
684 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

Analysis and Implementation
of Hybrid Switching

Kang G. Shin, Fellow, /E€€, and Stuart W. Daniel

Abstract-The switching scheme of a point-to-point network determines how packets flow through each node, and is a primary
element in determining the networks performance. In this paper, we present and evaluate a new switching scheme called hybrid
switching. Hybrid switching dynamically combines both virtual cut-through and wormhole switching to provide higher achievable
throughput than wormhole alone, while significantly reducing the buffer space required at intermediate nodes when compared to
virtual cut-through. This scheme is motivated by a comparison of virtual cut-through and wormhole switching through cycle-level
simulations, and then evaluated using the same methods. To show the feasibility of hybrid switching, as well as to provide a
common base for simulating and implementing a variety of routing and switching schemes, we have designed SPIDER, a
communication adapter built around a custom ASIC called the Programmable Routing Controller (PRC).

Index Terms-Virtual cut-through switching, wormhole routing, hybrid switching, routing controllers, parallel and distributed
multicomputers.

1 INTRODUCTION
HE effectiveness of a parallel or distributed system is T often determined by its communication network. Many

distributed and parallel applications require the network to
provide low latency communications in order to operate
efficiently, while others may require the network to handle
a large amount of traffic. In addition, the burden placed on
the host to handle communication-related activities should
be minimized.

One of the key factors that determines how well a point-
to-point network meets applications' requirements in these
areas is its switching scheme(s). Wormhole [l] and virtual
cut-through 121 switching are two common schemes for
forwarding packets through a point-to-point interconnec-
tion network. Both are "cut-through switching schemes
that decrease packet latencies by immediately forwarding
incoming packets to idle output links. In this paper, we
compare the impact of each scheme upon packet latency,
the maximum network throughput, and the resources re-
quired for buffering packets at intermediate nodes. Based
on this evaluation, we then propose and evaluate a
"hybrid" switching scheme that combines the salient fea-
tures of both schemes.

Virtual cut-through and wormhole switching differ in
how they handle packets that cannot immediately proceed
to the next node because the appropriate output links are
busy with other traffic. Virtual cut-through switching buff-
ers blocked packets at the local node and releases the links
currently held by the packet, but wormhole switching stalls

The authors ure with the Real-Time Computing Luboratovy, Department of
Electrical Engineeving and Computer Science, the University of Michigan,
Ann Arbor, Ml48109-2122. E-mail: lkgshin, stuartd}@eecs.umick.edu,

Manuscript received Aug. 18,1990; vevised Oct. 29,1995. A subset ofthis paper
appears in the 1995 Proceedings of the International Symposium on Computer
Architecture.
For infovmation on obtaining reprints of this article, please send e-mail to:
transcom@compLtter.oug, and veference IEEECS Log Number C96047.

the packet in the network, while holding all links the packet
has acquired. Since packets never buffer at intermediate
nodes, nodes only handle packets destined for them. Stall-
ing the packet in the network, however, consumes network
resources to "store" the packet, effectively dilating the
packet's length. Virtual cut-through, on the other hand,
minimizes the network bandwidth consumed by packets,
but uses memory and control resources at intermediate
nodes to store blocked packets.

In this paper, virtual cut-through and wormhole switching
are shown to have their strengths and weaknesses. Virtual
cut-through switching provides better throughput and lower
latencies at heavy loads at the cost of buffering blocked in-
transit packets, while wormhole switching only requires a
few small flit buffers in the router and completely isolates
nodes from in-transit packets. One alternative to improving
wormhole switching's performance at higher loads would be
to selectively buffer blocked packets; this would free some
network resources sooner while still isolating nodes from
much of the in-transit traffic.

Virtual cut-through and wormhole switching are both
cut-through switching schemes, but their performance may
differ drastically under different traffic loads. For low traf-
fic loads, the latencies of both schemes are almost identical.
This is because in a lightly-loaded network the probability
of blocking is very small and the latency is then determined
primarily by the length of the packet and the link transmis-
sion time. As the traffic load increases, however, the prob-
ability of blocking increases, as does the likelihood of
blocking other packets. Consequently, networks that use
wormhole switching generally saturate from contention
well before they exhaust their bandwidth [3], [4]. The ef-
fects of this contention can be reduced by increasing the
number of virtual channels per physical link [4]. Since ei-
ther wormhole or virtual cut-through switching may yield
shorter packet latencies, depending on the network traffic

0018-9340/96$05 00 0 1 9 9 6 IEEE

mailto:stuartd}@eecs.umick.edu

SHIN AND DANIEL: ANALYSIS AND IMPLEMENTATION OF HYBRID SWITCHING

and the number of hops the packet must travel, it is ad-
vantageous to support both switching schemes in order to
adapt to a wider range of circumstances. Furthermore, a
network which can dynamically switch from one scheme to
the other can respond to the offered traffic load and the
needs of the system's applications.

To address these tradeoffs, Section 4 introduces and
evaluates a hybrid switching scheme which balances the
use of network resources against the use of memory re-
sources for storing blocked packets. This hybrid scheme
decides whether to buffer or stall blocked packets based on
a field within the routing header; this field identifies the
number of links the packet can hold while stalling in the
network. If this threshold is exceeded, the blocked packet
buffers.

