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For v E Ui and for all 1 5 i 5 [y], there exists an L-path 
from vertex f ( i  + 1) to u and therefore, d(f(i + 1), v) I n - (2i + 
1). Hence we have Ui c_ Nn-(2i+l) (f(i + 1)) for 15  i 5 . 

Furthermore, we have d(f(2), v) 5 2 for v E U, and therefore, 

L 3 i  

U, Nn-3 (f(2)). Hence the theorem follows. 0 
It follows from Theorem 3, the optimal transmitting time for 

UB(2, n)  is at most n - 1. For UB(3, n)  and UB(4, E ) ,  the optimal 
transmitting time is either n or n + 1 due to Theorem 2. We have 
the following conjecture which appears to be difficult to prove: 

CONJECTURE 1. The optimal transmitting time is n - 1 for UB(2, n), 
and n for UB(3, n) and UB(4, n).  

5 CONCLUSIONS 
We have solved the shortest path problem on undirected de Bruijn 
networks UB(d, n )  Using this result, we have obtained a transmit- 
ting scheme on binary de Bruijn networks UB(2, n)  We have also 
proved that the optimal transmitting problem is trivial for UB(d, nI 
when d 2 5 We believe that the result on the shortest paths in 
UB(d, n)  can be also extended to solve the shortest path problem 
on hierarchical networks constructed from undirected de Bruijn 
networks Furthermore, this result can help in solving other 
broadcasting-related problems 
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2-1 Addition and Related Arithmetic 
perations with Threshold Logic 

Stamatis Vassiliadis, Sorin Cotofana, and Koen Bertels 

Abstract-In this paper we investigate the reduction of the size for 
small depth feed-forward linear threshold networks performing binary 
addition and related functions. For n bit operands we propose a depth 

3 O(&) asymptotic size network for the binary addition with 

polynomially bounded weights. We propose also a depth-3 addition of 
optimal O(n) asymptotic size network and a depth-2 comparison of 

O(&) asymptotic size network, both with 0(2&) asymptotic size of 
weight values. For existing architectural formats we show that our 
schemes, with equal or smaller depth networks, substantially 
outperform existing schemes in terms of size and fan-in requirements 
and on occasions in weight requirements. 

Index Terms-Computer arithmetic, binary adders, binary comparison, 
majority circuits, threshold logic, neural networks. 

1 INTRODUCTION AND MAIN RESULTS 
A linear threshold gate with a Boolean output F ( X )  is defined by: 

Given that such a model can compute arbitrary Boolean func- 
tions it has been the subject of numerous studies concerning its 
theoretical capabilities, see for example [l], [21, [31, [41, [51, 161. 
Furthermore, there is evidence of direct implementation of thresh- 
old logic at the device level, see for example [7], [81,[91. 

In this paper we investigate feed-forward linear threshold gates 
based networks for addition and addition related operations. Re- 
garding such operations the following has been established using 
threshold logic based parallel networks: 

For the binary addition, Siu et al. 141, 1101 suggested that 
each bit of the sum is computable with depth-2 networks 
with a network size of Oh4) and that the network size can 
be reduced to O(n2) for depth-3 networks 
In [4] it has been indicated that the comparison function, 
performed on two operands of length n, can be computed in 
depth-2 networks with size of Oh4) .  Further with depth-3 
networks, it has been suggested that the comparison can be 
realized with size of O(n). Roychowdhury and a1 [ll] sug- 
gested that the comparison can be computed in depth-3 
networks with size of O ( e )  and polynomially bounded 
weights 

We investigate the reduction of the network size for depth-3 
networks for addition and depth-2 networks for comparison. The 
main theoretical conclusions of the paper can be summarized as 
follows: 
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Addition can be performed by a depth-3 network with the 

size in the order of O(&) and polynomially bounded 

weights. 
Addition can be performed by a depth-3 network' with 

6n + 2 size (i.e., of optimal O(n) size complexity), a 

maximum fan-in of 2 + 3 and a maximum weight 

size of 2'&' . It is not known if optimal O(n) size depth-3 
networks with polynomial weights are possible. 
The comparison of two n-bit operands with carry can be 

computed by a depth-2 network with 2 + 1 size (i.e., 

of o(&) size complexity), a maximum fan-in of 

r r 4 1  
rrfill 

Tr..11 

and a maximum weight size of 2IJ;;'. It is not known if 
O(&) size depth-2 networks with polynomial weights are 
possible. 

