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Systolic Evaluation of 
P. C. MATHIAS AND L. M. 

Abstmct-High-speed evaluation of a large number of poly- 
nomial expressions has potential applications in the modeling 
and real-time display of objects in computer graphics. Using 
VLSI techniques, chips called pixel planes have been built by 
Fuchs and his group to evaluate linear expressions on frame 
buffers. Extending the linear evaluation to quadratic evaluation, 
however, has resulted in the loss of regularity of interconnec- 
tion among the cells. In this paper, we present two types of 
organizations for frame buffers of m x m  pixels: one, a single 
wavefront complex cell array requiring O(m2n) space and the 
other a simple cell multiple wavefront array with O(m2)  area 
and O(n2)  wavefronts. Both these organizations have two main 
advantages over the earlier proposed method. The cells and the 
interconnection among them are regular and hence are suitable 
for efficient VLSI implementation. The organization also per- 
mits evaluation of higher order polynomials. 

Index Terms- Computer graphics, polygon scan conversion, 
polynomial expression evaluation, systolic arrays, VLSI. 

I. INTRODUCTION 

LSI has paved the way for many applications in high- V speed interactive computer graphics which is an ever- 
expanding field with diverse applications in many branches of 
science and engineering. As a result, many researchers have 
been attracted towards this area of designing specialized hard- 
ware for high-performance graphics. Of particular interest are 
the systolic and wavefront arrays [12]-[14], which use the de- 
sirable properties of pipelining and multiprocessing. 

VLSI techniques have already been used for the design and 
implementation of frame buffers in computer graphics. Even a 
three-dimensional frame buffer called solids buffer is a prac- 
tical reality [5]. The frame buffer is one of the most important 
resources in raster graphics systems [15]. In this paper, we 
consider the frame buffer to be a two-dimensional memory 
array storing the picture elements (pixels) that are to be dis- 
played on the screen. With each pixel, one or more memory 
registers are associated to store the data such as depth, mask, 
intensity, and color of the pixel. The power of the frame buffer 
increases as the number of registers associated with each pixel 
increases. For a formal treatment on this subject, the reader 
is referred to [2]. 

Advances in technology have reduced the cost of the frame 
buffer to a large extent. As a result, the frame buffer has 
been designed as an array of identical processing elements. 
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Each element has limited processing power and a small num- 
ber of memory registers. Such an approach has been adopted 
by Fuchs [3] and his group, where they have designed and 
fabricated a linear expression evaluator (LEE) which simulta- 
neously computes a linear function of the form, 

f ( x ,  y )  = A x  + B y  + C ,  for all 1 < x ,  y 5 m. 
A multiplier tree has been used for this purpose. It is shown 
in [4] and [8] that the linear expression evaluation has ap- 
plications in drawing lines and polygons, generating circles, 
shading, hidden surface elimination, and for many other func- 
tions. By pipelining the coefficients of a large number of ex- 
pressions, a realistic scene containing thousands of polygons 
can be rendered in real-time. 

In a recent paper, Fuchs et al. [9] have modified their mul- 
tiplier tree to evaluate a quadratic expression. However, the 
regularity of the interconnection is lost in the process. 

We describe two different organizations for frame buffers 
by adding a few adders to the already existing frame buffer 
pixel registers, to evaluate a general polynomial of any de- 
gree. Cells with many adders in each cell called c-cells are 
used for the single wavefront complex cell method, by which, 
the polynomial is evaluated using a single wavefront. In the 
other method, very simple cells called s-cells are used and a 
polynomial is evaluated with multiple wavefronts. 

The frame buffer is arranged as a two-dimensional pipeline. 
The computations proceed as a diagonal wavefront and hence 
the evaluation of all the pixels is not time aligned. Although 
this gives rise to increased length of the pipeline as compared 
in [9], the period for pipelining, i.e., the smallest time be- 
tween the input data of two successive polynomials presented 
to the array, remains unity. 