To demonstrate the feasibility of supporting multiple
schemes on a single platform, Section 2 describes SPIDER, a
front-end communication interface that supports a wide
range of routing and switching schemes. In Section 3, we
compare the performance of virtual cut-through and
wormhole switching operating on SPIDER. This compari-
son focuses on three metrics: the mean communication la-
tency, the memory resources required by each scheme, and
the maximum achievable throughput of the network. In
Section 4, we introduce hybrid switching and evaluate it
relative to both virtual cut-through and wormhole switch-
ing. The paper concludes with Section 5, which summarizes
our main contributions and future directions.

2 A FLEXIBLE ROUTER ARCHITECTURE
In order to isolate and take advantage of the differences in
performance between cut-through switching schemes, we
have developed SPIDER (Scalable Point-to-Point Interface
DrivER) [51, 161, a communication adapter that impleiments
multiple switching schemes. SPIDER is microprogramma-
ble with a wide range of routing and switching schemes,
providing an ideal platform for experimenting with and
comparing routing and switching schemes.

2.1 Existing Router Atchitectures
Several routers that use wormhole switching have been
developed [l], [7], [SI, [9]. In general, the design of these
routers has emphasized speed and simplicity, with the
routing algorithm hardwired into the system. Each router
only supports a small number of links, allowing a crossbar
to be used to transfer data without internal blocking. Fur-
thermore, the short internode distances allow flow control
and parallel internode links to be efficiently implemented.
The Vulcan Switch chip [lo] uses an interesting variation,
by adding a central dynamically allocated queue to the
switching element. This queue improves throughput by
buffering "chunks" of packets in the blocking switch, rather
than buffering the fIits in several different switches and
blocking those channels.

Virtual cut-through routers typically provide better
throughput under heavy loads at the cost of increased
buffer requirements. The Mayfly Post Office 1111 uses sev-
eral (hardwired) routing algorithms and provides an inter-
nal buffer for packets that cannot cut through, but only

-

685

supports virtual cut-through switching. It uses a sha:red
internal bus to transfer packets between ports and alsc to
and from the buffer pool. The Chaos router [12] also pro-
v:ides an internal buffer for packets, but this buffer is much
smaller-the router deroutes packets to avoid blocking or
dropping them.

2.2 SPIDER
SPIDER is designed to support multiple switching schemes,
including store-and-forward, virtual cut-through, and
wormhole switching. Supporting the first two schemes re-
quires that the node be able to buffer several packets si-
multaneously so that packets can be received without
blocking. SPIDER provides this using a demand-driven,
time-multiplexed memory interface that shares memory
bandwidth between all active injection and reception ports.
Similarly, cut-through switching schemes require a high-
bandwidth switch for transferring data between incoming
and outgoing channels. In SPIDER, this is provided by a
demand-slotted, time division-multiplexed (TDM) bus with
bandwidth equal to the physical links. Access to the bus is
regulated by a binary priority-tree arbiter [131,[141.

2,.3 SPIDER Components
As shown in Fig. 1, SPIDER manages bidirectional commu-
n.ication with up to four neighboring nodes, with three
virtual channels [4] on each unidirectional link. The pro-
g,rammable routing controller (PRC), a 256-pin, 0.9 x 0.8 cm
custom integrated circuit, is the cornerstone of SPIDER [5],
[IS], [13]. The 12 Transmitter Fetch Units (TFUs) control
packet transmission, while the four microprogrammable
routing engines coordinate packet reception. Each routing
engine performs low-level routing and switching op'xa:
tions for a single incoming link, with the three virtual
channels sharing the custom processor. The Network Irrter-
face Transmitters (NI TXs) and Network Interface Receivers (NI
RXs) perform the necessary interleaving of virtual channels
to and from the physical links, on a word-by-word basis.'
The network interface (NI) performs the media access and
flow control on four pairs of AMD TAXI chips [15]; these
TAXI transmitters and receivers control the physical links,
providing a low-cost fiber-optic communication fabric. Al-
ternately, the NI's external protocols support direct, parallel
connection of transmission to reception ports.

l r

I)

Fig. 1. SPIDER.

1. To reduce the package size of the PRC, a pair of outgoing links sh,ires a
single set of pins; internally, the PRC operates at 30 MHz, twice the link
speed, to serve each outgoing link at its full rate.

686 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

SPIDER treats outbound virtual channels (NI TXs) as in-
dividually reservable resources, allowing the device to
support a variety of routing and switching schemes
through flexible control over channel allocation policies.
The reservation status unit handles requests from arriving
packets to reserve or relinquish NI TXs, providing low-level
support for both connection-oriented and connectionless
transfer on each virtual channel. An arriving packet can
invoke a variety of policies for selecting and reserving out-
bound channels. Upon receiving the header bytes from the
incoming channel, the routing engine decides whether to
buffer, stall, forward, or drop the packet, based on its
microcode' and the packet's routing header. A routing en-
gine can respond to network congestion by basing its rout-
ing decision on the reservation status of the outgoing vir-
tual channels. By reserving multiple NI TXs, the PRC can
forward an incoming packet to several output links simul-
taneously, allowing SPIDER to support efficient broadcast
and multicast algorithms.

The host controls channel reservations for any packet
stored in the buffer memory by assigning the packet to a
particular TFU. The host transmits a packet by feeding this
TFU with page tags, each of which includes the address of
an outgoing page and the number of words on the page.
Likewise, the host equips each NI RX with pointers to free
pages in the memory, for storing arriving packets. The
control interface also provides read access to an event
queue that logs page-level activities on each channel.

