
IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 5 , MAY 1990 65 3

Systolic Evaluation of
P. C. MATHIAS AND L. M.

Abstmct-High-speed evaluation of a large number of poly-
nomial expressions has potential applications in the modeling
and real-time display of objects in computer graphics. Using
VLSI techniques, chips called pixel planes have been built by
Fuchs and his group to evaluate linear expressions on frame
buffers. Extending the linear evaluation to quadratic evaluation,
however, has resulted in the loss of regularity of interconnec-
tion among the cells. In this paper, we present two types of
organizations for frame buffers of m x m pixels: one, a single
wavefront complex cell array requiring O(m2n) space and the
other a simple cell multiple wavefront array with O(m2) area
and O(n2) wavefronts. Both these organizations have two main
advantages over the earlier proposed method. The cells and the
interconnection among them are regular and hence are suitable
for efficient VLSI implementation. The organization also per-
mits evaluation of higher order polynomials.

Index Terms- Computer graphics, polygon scan conversion,
polynomial expression evaluation, systolic arrays, VLSI.

I. INTRODUCTION

LSI has paved the way for many applications in high- V speed interactive computer graphics which is an ever-
expanding field with diverse applications in many branches of
science and engineering. As a result, many researchers have
been attracted towards this area of designing specialized hard-
ware for high-performance graphics. Of particular interest are
the systolic and wavefront arrays [12]-[14], which use the de-
sirable properties of pipelining and multiprocessing.

VLSI techniques have already been used for the design and
implementation of frame buffers in computer graphics. Even a
three-dimensional frame buffer called solids buffer is a prac-
tical reality [5]. The frame buffer is one of the most important
resources in raster graphics systems [15]. In this paper, we
consider the frame buffer to be a two-dimensional memory
array storing the picture elements (pixels) that are to be dis-
played on the screen. With each pixel, one or more memory
registers are associated to store the data such as depth, mask,
intensity, and color of the pixel. The power of the frame buffer
increases as the number of registers associated with each pixel
increases. For a formal treatment on this subject, the reader
is referred to [2].

Advances in technology have reduced the cost of the frame
buffer to a large extent. As a result, the frame buffer has
been designed as an array of identical processing elements.

Manuscript received August 14, 1987; revised May 17, 1988.
P. C. Mathias is with the Sophisticated Instruments Facility, Indian Institute

L. M. Patnaik is with the Department of Computer Science and Automa-

IEEE Log Number 9034539.

of Science, Bangalore, India 560 012.

tion, Indian Institute of Science, Bangalore, India 560 012.

Polynomial
PATNAIK, SENIOR MEMBER,

Expressions
IEEE

Each element has limited processing power and a small num-
ber of memory registers. Such an approach has been adopted
by Fuchs [3] and his group, where they have designed and
fabricated a linear expression evaluator (LEE) which simulta-
neously computes a linear function of the form,

f (x , y) = A x + B y + C , for all 1 < x , y 5 m.
A multiplier tree has been used for this purpose. It is shown
in [4] and [8] that the linear expression evaluation has ap-
plications in drawing lines and polygons, generating circles,
shading, hidden surface elimination, and for many other func-
tions. By pipelining the coefficients of a large number of ex-
pressions, a realistic scene containing thousands of polygons
can be rendered in real-time.

In a recent paper, Fuchs et al. [9] have modified their mul-
tiplier tree to evaluate a quadratic expression. However, the
regularity of the interconnection is lost in the process.

We describe two different organizations for frame buffers
by adding a few adders to the already existing frame buffer
pixel registers, to evaluate a general polynomial of any de-
gree. Cells with many adders in each cell called c-cells are
used for the single wavefront complex cell method, by which,
the polynomial is evaluated using a single wavefront. In the
other method, very simple cells called s-cells are used and a
polynomial is evaluated with multiple wavefronts.

The frame buffer is arranged as a two-dimensional pipeline.
The computations proceed as a diagonal wavefront and hence
the evaluation of all the pixels is not time aligned. Although
this gives rise to increased length of the pipeline as compared
in [9], the period for pipelining, i.e., the smallest time be-
tween the input data of two successive polynomials presented
to the array, remains unity.