The organizations proposed in this paper differ from [9] in 
many ways. The main advantages of the proposed organiza- 
tions over [9] are the regularity of cells and their local inter- 
connections. Moreover, higher order polynomials can also be 
evaluated. 

In Section 11, we present the motivation of our work with 
two representative examples. The evaluation of a general poly- 
nomial in a single variable using a single wavefront complex 
cell is described in Section 111. We then extend this for the 
evaluation of polynomials in two variables. In the following 
section, we describe the polynomial evaluation on simpler 
cells using multiple wavefronts. Finally, we conclude with a 
brief discussion on the merits of the proposed array. 

11. MOTIVATION 
We illustrate our motivation with line and circle drawing 

examples. Drawing lines is a fundamental primitive in com- 
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Fig. 1 .  
(b) 

a) Line drawing on a square grid. (b) Circ :le generation 

puter graphics. Thousands of lines need to be drawn on the 
screen for displaying a picture. In Fig. l(a), the screen is rep- 
resented as a fixed square grid of m x m pixels. The line is 
drawn by illuminating the pixels close to the line. The equa- 
tion for a line in explicit form is given by Ax +By  + C = 0, 
in the screen coordinates. Let each one of the pixels in the 
frame buffer be a processing element and let all pixels evalu- 
ate Ax + B y  + C ,  for their corresponding coordinate points 
( x ,  y ) .  Then, if the line equation given above is in the nor- 
malized form, the value of Ax + By  + C at a point ( x ,  y )  is 
the perpendicular distance of the pixel ( x ,  y )  from the line. 
Hence, we draw the entire line by illuminating all the pixels 
for which ABS (Ax +By +C) < I (by setting the pixels' reg- 
ister bit to one). We can also draw thicker lines (sometimes 
used for anti-aliasing) by keeping the threshold greater than 1 
in the above inequality. Half planes can be evaluated by illu- 
minating all pixels for which Ax + B y  + C < 0. By applying 
logical operators on half planes and lines, many objects can 
be rendered in real-time using the linear expression evaluation 

Generation of arcs and circles involves evaluating quadratic 
expressions. A circle of radius r centered at point ( a ,  b)  can 
be drawn by illuminating all pixels at ( x ,  y )  which are close 
to the circle. The expression to be evaluated then becomes 
ABS ( r2  - ( ( x  - a)2 + ( y  - b)2 ) )  5 1 ,  where t is the threshold 
value. If d is the permitted fixed distance of an illuminated 
point from the circle boundary, then it can be easily shown 
that t = d(2r + d ) ,  which is linear in r .  By keeping d in the 
above inequality larger, thicker boundaries for circles can be 
drawn. If the entire interior of the circle is to be illuminated, 
the inequality used is ( r2  - ( (x  -a)2 +(y -b)2) )  2 0. For appli- 
cations involving display of molecules, the atoms are modeled 
as spheres and the bonds between them as cylinders. The or- 

~41. 

thogonal projection of the atoms and their bonds reduces to 
evaluating quadratic expressions. 

Many objects using constructive solid geometry (CSG) are 
represented by polynomial expressions. Goldfeather et al. 
have demonstrated [lo] the fast display of CSG objects in 
pixel powers graphics system [9] which evaluates quadratic 
expressions. 

While the discussion in this paper is restricted to polyno- 
mial evaluation in x and y ,  the same ideas can be used for 
parametric polynomial evaluation with parameters U and U. 
Such an evaluation finds applications in Bezier and B-spline 
curve and surface generations, texture mapping, etc. [15]. 

Having discussed the potential applications of a general 
polynomial evaluation in computer graphics, we describe in 
the next section the organization of a single wavefront array 
to compute these expressions at a very high speed. 

111. SINGLE WAVEFRONT COMPLEX CELL ARRAY 

This section describes the evaluation of the polynomial by a 
single wavefront c-cell array. We make use of the forward dif- 
ference method [I 11, [15] as applied to polynomials in single 
variable and later extend it to polynomials in two variables. 
The main property used is that the nth difference for a poly- 
nomial of degree n is a constant. 