2.4 Basic Operation
To illustrate the interaction between the host, SPIDER, and
the network, consider how a message travels from the
source node, cuts through an intermediate node, and ar-
rives at the destination node.

Transmission: When an application requests the host to
transmit a message to another node, the host disassembles
the message into multiple packets, where a packet consists
of one or more (possibly noncontiguous) pages. Using the
control interface, the host feeds page tags to the appropriate
TFU to initiate packet transmission. After reserving the NI
TX, the TFU fetches the 32-bit data words from each page.
During this memory transfer, the PRC transparently accu-
mulates a 32-bit cyclic redundancy code (CRC) for error
detection. After sending the last data word of the packet,
the TFU transmits a 32-bit timestamp, read from a counter
on the PRC, followed by the CRC; the timestamp values
facilitate clock synchronization and computation of end-to-
end packet latencies. The NI TX transmits each of these
words to the TAXI transmitter a byte at a time; the TAXI
device converts each byte into a string of bits for transmis-
sion on the serial link.

Cut-through: Packet reception begins when data arrives at
a TAXI receiver. The receiving NI RX initially forwards
data to its routing engine until it has accumulated enough
header words to make a routing decision for the packet. If
the packet is destined for a subsequent node, the routing

engine can try to forward the packet directly to the next
node by reserving an NI TX. If the routing engine is able to
establish a cut-through, the engine then sends the data it
has accumulated to that transmitter and configures the NI
RX to forward subsequent data words directly to the re-
served NI TX, bypassing the routing engine entirely. When
the packet has cleared the node, the NI RX automatically
reconfigures itself to forward the next packet header to the
routing engine.

ReceptionfBuffering: When SPIDER stores the packet at
the local node, however, the routing engine configures the
NI RX to directly buffer the packet, reaccumulating the CRC
as the data words travel to the memory interface. SPIDER
writes these words into pages in the buffer memory and
logs the arrival (and size) of each page in the PRC event
queue. At the end of the final page of the packet, SPIDER
appends the packet with a receive timestamp and logs a
packet-arrival event indicating the outcome of the CRC
check. If the packet has reached its destination, the host
reassembles the pages into a packet and the packets into a
message. Otherwise, the host schedules the packet for
transmission to the subsequent node in its route.

3 COMPARING WORMHOLE AND VIRTUAL CUT-
THROUGH SWITCHING

To more accurately compare the performance of the various
routing and switching schemes, and also to evaluate the
performance of SPIDER, we have developed a cycle-level
discrete-event simulator [13], [16]. Written in C++, this
simulator accurately models the flow of the individual
bytes of packets through SPIDER. This captures features
such as the low-level flow control, bus arbitration delays,
and microcode execution time. While the simulator does
not model the actual protocol software executing on the
host, it does capture the effects of these protocols on pack-
ets that buffer at intermediate nodes.

This section presents the results of a set of experiments
that vary the packet generation rate while holding other
parameters constant. At each node, the inter-arrival time of
packets for transmission conformed to a negative exponen-
tial distribution. Packet destinations were uniformly dis-
tributed across all of the nodes (except where otherwise
specified). The simulations also used a fixed packet size of
64 bytes.

To focus the experiments on the switching scheme, all
packets use a static, dimension-ordered routing scheme
[17]. Furthermore, most of the simulations use an un-
wrapped square mesh topology where only one virtual
channel per link is required to prevent deadlock under
wormhole switching. This allows the switching schemes to
be compared with the same number of virtual channels.

To collect the data, the network was first placed into a
steady state and data collected for 2,000 packets at each
node. For latency, the standard error of the mean is less
than five cycles for the 95% confidence interval on all traffic
loads. When the network is saturated, however, this steady
state cannot be achieved.

2. Each routing engine has a 256-instruction control store. Microprograms
for typical routing-switching schemes require about 60 to 70 instructions to
implement.

SHIN AND DANIEL: ANALYSIS AND IMPLEMENTATION OF HYBRID SWITCHING 687

3.1 Latency
In Fig. 2, the mean packet latency is shown as a function of
the link utilization, which is given as a percentage of the
maximum capacity of the networks physical links. When
the offered load is low, the average packet latency is the
same under both switching schemes. Wormhole, however,
reaches saturation under lighter loads than virtual cut-
through due to contention for channels, resulting in a dra-
matic increase in the mean packet latency. Saturation occurs
at a link utilization of 0.2 in this experiment. Other experi-
ments have shown that these trends are not significantly
affected by packet length or the topology of the network.

1500 I -~ -T ~ ~ ~ 7

-2 Virtual cut-through
A i Wormhole

1250
I

,

=.
f 750
m
m
0)

-
f 500
4

250

0 - __ ~~ __ ~, ~

0 0 0 1 0 3 0 4 0 6
Link utilization

Fig. 2. Packet delivery latencies for virtual cut-through and wormhole
switching.

3.2 In-Transit Load
While virtual cut-through can support a greater traffic load
than wormhole, it also buffers packets at intermediate
nodes. Each packet that buffers at a node consumes mem-
ory resources for its storage and control resources to proc-
ess the header. If packets are buffered within the switch
itself, the buffer space is necessarily limited in size. External
buffers (such as those used by the PRC), on the other hand,
may be much larger but are generally slower. In addition,
managing these larger buffers requires either host interac-
tion or more hardware in the router.