Concerning practical situations, represented by existing archi- 
tectural formats, we show that our schemes provide sizable ad- 
vantages over other schemes. In particular we show the following: 

The proposed addition scheme with polynomially bounded 
weights requires up to 71% threshold gates and 28% fan-in 
for the realization of 32-bit adders and up to 47% threshold 
gates and 18% fan-in for the realization of 64-bit devices 
when compared to the Siu et al. scheme [4], known to be the 
best schemes thus far for small depth and size networks for 
addition. 
The proposed O(n) size addition scheme requires up to 18% 
threshold gates for the realization of 32-bit adders and up to 
9% for the realization of 64-bit adders when compared to 
the Siu et al. scheme [41. Our scheme implies a maximum 
weight value twice (for 32 bit operands) or four times (for 64 
bit operands) the maximum weight value deduced from [41, 
but it provides an 8.53, respectively 13.47 times lower fan-in. 
For equal delay our scheme requires up to 18% gates, 50% 
weights, and 28% fan-in for the realization of 32-bit com- 
parators and up to 13% gates, equal weights, and 20% fan-in 
for the realization of 64-bit devices , when compared to the 
Siu et al. scheme [4]. When compared with Roychowdhury 
and a1 scheme [11] it requires up to 94% gates, 25% weights, 
and 75% fan-in for the realization of 32-bit comparators and 
up to 83% gates, 50% weights, and 92% fan-in for the reali- 
zation of 64-bit devices. 

The presentation is organized as follows: In Section 2 we pre- 
sent the proposed schemes for addition and addition related func- 
tions. Section 3 contains comparisons between our approaches and 
what is known as the state of the art for some usual dimensions of 
operands and Section 4 some concluding remarks. 

2 
Binary addition requires the computation of the carry and the 
sum. We assume that the operands are partitioned into groups. In 
order to produce the carry equations, for a group i of length I ,  we 
define two new quantities, a, ,  (the carry-force quantity) and Pt, 

RECURSIVE FORMULAE FOR BINARY ADDITION 

(the carry-preserve quantity) defined by the following: 
carry-force. a; = 1 when the group's sum has a value [2']2 
and 0 otherwise. 
carry-preserve. P, = 1 when the group's sum has a value 
[2' - 11 

The theorem to follow introduces a carry computation using 
threshold logic. 

THEOREM 1. For any given group i , the carry-out of the group i , C, can 

C, = sgn{yl - 11 

with y ,  = 2'[a, + p ,  - 11 + y,-l for 0 I i and y-l = Ctx. 

and 0 otherwise. 

be computed by: 

PROOF. By induction. Given that the expression for the carry pre- 
sumably computes the true carry C, it must be that 
y ,  - 1 t 0 when the true carry of the addition is C, = 1 and 
that y ,  - 1 < 0 when the true carry for the addition is C, = 0. 

basis. Trivial with proper substitutions. 

step. Assume that the theorem holds true for k - 1 prove 
that it is also true fork. 

Assuming that the theorem holds true for k - 1 it is im- 
plied that: 

If the true carry for the addition Ck-' = 1 then Yk-12 1. 
0 If the true carry for the addition C,, = 0 then Yk-1 < 1. 

Further, by removing the recurrence and with substitu- 
tions it can be proven that the maximum value of "fk-1 is 
MAX{yk-_,J = 2k and the minimum is MIN{yk-,) = -2* + 1. 

The carry Ck-, is the carry into the group i thus the logi- 
cal expression for the carry-out is ck = a k  + ,&&, and it 
must be proven that Ck = ~ g n { 2 ~ [ 4  + - 11 + K-l - 11 is 
equivalent to this logical expression. The logical exprgssion 
dictates to consider, after exclusion of irrelevant cases, four 
distinct cases: 

Case 1. (if a, = 1 then ck = 1 (independent of the Ck-1 

value)). If Ck-_, = 1 then x-l 2 1 and because ak = 1 implying 

also P, = 1 , Ck = 1. If C,, = 0 then yk-' < 1. Given that 

MIN{x-~] = -2k + 1, and because = 1, Kin 
the worse case scenario is: 

= 1 implying 

k k k  
% = 2  [a! + -11 + yk-1 = 2 -2 + 1 = 1, 

thus x - 1 2 0 and C, = 1. Consequently, independent of the 
ck-l, % - 1 t 0 and c, = 1 when a k  = 1. 

= 1 
then K~ t 1 and because ak = 0 and P, = 1, x - 1 1 0  and 

Case 3 (if P, = 1, C,, = 0 , and ak = 0 ,then ck = 0 ). If 
- 1 < 0 

Case 2 .  (if P, = Ck-l = 1 and a, = 0, then Ck = 1). If 

c k = 1 .  