A . Preliminaries 
Consider the polynomial of degree n given by 

P , ( x )  = a0 f a l x  + a2x2+, . . . , +anXn 
n 

= six'. (1) 
i =O 

The forward difference P,(x  + 1) - P, (x )  is a polynomial 
P , - I ( x )  in degree ( n  - 1). Applying the same reasoning re- 
peatedly [ 1 1 1  we get 

Pn(X + 1) - Pn(X) = Pn-l(X) 
P,-l(X + 1) - P,-l(X) = Pn--2(X) 
P , - ~ ( x  + 1 )  - P n - 2 ( ~ )  == P n - 3 ( ~ )  ( 2 )  

P l (x  + 1) - P l ( x )  = Po(x)  = Constant. 

Thus, if we know P;(O) for all 0 5 i 5 n we can evaluate 
the polynomial incrementally using ( 2 )  at all the grid points 
1 5 x 5 m .  The crux of this paper lies in identifying this 
potential for use as systolic arrays in frame buffers. 

We call Pi- 1 ( x )  as the predecessor of Pi ( x )  or Pi ( x )  as the 
successor of P;- l (x ) .  From ( 2 ) ,  each P;(x  + 1) is the sum 
of the polynomial P;(x )  and its predecessor PiPl (x ) .  The 
polynomial Po(x)  is a constant, with all its predecessors as 
zeros which can be omitted. We refer to Pi(0) for 0 5 i 5 n ,  
as the initial vector. Po(x)  is called the first element and from 
this the polynomials of higher degree are obtained. P n ( x )  is 
called the last element and it is this polynomial we need to 
evaluate. 

The initial vector [Po(O), PI(O) ,  . .  .,P,(O)IT can be ob- 
tained by computing the polynomial at grid points 0 to n and 
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Fig. 2. Initial vector evaluation 

2a2+6a3 6a3 

1 ao+al+a2+a3 al+3a2+7a3 2a2+12a3 

2 aO+2a1+4a2+8a3 a1+5a2+19a3 

using the forward difference technique [ 113 as shown in Fig. 
2. Table I illustrates the evaluation of the initial vector for the 
example of a cubic polynomial. 

Another method to compute the initial vector, which is at- 
tractive because of its systolic implementation, is to consider 
it a linear transform W of the coefficients of the polynomial. 
This permits the pipelining of coefficients of a large number 
of polynomials. It can be easily shown that the initial vector 

(3) 

The matrix W is a lower right triangular one, and the elements 
w;, j for n 5 i + j 5 2n,  are integers which depend only on n.  
They can be precomputed and stored as a matrix depending 
on the polynomial degree. 

The sequential algorithm to compute the polynomial at grid 
points 1 5 x 5 m is given below. 

Algorithm polynomialin-x; 
begin 

step 1. 
step 2. 
step 3. 

Compute the initial vector Pj(O), for 0 5 i 5 n .  
for x := 0 to m - 1 do 

{ * compute the polynomial at x * } 

begin 
Po(x + 1) := Po(x); 
fo r i  := 1 to n do step 4. 

step 5. P;(x + 1) :=Pj-l(X) +Pi(x) ;  
end; 

end; 

B. The x-array of the Frame Buffer 
As mentioned earlier [2], the frame buffer consists of a 

memory array with a set of memory registers devoted to each 
pixel. We show in the following sections that by adding a 
few adders to evaluate polynomials, the frame buffer is made 
intelligent and its processing capability enhanced considerably. 

We consider in this paper only word parallel organizations. 
However, actual physical implementation constraints of cost 
and size may require bit serial organizations. Instead of imple- 
menting the whole frame buffer, a smaller array (say 16 x 16 
cells) representing a window in the frame buffer would permit 
word parallel organizations from the point of view of cost and 
size. By windowing, clipping, and bounding box techniques, 
high performance at the expense of little reduction in speed 
can be achieved. 

From the sequential algorithm we see a convenient way of 
unwinding the "for" loops that exactly fits into our notion 
of the frame buffer organization. The unwinding process also 
creates a pipeline without feedback such that the initial vector 
of a large number of polynomials can be completely pipelined 
111. 