The relative costs of the two schemes are illustrated for a
node-uniform traffic load on an unwrapped 8 x 8 square
mesh in Fig. 3. This figure shows the average rate (in pack-
ets per cycle, per node) of packets buffering at a node using
virtual cut-through switching. This rate is composed of two
components: the “in-transit” rate and the “destination”
rate. The former is the average rate of packets that are des-
tined for other nodes buffering at a node, while the latter is
the average rate of packets buffering at a node that are des-
tined for that node. The in-transit rate is the region between
the destination rate (the lower curve) and the total rate of
packets buffering (the higher curve). At low loads, almost
all packets successfully cut through and the in-transit arri-
val rate is very low. As the load increases, the probability of
cut-through also drops, resulting in an increased in-transit

packet arrival rate. When the network is in or near satura-
tion, the arrival rate of in-transit packets surpasses the rate
of packet generation. In this case, the load on the host for
buffering and rescheduling these packets is severe.

- - ~ - - -- 0010

Packets destined for the local node
t Total packets buffered

0.008

-
-

*
Y
5 0006
m a
D
0

I

-
0.004 - a

0

0 002

0.000

/
/ I /’

+’
/’

,* _- ,.---
_-,’

__ ~

0 1 0 3 0.4 0.6
Link utilization

Fig. 3. Rate of in-transit packet arrival.

3.3 Maximum Achievable Throughput
Wormhole and virtual cut-through switching are affected
differently by packet distance. This can be directly sho’wn
by varying the average number of hops that packets travel.
This was accomplished through a hop-uniform destination
mapping, where every packet travels the same number of
hops. In order to spread traffic uniformly through the net-
work, a wrapped 8 x 8 square mesh (torus) is used with two
virtual channels per link (the minimum to prevent deadlock
under dimension-ordered routing).

Fig. 4 shows the maximum throughput (in packets per
cycle) of wormhole switching as a function of the hop count
of packets. Using wormhole switching, the network satu-
rates under a lighter link load as the packet distance in-
creases. This is due to increased contention: packets are
traveling more hops, and thus stalling more links when
blocked. This has a snowball effect: blocked packets stall
more links, and block other packets that may then block
still other links. The overall effect, therefore, is to degrade
t.he maximum achievable throughput. Virtual cut-through
switching, on the other hand, does not exhibit this behavior,
as it uses memory resources and not network resources to
stall blocked packets. Its peak throughput is dependent
upon the link load and not upon packet distance.

The maximum throughput of a network using wormhole
switching can be increased by adding virtual channels [41,
or by significantly enlarging the number of flits buffered at
each node. Adding virtual channels on each link improves
throughput by allowing packets to ”bypass” stalled pack-
ets. The primary cost is in the increased complexity of the
crossbar connecting the reception channels to the transmis-
sion channels-either the size of the crossbar must be in-
creased, or the arbitration becomes more complex 1181.
Giving each virtual channel a flit buffer large enough to
hold one packet should significantly improve throughput-

688 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

each blocked packet only stalls a single link. Similarly, buff-
ers capable of holding half of a packet's flits will prevent
blocked packets from stalling more than two links.

0.015

I -
i-

B 0012
L
1
0 a 0009

?

P

-
-
n L

0006

"_

E 0.003

.c
m

g
2

0.000
2 4

Hops

Fig. 4. Maximum throughput for wormhole switching under a hop-
uniform traffic load.

3.4 Wormhole Switching with Large Buffers
The previous discussions and results have assumed that
packets are sufficiently long, so that their "tail" of reserved
channels stretches from the current head of the packet back
to the source. By increasing the portion of the packet buff-
ered at each node, however, the length of the tail can be
reduced.

Fig. 5 shows the average packet latency for wormhole
switching with up to eight words (half of a packet) buffered
at the input of each node. This limits the maximum number
of links that a packet can hold while stalling to two. This
reduction results in a significant increase in performance-
both the average packet latency (at higher loads) and the
maximum throughput of the network are increased when
compared to wormhole switching. The "buffered" worm-
hole scheme also provides a lower average packet latency at
mid-range loads than virtual cut-through. This is due to the
design of the PRC-packets that buffer at an intermediate
node under virtual cut-through switching must be com-
pletely buffered prior to retransmission. Since packets are
still in the network with the buffered wormhole scheme,
they can be forwarded to the next node as soon as the link
comes free. The effect is also exaggerated by the disparate
speeds of the PRC's memory and network interfaces.

One major drawback to providing such large buffers for
packets at the inputs is the cost of implementing them for
larger packet sizes and higher numbers of virtual channels.
Since the cost is directly proportional to the largest packet
size permitted in the network and the number of virtual
channels on each link, the next section will introduce a hy-
brid switching scheme that uses a central (off-chip) buffer
for packets that is cheaper to implement and can be much
larger in size.

There are significant differences in the performance of
wormhole and virtual cut-through switching under differ-
ent traffic loads. Wormhole switching requires fewer buff-

1500 -
-- Virtual cut-through

Wormhole I
Wormhole(b = 8) 1250 __.

o ~ ~ ~ ~ - ~ b ~ l
00 0 1 0 3 0 4 0 6

Link utilization

Fig. 5. Average packet latency for "buffered wormhole.

ers than virtual cut-through, but its maximum throughput
is relatively limited, dependent on packet distance, and
saturates under relatively light traffic loads. At heavy loads,
virtual cut-through (as predicted) outperforms wormhole,
but the cost of buffering in-transit packets can cancel out
the performance gains. The following section presents a
hybrid switching scheme that addresses the shortcomings
of both schemes.

