j, j # i, j E N or to the 
designated central agent. 

2. For each node i E A [where A is the same set as 
before except that (4) is used in step iv)] the change 
in its file resource allocation is given by 

AXi= ski 
( 

U/ - 
XieAkiUl 

CieAki > 
(4) 

3. The current allocation for each node i E A is 
updated: Xi := Xi + AXi 

UNTIL 1 UC - U; 1 c E, vi, j E A. 

In Appendix B, it is shown that the second derivative 
algorithm (4) also maintains feasible allocations and produces 
strictly monotonic increases in utility and again determines a 
bound on the constant CY such that the discrete second 
derivative algorithm provably converges. 

2) Experimental Results: Fig. 3 compares the number of 
iterations for convergence as a function of the constant o for 
the first and second derivative algorithms and clearly demon- 
strates the superiority of the second derivative algorithm. 
(With the exception of p, the network parameters are identical 
to those in Section IV-A-3.) For example, with p = 1.5, X = 
1.0, fewer iterations are required by the second derivative 
algorithm and the algorithm converges over a much wider 
range of CX. Perhaps even more importantly, the bound on CY 
derived in Appendix B is such that it is a relatively simple 
matter to choose a practical value of CY which will result in a 
guaranteed (and relatively rapid) convergence. 

The third curve in Fig. 3 shows algorithmic convergence 
with p = 1 .l and X = 1 .O. Note that for these parameter 
values, the utility function (2) is quite steep and yet the 
algorithm still demonstrates rapid convergence. The corres- 
ponding behavior of the first derivative algorithm (not shown) 
was considerably worse, at best requiring 241 iterations and 
again being very sensitive to the value of CY chosen. 

Finally, Fig. 4, compares the convergence behavior of the 
above algorithm (algorithm A 1 in Fig. 4) to the performance 
of an alternate second derivative algorithm (A2 in Fig. 4) 
derived from an approach used in [3] and [13] for optimizing 
routing assignments in computer communication networks. 
Note that the algorithm of (4) is the more stable of the two with 
respect to both changes in cx as well as the shape of the utility 
function (as determined, in this case, by the service rate p). 
We conjecture that this results from the fact that for larger 
values of CY (where faster convergence is achieved), the 
reallocation mechanism derived from [3] and [ 131 makes a 
positive reallocation to just one node at each iteration (that 
node with the highest marginal utility) and the node receiving 
this positive reallocation will change from one iteration to the 
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Fig. 4. Comparision of convergence behavior of two second derivative algorithms. 

next. The algorithm under study in this paper, however, 
makes a more balanced reallocation at each iteration. 

C. A Pairwise Interaction Algorithm 
During each iteration of the previous two algorithms, all 

nodes perform a simple gradient calculation (in parallel) using 
local information followed by a networkwide exchange of 
information. If all partial derivatives are reported to a central 
agent, O(n) messages are required at each iteration; if partial 
derivatives are broadcast to all nodes, O(n*) messages are 
required in a nonbroadcast environment. Since in many cases, 
the communication overhead may dominate the time required 
by each iteration, it is of interest to investigate algorithms 
which decrease this communication overhead while incurring 
only a slight increase in the computation (number of iterations) 
required at each node. 

The third algorithm studied is based on localized exchange 
of gradient information among neighbors, a problem also 
considered earlier in [15] in which a symmetric communica- 
tion structure among nodes was assumed. In this algorithm, 
the iterative process is refined into major and minor 
iterations. At each minor iteration, the nodes in the network 
are paired according to a pairing relation (see below). Each 
pair of nodes then computes a pairwise reallocation based on 
their difference in marginal utilities. Several minor iterations, 
each governed by a pairing relation, are performed sequen- 
tially and constitute a major iteration. We note that numerous 
pairs may proceed concurrently with their pairwise exchanges 
and that considerable asynchrony may thus be achieved. We 
now define the following terms: 

@--an unordered pairing relation, 6 c N x N, such that 
if (i,, i2), (i3, i4) E 6’ then il # i2 # i3 # i4. Stated more 
simply, each node must belong to at most one pair. 