First the description of a generic c-cell [shown in Fig. 3(a)] 
to evaluate a polynomial of degree n is presented. It consists 
of n adders and a delay element. The delay element can be 
considered as a two-input adder with one of its inputs perma- 
nently connected to logic zero. The cell evaluates in parallel, 
in unit time the steps 3-5 in the above algorithm. For sim- 
plicity, we assume throughout this paper that the output of an 
adder is available one cycle after its inputs are made available. 
This can be easily achieved by inserting delay registers at the 
output of every adder in each cell. 

The computation of the polynomial in a systolic array con- 
sisting of generic c-cells is illustrated using the example of a 
cubic polynomial given by 

P ~ ( x )  = a0 + a l x  + a2x2 + a3x3. 

Using difference technique shown in Table I, we get the initial 
vector 

(4) 
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x . 1  x .2  x = 3  x=m-1 x=m 

P3(1) P3(Z) P3(3) 

(b) 
(a) A generic complex cell. (b) The x-array using c-cells for eval- Fig. 3. 

uation of cubic polynomial. 

PI ( x )  2a2+6a3 2a2+12a3 2a2+18a3 2a2+24a3 

p 2 ( x )  al+a2+a3 a1+3a2+7a3 a1+5a2+19a3 a1+7a2+37a3 

‘0 ao+a1+a2 ao+2a1+4a2 ao+3a1+9a2 

+a3 +ea3 +27a3 

Unwinding the “for” loop of step 2 ,  we get a linear array 
which evaluates the polynomial. Fig. 3(b) shows the array for 
the case of the cubic polynomial. The host computes the initial 
vector and feeds it to the array as shown in the figure. The 
computation proceeds from left to right as a wavefront. Table 
I1 shows the outputs of each cell as the wavefront progresses. 
The last row (in bold characters) corresponds to the evaluation 
of the polynomial. 

For the linear, quadratic, and cubic expressions of the form 
P, (x )  = Cryoajx’ ,  one can easily show that 

[ PO(0) Pl,o)] = [: :] [ 111 -linear case 

We use these results when we extend the polynomial evalua- 
tion to the case of two variables. 

To evaluate a polynomial of degree n, for m pixels in the 
array it takes m(n + 1) = O(mn) space. The pipelining period 
is unity. 

( 5 )  C .  Polynomial Evaluation in Two Variables Using c-cells 

POW) 0 0 2  a0 We write the bivariable polynomial of degree n as 

[ = 1: (I, i] [:;] -quadratic case 
Q ~ ( x ,  Y )  = a;, jx’YJ.  

Treating Q n ( x ,  y )  as a polynomial P,(x> of a single variable 

o<;+j<o 

(6) 
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of degree n,  we can write nomial in x, using the x-array described earlier. We illustrate 
n the above method for the cubic polynomial in two variables 

Pri(x> = Cf n-1 .( Y b ‘ .  (8) given by 
; =O 

Q3(x, Y) = ai, jx’yj 
Each coefficient in the above equation, i.e., fn-;(y), is a poly- O<i+ j<3  

= ( ~ 0 . 0  + go, I Y  + ~ 0 . 2 ~ ~  + ~ 0 . 3 ~ ~ )  nomial in a single variable y of degree n - i .  For a particular y 
value, these f,-;(y) can be evaluated to yield the coefficients 
of the polynomial P,  (x). But the initial vector that is required 
at the input of the x-array is the linear transform W of these 

+ (a1.0 + a1, I Y  fGl,*Y2)X 
+ @2,0  +a2, l Y N 2  

+ a3,0x3. coefficients according to (3), and not just the coefficients alone. 
If P;(x) are the polynomials in x, using (3) we get = f3 (y )  +f2(Y)X +fl(Y)X2 +fO(Y)X3. 