4 EVALUATING HYBRID SWITCHING
This section examines how hybrid switching provides a
level of performance that bridges the gap between virtual
cut-through and wormhole switching. We evaluate hybrid
switching's performance relative to these schemes using the
same metrics as the previous section.

4.1 Hybrid Switching
A "hybrid" switching scheme dynamically combines
wormhole and virtual cut-through switching, using both
network and memory resources to store blocked packets.
There are a number of potential hybrid switching schemes
that meet this requirement. To implement these schemes
efficiently, however, the switching decisions should be
based on information available in the packet header or at
the local node.

In Section 3.3, we saw that increasing the number of links
held by packets degraded the throughput achievable with
wormhole switching. One method for improving wormhole's
performance under heavier loads would be to relieve con-
tention by buffering packets that cannot advance yet are
stalling several links behind them. This scheme would avoid
the long "tails" of stalled links held by blocked packets, re-
ducing contention. Such a switching scheme would dynami-
cally combine virtual cut-through and wormhole switching
to provide improved packet latencies and a higher achievable
throughput than wormhole alone, without buffering packets
as often as virtual cut-through.

The hybrid algorithm used in the remainder of this pa-
per decides whether to buffer or stall blocked packets based
on a field within the routing header; this field identifies the
number of links the packet can hold while stalling in the

SHIN AND DANIEL: ANALYSIS AND IMPLEMENTATION OF HYBRID SWITCHING

network. If this threshold is exceeded, the blocked packet
buffers. The system can dynamically vary this threshold
depending on the packet’s needs or the current network
load by changing the initial value of this header field.

Implementing the scheme is simple: a field in the routing
header i s set to k when the packet is generated and i-hen
decremented after every hop until it reaches 0. While k > 0,
the packet will stall if blocked. Once k = 0, the packet buff-
ers when blocked. Buffering the packet resets k to its initial
value. Virtual cut-through and wormhole switching can be
viewed as special cases of this algorithm: wormhole
switching is equivalent to hybrid switching with k = 00,
while hybrid switching with k = 0 effectively implements
virtual cut-through switching.

The requirements for supporting hybrid switching are
not much greater than those for supporting wormhole or
virtual cut-through switching alone. When a router receives
a packet, it must be able to determine how many hops the
packet has traveled. If the link reservation fails, the router
can then choose to buffer the packet. Due to the reduced in-
transit load, the buffer requirements for hybrid switching
are significantly reduced compared to virtual cut-through
switching.

In the following simulations, all packets use the same
dimension-order routing as in Section 3. As before, the
simulations use a fixed packet size of 64 bytes, except
where indicated otherwise.

4.2 Latency
In Fig. 2, we saw that wormhole switching saturates from
contention well before virtual cut-through, resulting in
dramatically increased latencies. By preventing blocked
packets from holding more than k links, hybrid switching
decreases contention. The effects are shown in Fig. 6, which
compares the average packet latencies for wormhole
switching, hybrid switching with k = 1, hybrid switching
with k = 2, and virtual cut-through switching.

- I - - ~ 1 - ~ ~ _ _ _ 1 i h = O
r+ o h = l 1 ; I

- 1 /z: :: 1 : n h t y ,] I i
1

- ; I I
250 I

i
4 !

, L - , _ _ _ - - 0 3 0 4 0 6

8 d +
/

is 1000
x

I 1

2 750 i

f 500

0 0 0 1
Link utilization

Fig 6 Average packet delivery latencies for hybrid switching, com-
pared to virtual cut-through and wormhole switching

At very low loads, with a low probability of blocking,
the mean latencies of the schemes are similar. Once this
probability rises, however, hybrid switching provides

E89

lower packet latencies than wormhole switching. As h de-
creases, the network can handle a higher offered load with-
out saturating. Higher values of h will resemble pure
wormhole switching more closely-saturating at lower of-
fered loads. These trends also hold over a range of packet
sizes and network topologies.

The effects of buffered wormhole switching (as discussed
in Section 3.4) are similar to hybrid switching, as both
schemes limit the number of links a packet can hold while
blocking in the network. They differ in one main aspect-
hybrid switching may completely remove a packet from the
network prior to its destination. This is both a plus and a
dr,iwback-hybrid switching can use a large external buffer
for packets, allowing larger packet sizes to be supported. At
the same time, use of this buffer may prevent packets from
being retransmitted until they have been completely re-
ceiwed, depcnding on the router’s implementation.

Fig. 7 compares the buffered wormhole scheme with hy-
brid switching, for k = 1 and k = 2. As expected, all three
sclhemes exhibit similar performance, although buffered
wormhole slightly outperforms both hybrid schemes at
lower loads. As with virtual cut-through, this difference
may be attributed to the design of the PRC, which does not
allow packets that buffer to perform partial cut-throughs.

I

I
- t 2 1000

m
500 1
250 ~

4

0 - ~ L _ - - - - - I
0 0 0 1 0 3 0 4 0 6

Link utilization

Fig. 7. Average packet delivery latency for hybrid switching, compared
to “buffered” wormhole switching.