G-the number of minor iterations in a major iteration. 
9X-a major iteration-a sequence of t? pairing relations, 32 

= (61, @2, -*-> (Pl), each of which defines a minor 
iteration, and such that for any pair of two distinct nodes 

(il, id E N X N, (il, i2) E (‘Jlrjr&‘j)+, the 
transitive closure of the union of all the pairing 
relations. This restriction ensures that portions of the 
file can eventually be transferred between any two nodes 
in the network given a sufficient number of iterations. 

A neighbor of a node i is a node j such that (i, j) E 6 for at 
least one 6 E 3K. 

The pairwise algorithm can be derived mathematically 
following the same arguments as those presented in Appendix 
A for the previous two algorithms. We construct the sequence 
of minor iterations by solving t’ problems of the form 

max AU 

subject to AXi + AXj = 0, v(L.0 E @ k  

for each pairing relation ~3’~ E 92, k = 1, * * * , t’. The 
resulting pairwise reallocation process at the kth minor 
iteration can be shown to be 

akikj 
AXi=- k,+ k. <u; - u;> v(i,j) E @ k  (5) 

1 J 

where a! is again a constant and ki = l/) a*U/ax: 1. Thus, at 
each minor iteration every pair of nodes in the pairing relation 
performs an exchange of file resource according to (5). Note 
that the algorithm requires communication only between direct 
neighbors. 

A sequence of minor iterations corresponding to a major 
iteration is executed and the process is repeated until conver- 
gence. The termination criteria are identical to those in our 
previous algorithms but are slightly more complicated to 
implement in practice. Periodically, all nodes must be polled 
to determine whether their marginal utility equals that of each 
of their neighbors (assuming both have a nonzero allocation). 
If this condition is true for all nodes, the algorithm terminates 
since by the transitive closure property, it must be true that the 
nodes have equal marginal utilities, the necessary condition 
for an optimum. 
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Fig. 5. Access cost versus iteration number for the painvise algorithm. 
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Fig. 6. Convergence time comparison of pairwise and second derivative algorithms. 

I) Experimental Results: The pairwise algorithm was 
studied using the same network parameters as in Sections IV- 
A-3 and IV-B-2 and the three pairing relations-@, = { (1,2), 
(5,6), (7, Q (3, 1% (4, 91, (15, 1% (17, 1% (12, 13), (149 
W}, 62 = {@,4), (1, 3), (6, 7), (8, 13)s (12, 14), (11, 13, 
(9, 17), (10, 16)}, 6’3 = ((1, 8h (2, 5)s (3, 7), (9, 1% (14, 
15), (13, 18)s (17, 1% (10, 16)). 

Fig. 5 plots the file resource access cost as a function of the 
number of minor iterations and shows the same convergence 
behavior as the previous two algorithms: a rapid performance 
increase to a region around the optimum in relatively few 
iterations and then a slower approach towards the optimum. 
We observed, however, that when e is very small, the pairwise 
algorithm caused small portions of the file to thrash from one 
node to another during the final approach to the optimum, 
resulting in longer convergence times. For these studies, E was 
thus chosen so that the convergence criterion was that the 
partial derivatives be within five percent of each other. In this 

case, the allocation upon which the algorithm converged was 
insignificantly different from the true optimal allocation. 

Fig. 6 plots the total number of (minor) iterations required 
for convergence as a function of (Y for the second derivative 
algorithm and the pairwise algorithm. Note that although the 
pairwise algorithm requires up to twice as many iterations to 
converge, each iteration requires only a constant order of 
communication (due to the pairwise communication structure 
of the algorithm) rather than the O(n) or O(n*) communica- 
tion required by the second derivative algorithm. This would 
indicate that a pairwise algorithm would perform well in all 
but the smallest of distributed systems. 