Each Pi(0) is a polynomial in y of degree i and is suitable 
for feeding it into the x-array. The sequential algorithm to 

Treating fn-;(y) as the coefficients of a polynomial P;(X), 
we have 

evaluate Qn(x,  y )  for all 1 5 x ,  y 5 m, is given below. n 

Algorithm polyn om ial-in-xy ; P;(o) = wi, jfn-j(Y) = g;(y>, for 0 5 i 5 n 

begin 
for y := 1 to m do step 1. 

step 2. 
begin 

for i := 0 to n do 

j =O 

where wi,;’s are the elements of the linear transform W ,  
which is an ( n  + 1) x ( n  + 1) lower right triangular matrix 
and is fixed for a given n. From (4) we get 

step 3.  
step 4. 

Compute the initial vector P;(O) := gi(y); 

begin 
for x :=0 to m - 1 do 

step 5. 

step 7. 

Po(x + 1) := Po(x); 
for i := 1 to n do step 6. 

P;(x + 1) :=P;-l(x) +P;(x);  
end; 

end; 
end; 

The y-array of the Frame Buffer: The unwinding of step 
1 in the above algorithm yields the y-array. The y-array treats 
the polynomials f , -; (y) as coefficients, and evaluates the 
transformed coefficients g;(y) such that they form the ini- 
tial vectors for the x-arrays. Steps 2 and 3 of the algorithm 
suggest a way to design each cell of the y-array. In order to 
evaluate step 2 in parallel, we require ( n  + I )  generic cells of 
size i, 0 5 i 5 n. Steps 4-7 represent the evaluation of poly- 

Each row i in the above matrix is a polynomial in y of 
degree i, for 0 5 i 5 3. Thus, we have to evaluate linear, 
quadratic, and cubic expressions of y using (3, (6), and (7). 
For this, the evaluation on the y-array is shown in Fig. 4. 
Table III(a) shows the progress of the wavefront downwards 
for the y-array cells for y = 1 to y = 4. The entire frame 
buffer consists of an array of x-arrays, one for each y and 
shown in Fig. 5. The y-array computes the initial vector for 
each x-array and feeds it at the left side of the array as shown. 
From the figure it is clear that in the frame buffer the wave- 
front advances diagonally. Table III(b) and (c) lists the outputs 
of the x-array for y = 1 and y = 2, respectively. As before, 
the contents of the last row in the tables are the result of the 
cubic polynomial evaluation. 

The linear combinations of the coefficients fed to the 
y-array can be computed by the host, or else, a simple matrix 
vector multiplier chip can be built such that the chip receives 
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(a) 
Linear combinatsons of 
the coefficients 

(b) 
Fig. 4. (a) The CJ array for n = 3.  (b) Block schematic of c_y-array cell 

for n = 3 .  

the coefficients as inputs from the host and outputs the re- 
quired linear transforms. Thus, the host can pipeline to the 
chip the coefficients of a large number of polynomials which 
need to be evaluated for the display of curves and surfaces, 
polygons, hidden surface removal, and many other applica- 
tions. 

Each cell in the y array requires O(n2) space. The y-array 
having m cells requires O(mn2) space. The entire frame 
buffer requires O(m2n +mn2) space. The pipelining period is 
unity. Usually for computer graphics applications, the degree 
n of the polynomial is small compared to m and is less than 
or equal to 3. Hence, the space required is O(m2n). 

In the following section, we present the organization of the 
multiple wavefront array for the evaluation of polynomials 
using the simple s-cells. 

IV. MULTIPLE WAVEFRONT POLYNOMIAL EVALUATION 

There are many transformation techniques that can be ex- 
ploited to aid the design of systolic systems [l] ,  [6], [7].  In- 
stead of deriving the results using well-known techniques [l], 
[7 ] ,  we directly state the results. Either by space time trans- 
formation and geometric projection [ l ]  on the array of Fig. 
3(b), or by index set transformations [7], on the sequential al- 
gorithm polynomial-in-x, we get the array as shown in Fig. 
6(b). The primitive equation P;(x + 1) = P;(x) + P;-I(x),  
in step 5 of algorithm polynomial-in-x, is transformed to the 
equation given below: 