The organizations proposed in this paper differ from [9] in
many ways. The main advantages of the proposed organiza-
tions over [9] are the regularity of cells and their local inter-
connections. Moreover, higher order polynomials can also be
evaluated.

In Section 11, we present the motivation of our work with
two representative examples. The evaluation of a general poly-
nomial in a single variable using a single wavefront complex
cell is described in Section 111. We then extend this for the
evaluation of polynomials in two variables. In the following
section, we describe the polynomial evaluation on simpler
cells using multiple wavefronts. Finally, we conclude with a
brief discussion on the merits of the proposed array.

11. MOTIVATION
We illustrate our motivation with line and circle drawing

examples. Drawing lines is a fundamental primitive in com-

OO18-9340/90/05OO-0653$01 .OO 0 1990 IEEE

654 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 5 , MAY 1990

Fig. 1 .
(b)

a) Line drawing on a square grid. (b) Circ :le generation

puter graphics. Thousands of lines need to be drawn on the
screen for displaying a picture. In Fig. l(a), the screen is rep-
resented as a fixed square grid of m x m pixels. The line is
drawn by illuminating the pixels close to the line. The equa-
tion for a line in explicit form is given by Ax +By + C = 0,
in the screen coordinates. Let each one of the pixels in the
frame buffer be a processing element and let all pixels evalu-
ate Ax + B y + C , for their corresponding coordinate points
(x , y) . Then, if the line equation given above is in the nor-
malized form, the value of Ax + By + C at a point (x , y) is
the perpendicular distance of the pixel (x , y) from the line.
Hence, we draw the entire line by illuminating all the pixels
for which ABS (Ax +By +C) < I (by setting the pixels' reg-
ister bit to one). We can also draw thicker lines (sometimes
used for anti-aliasing) by keeping the threshold greater than 1
in the above inequality. Half planes can be evaluated by illu-
minating all pixels for which Ax + B y + C < 0. By applying
logical operators on half planes and lines, many objects can
be rendered in real-time using the linear expression evaluation

Generation of arcs and circles involves evaluating quadratic
expressions. A circle of radius r centered at point (a , b) can
be drawn by illuminating all pixels at (x , y) which are close
to the circle. The expression to be evaluated then becomes
ABS (r2 - ((x - a)2 + (y - b)2)) 5 1 , where t is the threshold
value. If d is the permitted fixed distance of an illuminated
point from the circle boundary, then it can be easily shown
that t = d(2r + d) , which is linear in r . By keeping d in the
above inequality larger, thicker boundaries for circles can be
drawn. If the entire interior of the circle is to be illuminated,
the inequality used is (r2 - ((x -a)2 +(y -b)2)) 2 0. For appli-
cations involving display of molecules, the atoms are modeled
as spheres and the bonds between them as cylinders. The or-

~41.

thogonal projection of the atoms and their bonds reduces to
evaluating quadratic expressions.

Many objects using constructive solid geometry (CSG) are
represented by polynomial expressions. Goldfeather et al.
have demonstrated [lo] the fast display of CSG objects in
pixel powers graphics system [9] which evaluates quadratic
expressions.

While the discussion in this paper is restricted to polyno-
mial evaluation in x and y , the same ideas can be used for
parametric polynomial evaluation with parameters U and U.
Such an evaluation finds applications in Bezier and B-spline
curve and surface generations, texture mapping, etc. [15].

Having discussed the potential applications of a general
polynomial evaluation in computer graphics, we describe in
the next section the organization of a single wavefront array
to compute these expressions at a very high speed.

111. SINGLE WAVEFRONT COMPLEX CELL ARRAY

This section describes the evaluation of the polynomial by a
single wavefront c-cell array. We make use of the forward dif-
ference method [I 11, [15] as applied to polynomials in single
variable and later extend it to polynomials in two variables.
The main property used is that the nth difference for a poly-
nomial of degree n is a constant.