Finally, with pairwise interaction, it now becomes practica- 
ble to have each set of paired nodes search for a more effective 
value of 01 during an iteration. For example, let (Y, be some 
initial (fixed) small value for CY and let the subscript m be 
defined such that r/i = min( UC , U; ) for two paired nodes i 
and j. If 1 AXi 1 = 1 aX, ( is the amount of resource exchanged 



KUROSEANDSIMHA:MICROECONOMICAPPROACHTORESOURCEALLOCATION 713 

between nodes i and j at the current value of (II, then define the 
endpoints of a line search to be 

lower limit = min 

upper limit=max (oC, &) 

During an interaction, each interacting pair of nodes may then 
conduct a binary search of a predetermined number of 
iterations within this interval to attempt to locate a value of ff 
that results in a one-step reallocation (5) which maximizes, the 
sum of the utilities of nodes i and j. Our simulation studies (not 
reported here) have shown that using even two iterations of 
this process may significantly accelerate convergence. 

V. DISCUSSION 

Having examined three decentralized algorithms for allocat- 
ing a file resource, we now discuss several issues relating to 
these algorithms. 

Generalizations: Let us first consider extending our pre- 
vious formulation of FAP to more general file resource 
allocation problems. Different costs for queries and .updates 
can be easily taken into account by splitting the cost function 
into two separate costs (one for processing updates and one for 
processing queries) in (2) and weighting these costs appropri- 
ately. Different access processing rates can also be trivially 
incorporated by replacing the p in (2) by the individual pi’s 
Note that alternate queueing models (e.g., such as M/G/l 
queues) can be directly used to model the access generation 
and service mechanisms without affecting the feasibility or 
monotonicity properties of the algorithm, although the conver- 
gence criteria on the size of (Y would have to be established for 
these new objective functions. 

In the case of a single copy of A4 multiple distinct file 
resources, the utility function can be easily extended by 
introducing variables for additional resources, xj, j E { 1 * * * 
M}. We may now define xi as the fraction of file resource j 
allocated to node i, define XJ as the access rate to this resource, 
and redefine the objective function using these variables in a 
straightforward manner. Unfortunately, the extensions for 
multiple copies of a file resource are not as simple. In the 
single copy case, knowing the fraction of the resource 
allocated to a node was sufficient to determine the rate at 
which it would receive access requests from the other nodes in 
the system. In the most general case of multiple copies, the 
contents (records in the case of tile allocation, or files in the 
case of file system allocation) of the fraction of file resources 
allocated to a node must be considered in determining these 
rates. 

One possible solution to this problem is to impose additional 
structure onto the system. In particular, we may order the 
network nodes into a unidirectional virtual ring with copies of 
the file laid out contiguously around the ring. If each node is 
constrained to direct its accesses in a given direction along this 
virtual ring, a node may easily determine the rate at which it 
will receive accesses. Our experiments have indicated, how- 
ever, that this problem formulation may result in nonmono- 

tonic changes in the cost function at successive iterations, 
particularly as the algorithm nears convergence. One way to 
mitigate these effects is to decrease the value of (Y, although as 
(Y is decreased, the number of iterations needed to converge to 
within a region around the optimum will increase. 

Roundoff Analysis: In the previous discussion, it was 
assumed that a file resource is an infinitely divisible resource. 
In practice, however, the file resource may only be broken on 
atomic boundaries (a record in the case of a file or a file in the 
case of a file system). Thus, the real-number fractions 
determined as a result of the optimization process will have to 
be rounded so that the file resource will fragment at atomic 
boundaries. 

To provide a worst case analysis of the error introduced by 
this process, let xf be the rounded fraction for node i. Then ) Xi 
- x( I is the magnitude of the roundoff error for each i, and 
the error in the overall resulting utility can be approximated to 
first order by AU,, = CiENUI /Xi - X( I. When each fraction 
is rounded to the nearest atomic unit boundary, the error in 
that particular fraction will be less than one atomic unit. If 
there are R atomic units in a resource, the maximum value of 
(Xi - XI ( is l/R, th e worst case error in utility is given by 

AU& c U, 
n iEN 

and the worst case error tends to zero as the number of records 
tends to infinity. Our experiments with the network of Fig. 1 
resulted in a tive percent roundoff with a 20 atomic-unit 
resource, decreasing to a 1.5 percent error with 60 units and to 
less than 1 percent error for a resource with a hundred atomic 
units. 