4.3 In-Transit Load
One of the primary advantages of wormhole switching is
tkiat it completely insulates nodes from in-transit traffic; the
cost, however, is the consumption of network bandwidth
by blocked packets. Virtual cut-through switching utilizes
the network’s bandwidth more efficiently, but can require
nodes to handle large amounts of in-transit traffic (as
shown in Section 3) . By only buffering some blocked pack-
ei s, hybrid switching significantly reduces this load.

A comparison of the in-transit load for hybrid switching
and virtual cut-through switching is shown in Fig. 8. This
graph shows the arrival rate of in-transit packets for a range
of offered loads. Even at low loads, with a very high prob-
a’bility of cut-through, hybrid switching significantly re-
duces the rate of in-transit traffic when compared to virtual
out-through. As the offered load increases, the probability

690

of cut-through decreases and the in-transit load increases.
At high loads, virtual cut-through switching uses at least
h + 1 times more memory resources than the hybrid
scheme, since the hybrid algorithm allows packets to buffer
at most once every k + 1 hops. The actual reduction in buff-
ering is often larger. For example, a packet traveling five
hops using virtual cut-through may buffer up to four times,
while hybrid with k = 2 will only buffer it at most once.

-.
$ 0004 1
8
S I

c

Fig. 8. In-transit packet load for virtual cut-through and hybrid switching.

4.4 Maximum Achievable Throughput
Fig. 9 shows the maximum achieved throughput (in packet-
hops per cycle) as a function of the number of hops traveled
by each packet. As in Fig. 4, the applied traffic load is hop-
uniform-every packet travels the same number of hops.
The maximum throughput is only shown for those dis-
tances greater than k-when each packet travels k hops or
less, hybrid switching is indistinguishable from wormhole
switching.

Unlike wormhole switching and virtual cut-through,
however, the maximum throughput for hybrid switching
increases with the number of hops packets travel. This phe-
nomenon can be explained by examining the proportion of
packets in each case that have traveled more than k hops
without buffering. As the average number of hops traveled
by each packet increases, the percentage of packets that are
willing to buffer if blocked increases. This alleviates con-
tention in the network, preventing early saturation.

4.5 Virtual Channels
Dally [4], [171 introduced virtual channels to prevent
deadlock in wormhole switched networks. Since then, vir-
tual channels have been used to improve network through-
put [4] and to partition different traffic classes to minimize
interactions [19].

Virtual channels improve network throughput in worm-
hole-switched networks by allowing packets to bypass
other blocked packets, thus utilizing otherwise idle network
bandwidth. Since hybrid switching may also idle links by
stalling packets in the network, it can also benefit from
virtual channels. Fig. 10 shows the effects of increasing the
number of virtual channels on the average packet latency
and peak throughput of hybrid switching. Under lighter

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

0015 -

- m - 8
g O O l Z
c
I

Y

m a 0009 -
a c

0

0006

L
m
E 0003 - $
3

0 000

0015

-
~ x . $ 0012

B 0009

r
I

Y

a r
9

?
2 0006

i
m
5 0003
E
2

0 000

2 4 6
Hops

(a) Hybrid, h = 1

2 4 6 8
Hops

(b) Hybrid, h = 2

Fig. 9. Maximum throughput under a hop-uniform traffic load.

loads, increasing the number of channels has little impact
on the mean packet latency. The primary effect of increas-
ing the number of channels is an increase in the maximum
throughput which the network may support. The decreas-
ing benefit of higher numbers of virtual channels is also
seen for similar simulations using wormhole switching.

In wrapped topologies, many wormhole routing
schemes will idle or underutilize virtual channels to pre-
vent deadlock. While packets that will stall when blocked
must utilize deadlock-free routing schemes, packets where
k has reached 0 may take advantage of available channels
without regard to preventing deadlock, since they will
buffer if blocked. This increases the probability of cut-
through for packets by considering channels that could not
otherwise be used.

4.6 Discussion
The simulations in this paper did not restrict the number of
buffers at each node. When the packet buffers are imple-
mented on the same die as the router, the number and size
of the buffers is restricted. By buffering fewer packets than
virtual cut-through, hybrid switching reduces the buffer
space needed. In addition, hybrid switching schemes can

691 SHIN AND DANIEL: ANALYSIS AND IMPLEMENTATION OF HYBRID SWITCHING

1500

1200 -
J
x z
b 900
0,

B
P

-
c

a 600
Ol

f
B

300

0 c

I 1 channel
\ 2channels
I+ 3 channels 1 : ‘ I

~ -~

0 2 0 4 0 6
Link ut lization

(a) Hybrid, h = 1

1 channel I
~

\ \ 2channels
i Jchannels

1200 1

0 ~ ~ L

0 0 0 2 0 4 0 6
Link utilization

(b) Hybrid, h =2

Fig. 10. Effects of increasing available virtual channels

take the available buffer space into account when deciding
whether to buffer or stall a blocked packet. By buffering
only packets that are currently holding several links and
stalling others, hybrid switching can effectively utilize lim-
ited buffers.

This section has evaluated only one variant of hybrid
switching. Another promising hybrid scheme uses a
“credit” scheme to determine when to buffer a blocked
packet. Under this scheme, each packet header contains a
field indicating the maximum number of times it can be
buffered-every time the packet buffers, the field is decre-
mented. Once this value reaches 0, the packet will stall in
the network. This scheme allows packets to stall more
channels, but buffering other packets should prevent net-
work congestion. The combination of a restriction on the
number of times a packet can buffer with k-hop hybrid
switching also holds promise.