A . Preliminaries
Consider the polynomial of degree n given by

P , (x) = a0 f a l x + a2x2+, . . . , +anXn
n

= six'. (1)
i =O

The forward difference P,(x + 1) - P, (x) is a polynomial
P , - I (x) in degree (n - 1). Applying the same reasoning re-
peatedly [1 1 1 we get

Pn(X + 1) - Pn(X) = Pn-l(X)
P,-l(X + 1) - P,-l(X) = Pn--2(X)
P , - ~ (x + 1) - P n - 2 (~) == P n - 3 (~) (2)

P l (x + 1) - P l (x) = Po(x) = Constant.

Thus, if we know P;(O) for all 0 5 i 5 n we can evaluate
the polynomial incrementally using (2) at all the grid points
1 5 x 5 m . The crux of this paper lies in identifying this
potential for use as systolic arrays in frame buffers.

We call Pi- 1 (x) as the predecessor of Pi (x) or Pi (x) as the
successor of P;- l (x) . From (2) , each P;(x + 1) is the sum
of the polynomial P;(x) and its predecessor PiPl (x) . The
polynomial Po(x) is a constant, with all its predecessors as
zeros which can be omitted. We refer to Pi(0) for 0 5 i 5 n ,
as the initial vector. Po(x) is called the first element and from
this the polynomials of higher degree are obtained. P n (x) is
called the last element and it is this polynomial we need to
evaluate.

The initial vector [Po(O), PI(O) , . . .,P,(O)IT can be ob-
tained by computing the polynomial at grid points 0 to n and

MATHIAS AND PATNAIK: SYSTOLIC EVALUATION OF POLYNOMIAL EXPRESSIONS

a0 -

a1

a2

a3 -

655

e.

p e

* F
PnW

Fig. 2. Initial vector evaluation

2a2+6a3 6a3

1 ao+al+a2+a3 al+3a2+7a3 2a2+12a3

2 aO+2a1+4a2+8a3 a1+5a2+19a3

using the forward difference technique [113 as shown in Fig.
2. Table I illustrates the evaluation of the initial vector for the
example of a cubic polynomial.

Another method to compute the initial vector, which is at-
tractive because of its systolic implementation, is to consider
it a linear transform W of the coefficients of the polynomial.
This permits the pipelining of coefficients of a large number
of polynomials. It can be easily shown that the initial vector

(3)

The matrix W is a lower right triangular one, and the elements
w;, j for n 5 i + j 5 2n, are integers which depend only on n.
They can be precomputed and stored as a matrix depending
on the polynomial degree.

The sequential algorithm to compute the polynomial at grid
points 1 5 x 5 m is given below.

Algorithm polynomialin-x;
begin

step 1.
step 2.
step 3.

Compute the initial vector Pj(O), for 0 5 i 5 n .
for x := 0 to m - 1 do

{ * compute the polynomial at x * }

begin
Po(x + 1) := Po(x);
fo r i := 1 to n do step 4.

step 5. P;(x + 1) :=Pj-l(X) +Pi(x) ;
end;

end;

B. The x-array of the Frame Buffer
As mentioned earlier [2], the frame buffer consists of a

memory array with a set of memory registers devoted to each
pixel. We show in the following sections that by adding a
few adders to evaluate polynomials, the frame buffer is made
intelligent and its processing capability enhanced considerably.

We consider in this paper only word parallel organizations.
However, actual physical implementation constraints of cost
and size may require bit serial organizations. Instead of imple-
menting the whole frame buffer, a smaller array (say 16 x 16
cells) representing a window in the frame buffer would permit
word parallel organizations from the point of view of cost and
size. By windowing, clipping, and bounding box techniques,
high performance at the expense of little reduction in speed
can be achieved.

From the sequential algorithm we see a convenient way of
unwinding the "for" loops that exactly fits into our notion
of the frame buffer organization. The unwinding process also
creates a pipeline without feedback such that the initial vector
of a large number of polynomials can be completely pipelined
111.