Integration with Higher Level Mechanisms: In a distrib- 
uted system, the layer of software that handles any resource 
typically serves higher level layers that, for consistency, may 
require operations on data to have properties of atomicity and 
serializability [12]. When fragmentation of a resource is 
permitted, the effects of such. fragmentation on these higher 
level mechanisms should be considered. 

If locking is required on the basis of atomic units, then 
fragmentation incurs no additional overhead for supporting the 
higher level mechanisms. However, if an entire file resource 
needs to be locked and is fragmented over several nodes, 
additional message overhead is required to ensure the serial- 
izability of concurrent transactions, to avoid deadlock, and/or 
preserve atomic@. Thus, there do exist situations in which 
file fragmentation is not desirable. However, if these opera- 
tions are relatively infrequent, fragmentation provides an 
attractive alternative to integral file allocation policies from 
both a performance and reliability point of view. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented several algorithms which 

provide simple, decentralized procedures for distributing a 
resource in a distributed system. The problem of file resource 
allocation was studied in order to provide a context in which 
these algorithms could be considered. These algorithms were 
developed using models of resource allocation previously 
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developed within the field of mathematical economics and 
were shown to have the attractive properties of maintaining 
feasibility, strict monotonicity, and fast convergence. These 
properties were both formally established and studied through 
simulation. 

The importance of monotonicity arises in distributed operat- 
ing sytems where successive iterations of the algorithm can be 
run at freely spaced intervals (depending on load conven- 
ience), producing at each step a better allocation. One can 
easily envision a system where the algorithm is run whenever 
the system is lightly loaded in order to gradually improve the 
allocation. 

Our algorithm was based on the use of an underlying model 
to predict System performance for a given resource allocation. 
The possibility also exists of using observed measurements of 
gradient information [5] to control the reallocation process. 
We note, however, that there will be uncertainty associated 
with these measurements and thus stochastic approximation 
techniques will be required in the optimization process. We 
believe this is an important problem rind a promising direction 
for future research. 

Finally, we note that microeconomics could play an 
important role in the evolution of distributed operating 
systems. The benefits of controlling resource usage in a 
distributed computer system using microeconomic methods 
are many. The methods are well understood and tested 
already. Simplicity in implementation is achieved by treating 
nodes as individual agents in an interacting society. We also 
believe that with the use of mechanisms such as pricing, 
intermediate and public goods, many factors affecting the 
usage of the resources can be easily integrated into the overall 
scheme. Such an approach holds great promise in that it 
provides a simple and decentrsilized framework which may 
reduce the complexity of designing and implementing the large 
distributed systems of the future. 

APPENDIX A 

THEFRAMEWORRFORGRADIENTALGORITHMS 

The approach towards designing our algorithms is based on 
the gradient projection method [19] with the addition of 
constructing the feasible set A. This technique has been 
previously employed in the area of computer networks [3] and 
general resource allocation [ 151. An iterative resource alloca- 
tion algorithm is defined as a list of expressions Ax;, one for 
each node in the distributed system (i.e., in the same manner 
as (3) defines an algorithm). We obtain a particular algorithm 
by expressing the change in utility AU (resulting from a 
reallocation of file resources) as a function of the individual 
Ax;‘s and then solving the problem 

maximize: AU= c UC Ax;+ A ,x UF Axf 
iEN IEN 

+; ,-& U;Ax;+.. (6) 
*CA/ 

maximization problem, we obtain expressions for Ax; and 
consequently, an algorithm. Note that there are no cross 
partial derivatives a2U/axjxj in the Taylor series expansion of 
AU. This is true of the file resource allocation cost model 
described earlier but need not be the case with other utility 
functions. 