Cell(x + 1, t + 1) = Cell(x, t )  +Cell(x,  t - 1) 

i.e., the output of the cell at x + 1 evaluated at time t + 1 

is equal to the sum of the outputs of cell at x at times t and 
t - 1. The parallel evaluation of the polynomial at a cell (sin- 
gle wavefront) is reduced to pipelining (multiple wavefronts). 
Each generic cell shown in Fig. 6(a) contains a single two- 
input adder and a storage register. As before, we assume that 
the output of the adder is available one cycle after its inputs 
are made available. The polynomial given by 

n 

i =O 

is evaluated by pipelining the elements of the initial vector into 
the x-array with Po(0) first, followed by its successors. As 
the cells are independent of the degree of the polynomial, any 
polynomial can be evaluated with multiple wavefronts. An m 
pixel x-array requires O(m) space and (n + 1) wavefronts. 
We illustrate the above procedure with an example of a cubic 
polynomial given by 

P ~ ( x )  = a3x2 +a2x2 + a l x  + ao. 

The initial values of the wavefronts Po(O), P,(O), P2(0), and 
P3(0) from (4) are 

603 

2a2 + 6a3 

al  +a2 +a3  

a0 
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Linear combinations 
of input coefficients 

x - array 

% e 
0 

x 

1" 'L x - array 

Fig. 5 .  The frame buffer organization for the evaluation of a cubic polyno- 
mial using complex c-cells. 

1 
+ 

Fig. 6.  (a) A generic simplified s-cell. (b) Evaluation of a cubic polynomial 
using s-array cells. 

By pumping the value 6a3 followed by 2a2 +6a3, a1 +a2 +a3, 
and a0 into the pipeline the polynomial P3(x) is evaluated. It 
takes four wavefronts to compute P3(x). Table IV shows the 
contents of the cell's registers as the four wavefronts progress. 

Each cell has to reset the output of the adder and the contents 
of its register to zero before a new polynomial is evaluated. As 
( n  + 1) wavefronts have to cross each cell for the polynomial 
evaluation, each cell can reset at the end of these (n + 1) 
wavefronts. Alternatively, a wavefront constituting the reset 
instruction can be pipelined between the coefficients of the two 
polynomials in the array. We do not account for this wavefront 
in our complexity calculations. 

Polynomial Evaluation in Two Variables Using Simpli- 
fied Cells: Inspection of a y-array cell in Fig. 4(a) suggests 
two levels of simplification that can be made on the space re- 
quired for the cell. As before a bivariable polynomial can be 
written as 

Instead of having (n + 1) generic cells of size i, 0 5 i 5 n ,  as 
shown in Fig. 3(a), we now have a single generic cell of size 
n to evaluate the (n + 1) elements of the initial vector one after 
another using ( n  + 1) wavefronts. This gives rise to the first 
level of simplification. We call this cy-array cells which is 
similar to the x-array cells of Section 111. A second level of 
simplification on the cy-array cells yields the simple y-array 
cells called sj-array cells similar to the simple x-array cells. 

a) Using cy-array Cells: The first level of simplification 
yields the y-array, shown in Fig. 7 for the case of a cubic 
polynomial, which has n adders and a delay element. The 
host inputs to the y-array the coefficients for the evaluation 
of the element Po(0) of the initial vector, followed by the 
coefficients for the evaluation of Pl(0)  and so on. It can be 
seen that it takes (n + 1) wavefronts, spaced one time unit apart 
to compute the elements of the initial vector. The disadvantage 
of this approach is that the y-array is a function of the degree 
of the polynomial. For the case of a cubic polynomial we have 

As before, the initial vector is given by 

1 
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TABLE IV 
THE CONTENTS OF THE X-ARRAY CELLS FOR x = 0 TO 3 

1 6a3+2a2 6a3 

x -array 

y -ar ray  

Fig. 7.  The organization of the frame buffer using complex c_y-array cells 

Fig. 7 shows the cy-array cells together with the coefficients 
that are pipelined. The first wavefront in the cy-array com- 
putes 6fo(y), the second wavefront computes 2f1 ( y )  +6fo(y) 
and so on. Table V(a) lists the values flowing through the 
cj-array which are input to the x-array. Table V(b) shows 
the contents of the cell’s registers in the x-array for y = 1 
and Table V(c) for y = 2. The last entry in each column of 
the tables (in bold characters) is the value of the cubic poly- 
nomial. 