Hybrid switching also allows the system to dynamically
determine (on a per-packet or system-wide basis) whether
network or buffer resources are used to store blocked pack-
ets. This can be implemented by setting the initial value of k
at the source of the packet to reflect whether the packet
should consume more network or buffer resources when

blocked. For example, large packets that will be traversing a
large number of links may initially use larger values of k to
reduce the number of times they buffer. On the other hand,
systems requiring high bandwidth can use smaller values
of ,h to shift the load to the networks buffers.

Hybrid switching uses both network and memory re-
sources to store blocked packets, addressing the shortcorn-
ings of other cut-through switching schemes. Using net-
work resources to store the packets can often have a snow-
ball1 effect, creating contention throughout the network that
limits throughput. Schemes that use memory resources, on
the other hand, increase the system’s communication over-
head. Through hybrid switching, we attempt to balan’ze
these concerns. Potentially, the switching decision could be
also based on the distance still needs to travel, or the nurn-
beir of buffers available at the local node. In addition, the
decision could be time-based: packets could stall for some
smlall amount of time if blocked in the hopes of being able
to cut through, and then buffer. Alternately, packets that
are blocked just short of their final destination could block
in the network, while others that are blocked near their
soiirce would buffer. This would keep packets from block-
ing in the network more than once or twice.

5 CONCLUSIONS
The switching scheme used by a point-to-point network it, a
major factor in determining the latency, throughput, and
overhead of communication. The various cut-through
switching schemes all improve latency over store-and-
forward switching (unless the network is saturated), but
each has its strengths and weaknesses.

As we have shown in this paper, virtual cut-through
does not limit the achievable network throughput but does
impose a significant load on nodes for storing and retrans-
mitting in-transit packets. Wormhole, on the other hand,
stadls blocked packets in the network and does not require
large buffers for blocked packets, it is cheaper to imple-
ment. Its maximum throughput, however, is limited by
contention for outgoing links.

In this paper, we have introduced the concept of hybrid
switching, which dynamically chooses whether to buffer or
staill blocked packets in order to balance resource con-
sumption and improve network throughput. Using SPIDER
and its simulator model, we plan to explore the potential of
a inumber of hybrid switching schemes. In particular, we
plan to examine the effects of different communication
patterns on the switching schemes. Other investigations
will compare hybrid switching with wormhole switching in
the presence of packet-sized input buffers, fixed-size sharl-d
buffers, and additional virtual channels.

The hybrid switching scheme presented in this paper coim-
bines features of both wormhole and virtual cut-through
switching by buffering a small fraction of blocked packets and
limiting the number of links that blocked packets can hold.
This significantly reduces the buffer requirements for in-transit
packets when compared to virtual cut-through, while provi d-
ing higher maximum throughput than wormhole switching.
In this manner, hybrid switching bridges the performance gap
between other cut-through switching schemes.

692 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

ACKNOWLEDGMENTS
The authors would like to acknowledge James Dolter’s in-
valuable work in developing the simulator, as well as Jenni-
fer Rexford and Wu-Chang Feng for helping improve it and
for their discussions and insights.

The work reported in this paper was supported in part
by the National Science Foundation under Grant MIP-
9203895, and by the Office of Naval Research under Grant
N00014-94-J. The opinions, findings and conclusions or rec-
ommendations expressed in this paper are those of the
authors and do not necessarily reflect the view of the
funding agencies.

REFERENCES
W.J. Dally and C.L. Seitz, ”The Torus Routing Chip,“ 1. Distributed
Computing, vol. 1, no. 3, pp. 387-196, 1986.
P. Kermani and L. Kleinrock, ”Virtual Cut-Through: A New
Computer Communication Switching Technique,” Cornputer Net-
zuorks, vol. 3, pp. 267-286, Sept. 1979.
J. Ngai and C. Seitz, ”A Framework for Adaptive Routing in
Multicomputer Networks,” Proc. Symp. Parallel Algorithms and A r -
chitectures, pp. 1-9, June 1989.
W. Dally, ”Virtual-Channel Flow Control,” IEEE Trans. Parallel
and Distributed Systems, vol. 3, no. 3, pp. 194-205, Mar. 1992.
J. Dolter, S. Daniel, A. Mehra, J. Rexford, W. Feng, and K. Shin,
”SPIDER Flexible and Efficient Communication Support for
Point-to-Point Distributed Systems,” Proc. int’l Conf. Distributed
Cornputing Systems, pp. 574-580, June 1994.
S. Daniel, J. Rexford, J. Dolter, and K. Shin, ”A Programmable
Routing Controller for Flexible Communications in Point-to-Point
Networks,” Proc. int’l Coni. Computer Design, pp. 320-325, Oct. 1995.
S. Borkar, R. Cohn, et al., ”Supporting Systolic and Memory
Communication in iWarp,” Proc. Irzt’l Symp. Computer Archifeclure,