First the description of a generic c-cell [shown in Fig. 3(a)]
to evaluate a polynomial of degree n is presented. It consists
of n adders and a delay element. The delay element can be
considered as a two-input adder with one of its inputs perma-
nently connected to logic zero. The cell evaluates in parallel,
in unit time the steps 3-5 in the above algorithm. For sim-
plicity, we assume throughout this paper that the output of an
adder is available one cycle after its inputs are made available.
This can be easily achieved by inserting delay registers at the
output of every adder in each cell.

The computation of the polynomial in a systolic array con-
sisting of generic c-cells is illustrated using the example of a
cubic polynomial given by

P ~ (x) = a0 + a l x + a2x2 + a3x3.

Using difference technique shown in Table I, we get the initial
vector

(4)

656 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 5 , MAY 1990

x . 1 x .2 x = 3 x=m-1 x=m

P3(1) P3(Z) P3(3)

(b)
(a) A generic complex cell. (b) The x-array using c-cells for eval- Fig. 3.

uation of cubic polynomial.

PI (x) 2a2+6a3 2a2+12a3 2a2+18a3 2a2+24a3

p 2 (x) al+a2+a3 a1+3a2+7a3 a1+5a2+19a3 a1+7a2+37a3

‘0 ao+a1+a2 ao+2a1+4a2 ao+3a1+9a2

+a3 +ea3 +27a3

Unwinding the “for” loop of step 2 , we get a linear array
which evaluates the polynomial. Fig. 3(b) shows the array for
the case of the cubic polynomial. The host computes the initial
vector and feeds it to the array as shown in the figure. The
computation proceeds from left to right as a wavefront. Table
I1 shows the outputs of each cell as the wavefront progresses.
The last row (in bold characters) corresponds to the evaluation
of the polynomial.

For the linear, quadratic, and cubic expressions of the form
P, (x) = Cryoajx’ , one can easily show that

[PO(0) Pl,o)] = [: :] [111 -linear case

We use these results when we extend the polynomial evalua-
tion to the case of two variables.

To evaluate a polynomial of degree n, for m pixels in the
array it takes m(n + 1) = O(mn) space. The pipelining period
is unity.

(5) C . Polynomial Evaluation in Two Variables Using c-cells

POW) 0 0 2 a0 We write the bivariable polynomial of degree n as

[= 1: (I, i] [:;] -quadratic case
Q ~ (x , Y) = a;, jx’YJ.

Treating Q n (x , y) as a polynomial P,(x> of a single variable

o<;+j<o

(6)

MATHIAS AND PATNAIK: SYSTOLIC EVALUATION OF POLYNOMIAL EXPRESSIONS 657

of degree n, we can write nomial in x, using the x-array described earlier. We illustrate
n the above method for the cubic polynomial in two variables

Pri(x> = Cf n-1 .(Y b ‘ . (8) given by
; =O

Q3(x, Y) = ai, jx’yj
Each coefficient in the above equation, i.e., fn-;(y), is a poly- O<i+ j<3

= (~ 0 . 0 + go, I Y + ~ 0 . 2 ~ ~ + ~ 0 . 3 ~ ~) nomial in a single variable y of degree n - i . For a particular y
value, these f,-;(y) can be evaluated to yield the coefficients
of the polynomial P, (x). But the initial vector that is required
at the input of the x-array is the linear transform W of these

+ (a1.0 + a1, I Y fGl,*Y2)X
+ @2,0 +a2, l Y N 2

+ a3,0x3. coefficients according to (3), and not just the coefficients alone.
If P;(x) are the polynomials in x, using (3) we get = f3 (y) +f2(Y)X +fl(Y)X2 +fO(Y)X3.

Each Pi(0) is a polynomial in y of degree i and is suitable
for feeding it into the x-array. The sequential algorithm to

Treating fn-;(y) as the coefficients of a polynomial P;(X),
we have

evaluate Qn(x, y) for all 1 5 x , y 5 m, is given below. n

Algorithm polyn om ial-in-xy ; P;(o) = wi, jfn-j(Y) = g;(y>, for 0 5 i 5 n

begin
for y := 1 to m do step 1.

step 2.
begin

for i := 0 to n do

j =O

where wi,;’s are the elements of the linear transform W ,
which is an (n + 1) x (n + 1) lower right triangular matrix
and is fixed for a given n. From (4) we get

step 3.
step 4.

