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Doing the Twist: Diagonal Meshes Are
Isomorphic to Twisted Toroidal Meshes

Barak A. Pearlmutter

Abstract—We show that a k x n diagonal mesh is isomorphic to a

ﬂg—k X % - % X % twisted toroidal mesh, i.e., a network similar to

a standard ﬂ%& X % toroidal mesh, but with opposite handed twists of

L . . _k\2
igi in the two directions, which resulits in a loss of (”TK) nodes.
Index Terms—Interconnection networks, grid networks, mesh-

connected topologies, diagonal mesh, toroidal mesh.
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TANG and Padubidri [1] analyze the diagonal mesh suggested by
Arden, finding nonsquare diagonal meshes superior to the usual tor-
oidal mesh in a number of respects. In Fig. 1a, the 5 x 5 diagonal mesh
from their first figure (which is square, and thus not covered by their
claims) is drawn. As shown by Fig. 1b, this network is isomorphic' to
a standard 5 x 5 toroidal mesh. A nonsquare diagonal mesh is not in
general isomorphic to a standard toroidal mesh, but instead to a
twisted toroidal mesh, a class of network pictured in Fig. 2.

As proven diagramatically in Fig. 3, any k x 1 diagonal mesh (1
and k are necessarily odd, and without loss of generality k < n) is
isomorphic to a 2 x 2 2k nok tyvisted toroidal mesh. This
twisted toroidal mesh is like a standard £ x 2£ toroidal mesh,

except that the edges are joined with twists of opposite handed-

ness of 25£ in the two directions, and there is a consequent loss of
-k

2
k x n toroidal mesh with twists of 2 and b in the two directions is
kxn+axb, with + if the twists have the same handedness and — if
they have opposite handedness. This notation serves a dual pur-
pose, as such networks have kn + ab nodes.

This isomorphism simplifies the analysis of diagonal meshes.
For instance, for a large network, holding the number of nodes in a
kxn +axbtwisted toroidal mesh fixed while allowing &, 1, a, and
b to vary, it is elementary to see that the bisection width and di-
ameter reach extremes at the discontinuities of the domain,

namely configurations of the form nxnt4x%. The extreme

an 255 x corner, as shown in Fig. 2. A convenient notation for a

which optimizes performance is with an 7 Xn— 32X %, and is

isomorphic to a k x 3k diagonal mesh, and therefore to a 2k x 2k — k x
k=kx3k—0x2k=kx3k+ 0xk twisted toroidal mesh.

We call a network singularly transversible when, by moving re-
peatedly in one direction, all nodes will be visited. This property
can be useful for testing, power distribution, diagnosis, and ini-
tialization. A k X n + a x b twisted toroidal mesh is singularly
transversible exactly when gcd(k, a) = ged(n, b) = 1. This implies
that a k x n diagonal mesh is singularly transversible when n and k
are relatively prime.

Consider a k X n — a x b twisted toroidal mesh as an Abelian
group. This group can be generated by the two elements N and E.
Two identities suffice to characterize its properties: E* = N and

1. Isomorphic in the sense that there exists a bijective mapping of
nodes to nodes, edges to edges, and directions to directions that pre-
serves all mathematical properties
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Fig. 1. (a) 5 x 5 diagonal mesh. The edge behavior is shown by ghost
units and corresponding regions. (b) 5 x 5 toroidal mesh. As demon-
strated by the node l{abels, these two networks are isomorphic.
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Fig. 2. Removing an a x b rectangular area from the corner of a k x n
rectangular mesh before joining the edges to form a torus allows oppo-
site handed iwists of a and b nodes to be made in the two directions,
resulting in an k x n — a x b twisted toroidal mesh, which has kn — ab
nodes. Edge identifications are shown on the left using shaded re-
gions, while the process of rolling the sheet up is shown on the right.

N* = E" and it is therefore isomorphic to the quotient group Z 2/A
where A is the subgroup of Z ’ generated by (1, ) and (k, b). We
would like to find a canonical (up to rotation) representation for
this twisted toroidal mesh. Such a representation is k" x n’ — 0 x b’
where

kn —ab
k"= ged(k,a) n = v

and to preserve the group identities, it is necessary that
b’—é%, = b(mod ') and b’ = n{modn’). Using the Chinese remain-
der theorem we can find integers x and y such that x% +y=1,50

b'=xb+yn  (modn’)
This gives a simple algorithm for testing twisted toroidal mesh
isomorphism.

A twisted toroidal topology was used as the routing network of
the FAIM-1 parallel computer [2]. Fig. 4 shows the 19-element E3
hex-mesh toroidal network they built. If all the links in one of the
three directions are removed, what remains is a 5 X 5 — 2 x 3
twisted toroidal mesh.

Diagramatic Proof of Isomorphism

We begin with an arbitrary diagonal mesh network. For clarity a
5 x 7 net is shown Identified nodes are indicated by shading.
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Even and odd parity nodes are segregated and joined at an identi-

fied edge.
5 Fig. 4. Hex-mesh regular hexagonal arrays can be rolled into twisted

toruses, as in this 19-element E3 network [2].
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The surface is redrawn and symbols used to indicate identified
edges:
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The surface is cut into four regions:

The regions are rearranged, revealing the isomorphism to a
twisted toroidal mesh:

Fig. 3. This diagram sketches a simple proof that a &k x n diagonal
mesh network is isomorphic to a 25k x 2k — 2ok 5 1ok twisted toroidal
mesh.
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