When only limited derivative information is available, an 
iterative process is generated by solving the above maximiza- 
tion problem. For example, the second derivative algorithm 
studied in this paper is obtained using a second-order Taylor 
expansion of AU and solving 

maximize c Uf AXi + f 8 UF AX: 
iEN IEN 

(7) 

subject to the constraint Ci,,&xj = 0. Note that the inequality 
constraints Xi 1 0 are enforced by the computation of the set 
A. Using the Lagrange multiplier technique to solve for each 
individual AXi, we obtain the second derivative algorithm of 
(4)) where the stepsize parameter CY is used in discretizing what 
would otherwise be a continuous process. Note that the first 
derivative algorithm may be obtained by taking the second- 
order Taylor expansion in (7) and setting ki equal to unity. 

APPENDIX B 

FEASIBILITY AND MONOTONICITY 

The theorems below demonstrate that the algorithms studied 
in this paper maintain a feasible file resource allocation at each 
iteration while improving, monotonically, the value of the 
utility. Upper bounds are also obtained for a value of a! which 
guarantees convergence. These theorems are proved for the 
second derivative algorithm; at the end of each proof we 
describe briefly how the proofs may be modified for the first 
derivative and pairwise algorithms. Theorems 1 and 2 below 
were proven for the first derivative algorithm in [14]; we 
follow this approach in establishing the theorems for the 
second derivative and pairwise exchange algorithms. 

Theorem I: If the initial allocation of the file is feasible, 
i.e., EigNXi = 1, then each iteration of the algorithm results in 
a feasible distribution of the file resource. 

Proof: To prove that a feasible allocation is maintained 
we show that the sum total change in allocation remains zero 
[14]. From (4), 

z AXi= C ski (U, -“~~~k~) 
EN iEA 

=C akiU/-zaki ( “~~~k~) 
iEA IEA 

CiEAki 
= C akiU;- CakjU,( m, 

IEA jEA 

=o. 
Setting each ki = 1 provides a proof of feasibility for the 

subject to the given feasibility constraints. In solving the above first derivative algorithm. For the pairwise algorithm, for each 



KUROSE AND SIMHA: MICROECONOMIC APPROACH TO RESOURCE ALLOCATION 715 

(i, j ) E 6 we have AXi + AXj = 0 and hence feasibility is 
maintained. 

Theorem 2: When the changes in allocation are infinitesi- 
mally small, the second derivative algorithm results in a 
strictly monotonic increase in utility except when the neces- 
sary conditions for optimality are satisfied. 

Proof: Following [ 141, we show that the rate of change 
for a first-order approximation of an arbitrary utility function 
is greater than zero, except when the necessary conditions for 
optimality are satisfied. 

CJ=C U(ki UC- 
CjcAkjU,! 

iEA CjEA kj > 

= c ki(u;)2A”i;ki;)2 

iEA rEA I 

= C ki( Ul)“-2 
(CiEAkiUI)* (CicAkiUI)* 

iEA CiEAki + CicAki 

=C ki(Uc)*-2 

IEA 
c, k. 

JEA J 

+ ( x;;Ezky)2) 

CjcAkjU,! 2 
= u:- C, k, 

/CA J > 

which is greater than zero, with equality when all the Vi’ are 
equal. Note that we require that Vi, ki # 0 for a second 
derivative algorithm to be used. Setting each ki # 1 results in 
a proof of monotonicity for the first derivative algorithm [ 141. 
In the case of the pairwise algorithm, we note that each pair of 
nodes behaves like a two-node network executing the second 
derivative algorithm. 

Also note that in the proof of Theorem 2, the following 
identity, which will be used shortly, was also established: 

= (8) 

Although the above theorem holds for arbitrary utility 
functions, it essentially requires that CY be infinitesimally 
small. In the theorem below, we derive a more realistic upper 
bound on (Y for the particular problem of file resource 
allocation. 

of CY, depending on the parameters of the problem, for which 
each iteration results in strict monotonic increase in utility, 
except when the algorithm termination conditions hold. 