Compute the initial vector P;(O) := gi(y);

begin
for x :=0 to m - 1 do

step 5.

step 7.

Po(x + 1) := Po(x);
for i := 1 to n do step 6.

P;(x + 1) :=P;-l(x) +P;(x);
end;

end;
end;

The y-array of the Frame Buffer: The unwinding of step
1 in the above algorithm yields the y-array. The y-array treats
the polynomials f , -; (y) as coefficients, and evaluates the
transformed coefficients g;(y) such that they form the ini-
tial vectors for the x-arrays. Steps 2 and 3 of the algorithm
suggest a way to design each cell of the y-array. In order to
evaluate step 2 in parallel, we require (n + I) generic cells of
size i, 0 5 i 5 n. Steps 4-7 represent the evaluation of poly-

Each row i in the above matrix is a polynomial in y of
degree i, for 0 5 i 5 3. Thus, we have to evaluate linear,
quadratic, and cubic expressions of y using (3, (6), and (7).
For this, the evaluation on the y-array is shown in Fig. 4.
Table III(a) shows the progress of the wavefront downwards
for the y-array cells for y = 1 to y = 4. The entire frame
buffer consists of an array of x-arrays, one for each y and
shown in Fig. 5. The y-array computes the initial vector for
each x-array and feeds it at the left side of the array as shown.
From the figure it is clear that in the frame buffer the wave-
front advances diagonally. Table III(b) and (c) lists the outputs
of the x-array for y = 1 and y = 2, respectively. As before,
the contents of the last row in the tables are the result of the
cubic polynomial evaluation.

The linear combinations of the coefficients fed to the
y-array can be computed by the host, or else, a simple matrix
vector multiplier chip can be built such that the chip receives

658 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 5, MAY 1990

(a)
Linear combinatsons of
the coefficients

(b)
Fig. 4. (a) The CJ array for n = 3. (b) Block schematic of c_y-array cell

for n = 3 .

the coefficients as inputs from the host and outputs the re-
quired linear transforms. Thus, the host can pipeline to the
chip the coefficients of a large number of polynomials which
need to be evaluated for the display of curves and surfaces,
polygons, hidden surface removal, and many other applica-
tions.

Each cell in the y array requires O(n2) space. The y-array
having m cells requires O(mn2) space. The entire frame
buffer requires O(m2n +mn2) space. The pipelining period is
unity. Usually for computer graphics applications, the degree
n of the polynomial is small compared to m and is less than
or equal to 3. Hence, the space required is O(m2n).

In the following section, we present the organization of the
multiple wavefront array for the evaluation of polynomials
using the simple s-cells.

IV. MULTIPLE WAVEFRONT POLYNOMIAL EVALUATION

There are many transformation techniques that can be ex-
ploited to aid the design of systolic systems [l] , [6], [7]. In-
stead of deriving the results using well-known techniques [l],
[7] , we directly state the results. Either by space time trans-
formation and geometric projection [l] on the array of Fig.
3(b), or by index set transformations [7], on the sequential al-
gorithm polynomial-in-x, we get the array as shown in Fig.
6(b). The primitive equation P;(x + 1) = P;(x) + P;-I(x),
in step 5 of algorithm polynomial-in-x, is transformed to the
equation given below:

Cell(x + 1, t + 1) = Cell(x, t) +Cell(x, t - 1)

i.e., the output of the cell at x + 1 evaluated at time t + 1

is equal to the sum of the outputs of cell at x at times t and
t - 1. The parallel evaluation of the polynomial at a cell (sin-
gle wavefront) is reduced to pipelining (multiple wavefronts).
Each generic cell shown in Fig. 6(a) contains a single two-
input adder and a storage register. As before, we assume that
the output of the adder is available one cycle after its inputs
are made available. The polynomial given by

n

i =O

is evaluated by pipelining the elements of the initial vector into
the x-array with Po(0) first, followed by its successors. As
the cells are independent of the degree of the polynomial, any
polynomial can be evaluated with multiple wavefronts. An m
pixel x-array requires O(m) space and (n + 1) wavefronts.
We illustrate the above procedure with an example of a cubic
polynomial given by

P ~ (x) = a3x2 +a2x2 + a l x + ao.