W.J. Dally, J.A.S. Fiske, J.S. Keen, R.A. Lethin, M.D. Noakes, P.R.
Nuth, R.E. Davison, and G.A. Fyler, “The Message-Driven Proc-
essor: A Multicomputer Processing Node with Efficient Mecha-
nisms,” I E E E Micro, pp. 23-39, Apr. 1992.
D. Smitley, F. Hady, and D. Burns, ”Hnet: A High Performance Net-
work Evaluation Testbed,” Technical Report SRC-TR-91-049, Super-
computing Research Center, Snst. for Defense Analyses, Dec. 1991.
C.B. Stunkel, D.G. Shea, B. Abali, M.M. Denneau, P.H.
Hochschild, D.J. Joseph, B.J. Nathanson, M. Tsao, and P.R. Varker,
“Architecture and Implementation of Vulcan,” Proc. int’l Parallel
Processing Synzp., pp. 268-274, Apr. 1994.
A.L. Davis, “Mayfly: A General-Purpose, Scalable, Parallel Proc-
essing Architecture,” Lisp and Symbolic Computation, vol. 5, pp. 7-
47, May 1992.
K. Bolding, S:C. Cheun, S:E. Choi, C. Ebeling, S. Hassoun, T.A.
Ngo, and R. Wille, ”The Chaos Router Chip: Design and Imple-
mentation of an Adaptive Router,” Proc. VLSI , Sept. 1993.
J . Dolter, ”A Programmable Routing Controller Supporting Multi-
Mode Routing and Switching in Distributed Real-Time Systems,”
PhD thesis, Univ. of Michigan, Sept. 1993.
A. Kovaleski, S. Ratheal, and F. Lombardi, ”An Architecture and
Snterconnection Scheme for Time-Sliced Buses in Real-Time Proc-
essing,” PYOC. Real-Time Systems Symp., pp. 20-27, 1986.
Am79168lAm79169 TAXITM-275 Technical Manual, ban-0.1m-
1/93/0 17490a ed. Sunnyvale, Calif.: Advanced Micro Devices.
J. Rexford, J. Dolter, W. Feng, and K.G. Shin, ”PP-MESS-SIM. A
Simulator for Evaluating Multicomputer lnterconnection Net-
works,” Proc. Simulation Symp., pp. 84-93, Apr. 1995.
W.J. Dally and C.L. Seitz, ”Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” I E E E Trans. Comput-
ers, vol. 36, no. 5, pp. 547-553, May 1987.
A.A. Chien, ”A Cost and Speed Model for k-Ary n-Cube Worm-
hole Routers,” Proc. Hot Interconnects, Aug. 1993.
J. Rexford, J. Dolter, and K.G. Shin, ”Hardware Support for Con-
trolled Interaction of Guaranteed and Best-Effort Communica-
tion,” Proc. Workshop Parallel and Distributed RealLTime Systems, pp.
188-193, Apr. 1994.

pp. 70-81, 1990.

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, Korea, in 1970, and both the MS and
PhD degrees in electrical engineering from
Cornell University, Ithaca, New York, in 1976
and 1978, respectively He is a professor and
director of the Real-Time Computing Laboratory,
Department of Electrical Engineering and Com-
puter Science, the University of Michigan, Ann
Arbor

He has authoredkoauthored more than 350
technical papers (more than 150 of these in archival journals) and
numerous book chapters in the areas of distributed real-time comput-
ing and control, fault-tolerant computing, computer architecture, robot-
ics and automation, and intelligent manufacturing He is currently writ-
ing (jointly with C M Krishna) a textbook Real-Time Systems which is
scheduled to be published by McGraw-Hill in 1996 In 1987, he re-
ceived the Outstanding IEEE Transactions on Automatic Control Paper
Award for a paper on robot trajectory planning In 1989, he also re-
ceived the Research Excellence Award from the University of Michi-
gan In 1985, he founded the Real-Time Computing Laboratory, where
he and his colleagues are currently building a 19-node hexagonal
mesh multicomputer called HARTS, and middleware services for dis-
tributed real-time fault-tolerant applications

He has also been applying the basic research results of real-time
computing to multimedia systems, intelligent transportation systems,
and manufacturing applications ranging from the control of robots and
machine tools to the development of open architectures for manufac-
turing equipment and processes

From 1978 to 1982, he was on the faculty of Rensselaer Polytech-
nic Institute, Troy, New York He has held visiting positions at the U S
Air Force Flight Dynamics Laboratory, AT&T Bell Laboratories, Com-
puter Science Division within the Department of Electrical Engineering
and Computer Science at the University of California at Berkeley, In-
ternational Computer Science Institute, Berkeley, California, IBM T J
Watson Research Center, and the Software Engineering Institute at
Carnegie Mellon University He also chaired the Computer Science
and Engineering Division, EECS Department, at the University of
Michigan for three years beginning in January 1991.

Dr Shin is an IEEE fellow, was the program chairman of the 1986
IEEE Real-Time Systems Symposium (RTSS), the general chairman of
the 1987 RTSS, the guest editor of the August 1987 special issue of
/E€€ Transact/ons on Computers on real-time systems, a program co-
chair for the 1992 International Conference on Parallel Processing, and
served on numerous technical program committees He also chaired the
IEEE Technical Committee on Real-Time Systems during 1991-1993,
was a distinguished visitor of the IEEE Computer Society, editor of /€E€
Transactms on Parallel and D/stnbuted Systems, and an area editor of
lnternational Journal of Jme-Critrcal Computing Systems

Stuart W. Daniel received the BE degree from
Vanderbilt University, Nashville, Tennessee, in
1989 and the ME degree from The University of
Michigan, Ann Arbor, in 1992 Currently, he is a
graduate student research assistant at the Real-
Time Computing Laboratory, Department of
Electrical Engineering and Computer Science,
The University of Michigan, Ann Arbor. His re-
search interests include interconnection net-
works, parallel and distributed computing, and
VLSl design.