The c_v-array with m cells requires m(n + 1) space and 
(n + 1) wavefronts. Thus, the entire frame buffer can be or- 
ganized in O(rn2) cells. The pipelining period is (n + 1). 

b) Using s_v-array Cells: The second level of simplifica- 

tion on the c_v-array cells yields the simplified generic cell 
similar to that of Fig. 6(a). The sj-array (see Fig. 8) com- 
putes, using one wavefront, the element Po(O), of the initial 
vector, which is a polynomial in y of degree 0. At the end 
of one wavefront, the y-array outputs the result to the x-array. 
The y-array then computes the successor element PI (0) using 
two wavefronts and at the end of two wavefronts, it outputs 
P l ( 0 )  to the x-array and so on. The organization of the frame 
buffer is shown in Fig. 8. It can be seen that it takes (n + 
l)(n + 2)/2 wavefronts (time units), for the evaluation of the 
polynomial of degree n. The space requirement is O(m2). 
For the case of cubic polynomial, the computation of 6fo(y) 
requires one wavefront and the computation of 2 f 1 (y)+6fo(y)  
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(Refer fig. 7) 
(a) 

3 a1, o+a2,0 2a2, 1+2a2, 0 6a3, 0 

+a3, O + a l ,  1 c6a3, 0 

+a2,1+a1,2 
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TABLE V. (Continued) 

Output of x-array cells for 
........................................................................... 

(The input is taken from table V ( a ) )  

(b) 

6a3,0 

a0 # 0+2ao, 1 

+2%, 0+4a2,0 

+%,0+~~1,1 

+4a0, 2+8a0, 3 

, z  +ea2, 1+8a1 
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7 ~ Pipclined linear combinations 
input copiticients 

x-array 
I 

i :  J 

y- array 

Fig. 8.  Organization of the frame buffer with simplified cells. 

s-cell x-array 
c-cell y-array o(rn2) o(m2n) 0 (m2n*) 
( f i g .  7 )  

s-cell x-array, 

(fig. 8) 
s-cell y-array o(rn2) o ( n 2 )  

requires two wavefronts and so on. The input wavefronts to the 
x-array are not equispaced but are linearly spaced in time. It 
requires ten wavefronts to be input to the s_y-array to compute 
a cubic polynomial. 

spondence between the coordinates of the pixel on the screen 
and the coordinates of the pixel registers on the chip. Hence, 
a light emitting device constituting the screen can become a 
part of the chip. The array being linear in nature provides all 
the advantages of fault tolerance of linear arrays and efficient 
layout for VLSI. V. CONCLUSIONS 

In this paper, we have described organizations of frame 
buffers to evaluate polynomials. From a sequential algorithm 
we derive a single wavefront complex cell array. The space 
requirement is reduced to yield multiple wavefront-simplified 
cell array. Table VI compares the complexities of the organi- 
zations for their area x period and area x period2. A further 
reduction in area which is possible but not considered in this 
paper is due to the bit serial pipeline organization. This will 
increase the number of wavefronts by a factor equal to the 
word length but uses very simple hardware. The advantage 
of the organizations described in this paper is that the com- 
putation in any cell is carried out using the results of the 
neighboring cells only and without the need for any broad- 
cast. Hence, it is very attractive to realize the frame buffer in 
the form of a VLSI chip. The VLSI array can be laid out on 
the chip as a rectangle such that there is a one to one corre- 

If we assume the time taken for the wavefront to move from 
one cell to the next as 1 ms (as only simple operations are 
involved), then the frame buffer can compute on the order of 
one million expressions per second in the steady state, once 
the pipeline is full. 
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