The initial values of the wavefronts Po(O), P,(O), P2(0), and
P3(0) from (4) are

603

2a2 + 6a3

al +a2 +a3

a0

MATHIAS AND PATNAIK: SYSTOLIC EVALUATION OF POLYNOMIAL EXPRESSIONS 659

660 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 5 , MAY 1990

Linear combinations
of input coefficients

x - array

% e
0

x

1" 'L x - array

Fig. 5 . The frame buffer organization for the evaluation of a cubic polyno-
mial using complex c-cells.

1
+

Fig. 6. (a) A generic simplified s-cell. (b) Evaluation of a cubic polynomial
using s-array cells.

By pumping the value 6a3 followed by 2a2 +6a3, a1 +a2 +a3,
and a0 into the pipeline the polynomial P3(x) is evaluated. It
takes four wavefronts to compute P3(x). Table IV shows the
contents of the cell's registers as the four wavefronts progress.

Each cell has to reset the output of the adder and the contents
of its register to zero before a new polynomial is evaluated. As
(n + 1) wavefronts have to cross each cell for the polynomial
evaluation, each cell can reset at the end of these (n + 1)
wavefronts. Alternatively, a wavefront constituting the reset
instruction can be pipelined between the coefficients of the two
polynomials in the array. We do not account for this wavefront
in our complexity calculations.

Polynomial Evaluation in Two Variables Using Simpli-
fied Cells: Inspection of a y-array cell in Fig. 4(a) suggests
two levels of simplification that can be made on the space re-
quired for the cell. As before a bivariable polynomial can be
written as

Instead of having (n + 1) generic cells of size i, 0 5 i 5 n , as
shown in Fig. 3(a), we now have a single generic cell of size
n to evaluate the (n + 1) elements of the initial vector one after
another using (n + 1) wavefronts. This gives rise to the first
level of simplification. We call this cy-array cells which is
similar to the x-array cells of Section 111. A second level of
simplification on the cy-array cells yields the simple y-array
cells called sj-array cells similar to the simple x-array cells.

a) Using cy-array Cells: The first level of simplification
yields the y-array, shown in Fig. 7 for the case of a cubic
polynomial, which has n adders and a delay element. The
host inputs to the y-array the coefficients for the evaluation
of the element Po(0) of the initial vector, followed by the
coefficients for the evaluation of Pl(0) and so on. It can be
seen that it takes (n + 1) wavefronts, spaced one time unit apart
to compute the elements of the initial vector. The disadvantage
of this approach is that the y-array is a function of the degree
of the polynomial. For the case of a cubic polynomial we have

As before, the initial vector is given by

1

MATHIAS AND PATNAIK: SYSTOLIC EVALUATION OF POLYNOMIAL EXPRESSIONS 66 1

TABLE IV
THE CONTENTS OF THE X-ARRAY CELLS FOR x = 0 TO 3

1 6a3+2a2 6a3

x -array

y -ar ray

Fig. 7. The organization of the frame buffer using complex c_y-array cells

Fig. 7 shows the cy-array cells together with the coefficients
that are pipelined. The first wavefront in the cy-array com-
putes 6fo(y), the second wavefront computes 2f1 (y) +6fo(y)
and so on. Table V(a) lists the values flowing through the
cj-array which are input to the x-array. Table V(b) shows
the contents of the cell’s registers in the x-array for y = 1
and Table V(c) for y = 2. The last entry in each column of
the tables (in bold characters) is the value of the cubic poly-
nomial.