Ck-' = 0 then x-l < 1 , because ak = 0 and P, = 1 , 
and C, = 0. 

Case 4. (if P, = a k  = 0 , independent of Ck-1, Ck = 0). 
Because = a, = 0 , when ck-1 = 0 % - 1 < 1 and obviously 
Ck = 0 . When Ck-' = 1 because the maximum value 

and consequently - 1 < 0 thus the carry-out Ck = 0 inde- 

k k k k  
M A X ( ~ - 1 ) = 2 , ~ = 2 [ ~ k + P , - 1 ] + , 1 = -  2 + 2  = O ,  

pendent of the C,, value. 0 

1. It is interesting to note that this scheme allows also an implicit 
construction of a depth-2 network for the addition with the size in the 
order of O(n). 

2. We use x z  and x i  in order to denote greater or equal and less 

3. I.e., the exclusion of the cases where ol, = 1 and P, = 0. 
than or equal to x, respectively. 
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COROLLARY 1. Assuming that the carry-in into the addition is C,,, the 
carry-out of the group i , C,, can be computed by, 

PROOF. Trivial. By removing the recursion on x. 0 
Regarding the comparison function it can be observed that, 

using linear threshold feed-forward networks, it can be computed 
by 

C ( X ,  Y) = sgn 2'(x, - y,) . 1.::: I 
Assume that the operation is performed with n-bit represented 
unsigned numbers then after the mversion of the operands and the 
"hot one" addition the following holds true. 

COROLLARY 2. The Comparison can be computed by a depth-2 linear 

threshold network of size 2 + 1, with the weight values at 

most 2IJ;;l and with an upper bound of 2[&1+ 1 for the maxi- 

mum fan-in 

L l l  

PROOF. Divide the operands into groups of length x Thus, there 
are groups all (but possibly the last one) with the same 
length The comparison can be computed by computing the 
carry-out of the 2 - 1 binary addition with carry thus it can 
be computed by 

First Level. Let 0 I m I - 1, compute 

I 
1 

and 

where 1 - 1 is either x - 1 or the length of the last group 
minus 1. 

Second Level. Let i = - 1, compute the carry-out 

The maximum fan-in is due to either the computation of 
the carry out on the second level of threshold gates or the 

computation of the group 04, and & The fan-in required for 
the carry is equal to 2[21+ 1 The fan-in requirements for 

the a, and p, depends on the number of bits comprising a 
group It is equal to 2x (the bits of both operands are re- 
quired to compute the or, and /?, for any given m ) Conse- 
quently, the maximum fan-in required for comparison is 
MAX (215 + 1, 2x1. With appropriate considerations, the 
maximum weight value required can be computed to be 

equal to MAX {2[", 2') Consequently, the weight sizes 

are minimum when 2"l = 2' implying a partition of & 
bits per group 

Because the number of blocks has to be an integer num- 
ber we have to assume for x the value [&I This leads to 

the maximum weight of MAX{Jh1,  2'&'1, and to a 

maximum fan-in of M A X  (2 + 1, 2 & 1. In order to 

be able to assume an upper bound for the result of the MAX 
operator we have to establish a relation between r-1 and 

[&I. If n is a perfect square then ~ ,:, 1 = I&], otherwise 

it can be proved, based on the fact that [xi I x + 1 holds 

true for any x, that rfi1 I [&I and the difference be- 

tween the two numbers could not be larger than 1 There- 

fore the weights are at most 2'&l and the maximum fan-in 
is upper bounded by 2[&1+ 1. 

r r q 1  r 1 

iJ"1 

Regarding the size the first level requires 2 thresh- 

old gates for the computations of the a, and the p, quan- 
tities. One threshold gate is required to compute the carry- 
out on the second level. Consequently, the comparison re- 

L l l  

quires 2 ~ + 1 threshold gates. o /rd 
THEOREM 2 The 2 - 1 addition of two n-bit binary numbers can be 

computed by an explicit depth3 linear threshold network with 
O(&) size and polynomially bounded weights. 