Proof (first and second derivative algorithms): Our goal 
is to determine conditions on the value of CY under which the 
overall change in systemwide utility AU will be greater than 
zero as a result of the reallocations {AXi} made at each 
iteration. We begin by expressing the overall change in utility 
as the result of each iteration as a Taylor series: 

AU=EieAU:AXi+h CiEAU;(AXi)* 

+&Ei,,U~(Ax,)l+“‘. (9) 

Noting that 

aflu TI! x  
( > 

n-2 a*u 
-=- -9 vn=2, 3, *** 
ax; 2 /L-hi ax; 

(9) may be rewritten: 

Au= C UlAXi+i 
IEA 

+(2$)‘+(-!!5)‘+...). (10) 

In order for the series within the second sum to converge, we 
must have 

XAXi I I - <l 
/Ja-AXi 

for all i. A sufficient condition to satisfy 

l+]AXi]<X 

(11) 

this inequality is 

(12) 

for each i. Recall from (4) that for the second derivative 
algorithm 

AXi= ski UC - 
( 

CicAkiUI 

EiEA ki > 
(13) 

and that taking ki = 1 yields the first derivative algorithm. 
Substituting (13) into inequality (12) and taking bounds on its 
components gives the following upper bound on the value of 
ct. 

CL--h CXC- 
x9 

where 

UC- 

And thus for the first derivative algorithm 

9= (Gax- Gin) + 

hK(2p - A) 

du - A)* I r-.r I I 

(14) 

Theorem 3: for the cost function of (l), there exists a value 
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and for the second derivative algorithm Rearranging inequality (15) we have 

The above bound on CY guarantees that the Taylor series 

(y maXi 1 U: kil 

2 (l-&Yq)cl 
(17) 

expansion of AU converges. However, we must still ensure 
that AU > 0. By (8), the first term of the series in (10) is 

which, by (1 l), must also be greater than zero. We thus have 

positive and thus, a sufficient condition to ensure that AU > 0 
is 

C U;AXi>i 7 U~AX~ 
iEA IEA 

’ 

AUZ(a mm (ki)) (1 -2~~~a~j) 

u; - 
CjcAkjUi 2 

> CjeAkj * 
(18) 

which itself will hold when 
Finally, it may be easily verified that given that the algorithm 
has not converged, the sum in (18) is minimized when all 17,’ , 
I E A are equal to CicAkiUi/EieAki, 1 f i # j and UC and 
U; each lie a distance e/2 from this weighted average. We 
thus have after evaluating the various terms 

Substituting for Ax from (13) and using (8) to replace the sum 
containing Vi’ , we get after some manipulation 

2 
CX< 9, (15) 

It may be easily verified that the upper bound on (Y in 
inequality (15) is always stricter than that of inequality (14) 
and thus inequality (15) provides an upper bound on (Y that 
ensures that AU > 0. 

Finally, Theorem 4 establishes the fact that each increase in 
utility is always bounded below by some finite value. Together 
with Theorem 3 (which states that the increase in utility is 
always nonnegative) this ensures that the algorithm will not 
produce an infinite sequence of allocations which results in a 
sequence of changes in utility which become increasingly 
smaller and smaller. Since the utility of an optimal allocation 
is finite, this then guarantees that the file resource allocation 
algorithm eventually converges. 

Theorem 4: The second-order expansion of AU is bounded 
below given a fixed E and CX. 

Proof: Providing that we choose the value of a! to satisfy 
inequality (15) we have from (10) that 

ill 

121 

[31 

141 

151 

161 

F71 

181 

[91 

1101 

is nonnegative. Substituting for hxi from (13) and rearranging 
terms using Theorem 2, we get 

(16) 

1131 

1141 

1151 

1161 

u71 

1181 
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