The c_v-array with m cells requires m(n + 1) space and
(n + 1) wavefronts. Thus, the entire frame buffer can be or-
ganized in O(rn2) cells. The pipelining period is (n + 1).

b) Using s_v-array Cells: The second level of simplifica-

tion on the c_v-array cells yields the simplified generic cell
similar to that of Fig. 6(a). The sj-array (see Fig. 8) com-
putes, using one wavefront, the element Po(O), of the initial
vector, which is a polynomial in y of degree 0. At the end
of one wavefront, the y-array outputs the result to the x-array.
The y-array then computes the successor element PI (0) using
two wavefronts and at the end of two wavefronts, it outputs
P l (0) to the x-array and so on. The organization of the frame
buffer is shown in Fig. 8. It can be seen that it takes (n +
l)(n + 2)/2 wavefronts (time units), for the evaluation of the
polynomial of degree n. The space requirement is O(m2).
For the case of cubic polynomial, the computation of 6fo(y)
requires one wavefront and the computation of 2 f 1 (y)+6fo(y)

662 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 5 , MAY 1990

(Refer fig. 7)
(a)

3 a1, o+a2,0 2a2, 1+2a2, 0 6a3, 0

+a3, O + a l , 1 c6a3, 0

+a2,1+a1,2

MATHIAS AND PATNAIK: SYSTOLIC EVALUATION OF POLYNOMIAL EXPRESSIONS 663

TABLE V. (Continued)

Output of x-array cells for
...

(The input is taken from table V (a))

(b)

6a3,0

a0 # 0+2ao, 1

+2%, 0+4a2,0

+%,0+~~1,1

+4a0, 2+8a0, 3

, z +ea2, 1+8a1

664 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 5 , MAY 1990

7 ~ Pipclined linear combinations
input copiticients

x-array
I

i : J

y- array

Fig. 8. Organization of the frame buffer with simplified cells.

s-cell x-array
c-cell y-array o(rn2) o(m2n) 0 (m2n*)
(f i g . 7)

s-cell x-array,

(fig. 8)
s-cell y-array o(rn2) o (n 2)

requires two wavefronts and so on. The input wavefronts to the
x-array are not equispaced but are linearly spaced in time. It
requires ten wavefronts to be input to the s_y-array to compute
a cubic polynomial.

spondence between the coordinates of the pixel on the screen
and the coordinates of the pixel registers on the chip. Hence,
a light emitting device constituting the screen can become a
part of the chip. The array being linear in nature provides all
the advantages of fault tolerance of linear arrays and efficient
layout for VLSI. V. CONCLUSIONS

In this paper, we have described organizations of frame
buffers to evaluate polynomials. From a sequential algorithm
we derive a single wavefront complex cell array. The space
requirement is reduced to yield multiple wavefront-simplified
cell array. Table VI compares the complexities of the organi-
zations for their area x period and area x period2. A further
reduction in area which is possible but not considered in this
paper is due to the bit serial pipeline organization. This will
increase the number of wavefronts by a factor equal to the
word length but uses very simple hardware. The advantage
of the organizations described in this paper is that the com-
putation in any cell is carried out using the results of the
neighboring cells only and without the need for any broad-
cast. Hence, it is very attractive to realize the frame buffer in
the form of a VLSI chip. The VLSI array can be laid out on
the chip as a rectangle such that there is a one to one corre-

If we assume the time taken for the wavefront to move from
one cell to the next as 1 ms (as only simple operations are
involved), then the frame buffer can compute on the order of
one million expressions per second in the steady state, once
the pipeline is full.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
comments.

REFERENCES
[l] P. R . Cappello and K. Steiglitz, “Unifying VLSI array designs with

geometric transformations,” in Proc. 1983 In t . Conf. Parallel Pro-
cessing, Aug. 1983, pp. 448-457.
A. Fournier and D. Fussell, “On the power of the frame buffer,”
Dynamic Graphics Project, Tech. Rep. DGP84-2, Univ. of Toronto,
Mar. 1983.

[2]

MATHIAS AND PATNAIK: SYSTOLIC E.VALUATION OF POLYNOMIAL EXPRESSIONS 665

H. Fuchs, J. Poulton, A. Paerh, and A. Bell, “Developing pixel
planes, A smart memory based raster graphics system,” in Proc. 1982
MIT Conf. Advanced Res. VLSI, Dedham, MA, Artech House, pp.

H. Fuchs, J. Goldfeather, J. P. Hultquist, S. Spach, J. D. Austin,
F. P. Brooks, J . G . Eyles, and J . Poulton, “Fast spheres, textures,
transparencies, and image enhancements in pixel-planes,’’ Comput.
Graphics, vol. 19, no. 3. pp. 11 1-120, 1985.
G. Hunter, “3D frame buffers for interactive analysis of 3D data,” in
P m . SPIE’s 28th Tech. Symp., Aug. 1984.
M. S. Lam and J. Mostow, “A transformational model of VLSI systolic
design,” IEEE Comput. Mag., 1985.
D. I. Moldovan, “On the design of algorithms and synthesis of VLSI
systems,’’ Proc. IEEE, pp. 113--120, Jan. 1983.
J . Poulton, H. Fuchs, J . D. Austin, 3 . G. Eyles, J . Heinecke, C.
H. Hsieh, J. Goldfeather, J. P. Hultquist, and S. Spach, “PIXEL-
PLANES: Building a VLSI based raster graphics system,” in Proc.
1985 Chap1 Hill Conf. VLSI, pp. 35-60.
J. Goldfeather and H. Fuchs, “Quadratic surface rendering on a logic
enhanced frame buffer memory,” IEEE Comput. Graphics Appl. ,
pp. 48-59, Jan. 1983.
I. Goldfeather, J . P. Hultquist, and H. Fuchs, “Fast constructive solid
geometry display in the pixel-powers graphics system,’’ Comput.
Graphics, vol. 20, no. 4. pp. 107-116, 1986.
D. E. Knuth, The Art of Computer Programming, Vol. 2 . Read-
ing, MA: Addison Wesley.
H. T. Kung, “Why systolic archil:ectures,” IEEE Comput. Mag., pp.
37-46, Jan. 1982.
S. Y. Kung, K. S. Arun, R. J. Gal-Ezer, and D. V. Bhaskar Rao,
“Wavefront array processor: Language, architecture, and applica-
tions,” IEEE Trans. Comput., vol. C-31, Nov. 1982.
P. C. Mathias and L. M. Patnaik, “A systolic evaluator for linear,
quadratic and cubic expressions,” J . Parallel Distributed Comput.,
vol. 5, pp. 729-740, Dec. 1988.
W. M. Newman and R. F. Sproull, Principles of Interactive Com-
puter Graphics, 2nd ed.

137- 146.

New York: McGraw-Hill, 1979.

P. C. Mathias received the M. Tech degree in elec-
trical engineering from IIT, Kanpur, in 1974.

At present he is a Principal Scientific Officer
in the Sophisticated Instruments Facility, Indian In-
stitute of Science, Bangalore, and currently he is
working towards his Doctoral degree in systolic ar-
chitectures for computer graphics. His main inter-
ests are in the areas of parallel architectures, com-
puter graphics, CAD, microprocessor hardware,
and nuclear magnetic resonance spectroscopy.

Mr. Mathias is a member of the Computer Soci-
ety of India.

L. M. Patnaik (S’75-M’76-SM’86) received
Ph D degree in the area of Real-Time Software for
Industrial Automation in 1978 and the D.Sc. degree
in June 1989 for his research work in the area of
computer systems and architectures.

At present, he is a Professor of the Department of
Computer Science and Automation, and Chairman
of the Microprocessor Applications Laboratory at
the Indian Institute of Science, Bangalore. During
the last 18 years of his service at the Institute, his
teaching, research, and development interests have

been in the areas of parallel and distributed computing, computer architecture,
computer graphics, CAD of VLSI systems, and expert systems To his credlt,
he has over 150 publications in these areas in refereed international journals
and conference proceedings. He has supervlsed several research theses and
has been Principal Investigator for a number of government and industry
funded projects He is a co-author of a book on functional programming to
be published by the Springer-Verlag.

Dr. Patnaik is a senior member of the Computer Society of India, a Founder
Member of the Executive Comrmttee of the recently-launched Association for
Advancement of Fault-Tolerant and Autonomous Systems, a Fellow of the In-
dian Academy of Sciences, National Academy of Sciences, and the Institution
of Electronics and Telecommunications Engineers, in India