PROOF. Assume that the operands have been subdivided into 
groups and that each group contains at most m log n bits4 

and there are [e] groups. For each group I ,  z = 0, 1, ..., 

[+]-l we compute the group carry-force a, and the 

group carry-preserve p, both direct and inverted values as: 

I m log n-1 

a, = sgn C2'(xk + yk) - zmlogn , { k=O 

m log n-1 

i m log n-1 

2m10gn - 2 -  CP(xk +Y,) . 
k=O 

All these quantities can be computed with thresh- 

old gates with a maximum fan-in of 2m log n. The maximum 
weight is given by 2"logn = 21°gnm = nm and therefore the 
weights are polynomially bounded. Moreover for each bit 
position 1, 1 = 1,2, , m log n - 1 , for a group i , we compute 
the bit carry-force ai and the bit carry-preserve pi into the 
bit I both direct and inverted values as: 

4. m is a given integer constant and we will assume for the simplicity 
of notations that m log n is also an integer. 
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I-' 

j-1 

{ k=O 

-.  

For the bits in position j = 0 inside the group i , the bit carry- 
force and the bit carry-preserve are the group carry-force 
and respectively the group carry-preserve that correspond 
to the group i - 1. We need 4n - 4 1 1 gates for the com- 

putation of all the bit carry-force and bit carry-preserve 
quantities. Obviously the fan-in and the weight require- 
ments for bit carry-force and bit carry-preserve are less than 
for the group quantities. All these group and bit carry-force 
and carry-preserve can be computed in parallel with the ex- 
pense of 4n gates. 

Given that the carry-out Ci of the group i (see Theorem 1 )  
can be expressed with a logic recursive formulae as 

ci = ai +pici-,, 

c, = a,  + P,ai-l + P t P z - p - 2  + ... + P,P,-, ... P p ,  
+ P,P,-I ... PIPOC,,. 

This logic expression contains i + 2 products each one of at 
most i + 2 logic variables. The carry-out C, from the bit po- 
sition j inside the group i can be computed with a similar 
expression but in this case the variables a, and p, have to 

be replaced with ai and pi,  respectively. 
In order to compute c, we can use the following recur- 

rence: 

c, = a,pt + arc,-, 

q = zipi +aizi-lpi-l + ... + aiai-, ... a$, 
which leads to 

_ _  + a;a,-, "' a,aoC,,. 
This logic expression also contains i + 2 products each one 
of at most i + 2 logic variables and the inverted carry-out c, 
from the bit position j inside the group i can be similarly 
computed but with E/ and pi instead of ai and p,. 

Given that the sum bit in position j is equal to 

si = xj7cj-, + x ; ~ ~ ; ~ l  + TT,Y,cj-, + XjYjCj_, 

SI = x1yztpt + xIyE,Et-,pr-, + ... + x 1 1  Yz,z,-l ... ",PI 
+ x,yIz,z,.l ... z"q, + z,y,ztpt + Fly,a,ai&,Pi&, 
+ ... + 5f,y,E,E,_l ... a,p, + 5T,y,atat., ... E&" + 
+F;y,piai-, + ... + z;q?cpc~l ... P,a, + Fi";gpc~l ... 
P1P0Cz* + X 1 y , y  + X , y , P p + ,  + " '  + XIy,P,P,_, ' . '  P p ,  
+X,Y,B,B,- ,  ... D,D,C,,$ (2) 

we can rewrite this expression as: 
- - 

All the products in (2) can be computed in parallel in one 
gate delay with 4(i + 2) threshold gates and after that the 
logical OR of these products can be done with one threshold 
gate. 

Therefore, the entire addition can be performed by a 
depth-3 network. In the first level we compute the group 

and bit carry-force and carry-preserve quantities with 4n 
threshold gates. The second level computes the products in 
(2). Because each bit position j in the group i needs 4(i + 2) 
products and there are m log n bit positions in each group 
we need 4m log n (i  + 2) threshold gates in order to compute 
the products that correspond to the sum bits in group i . Be- 
cause i spans from 0 to & - 1  the global number of 

gates in the second level is given by: 
r m 10'6 n 1 

(3)  

The third level of the network contains n threshold gates, 
one for each bit position. Therefore the entire size of the 

network is in the order of O(&). 

Because all the gates in the second level compute logical 
ANDs the inputs' weights are 1 and the threshold values are 
at most m log n + 4. All the gates on the third level perform 
logic ORs and therefore have all the inputs' weights and the 
thresholds equal to 1. As a consequence the weight values 
are dominated by the weights associated to the gates in the 
first level and therefore are in the order of Oh"), i.e., poly- 

COROLLARY 3. The maximum fun-in for the threshold gates in the net- 

nomially bounded. 0 

work is given by 

MAX{2mlogn ,  4 (  [*I+ 2)}. 

PROOF. The maximum fan-in is equal to 2m log n for the gates in 
the first level. By the inclusion in the products of the bits X ,  

and Yj (normal or inverted) the products in (2) contain at 
most i + 4 variables and therefore the maximum fan-in for 
the gates that compute the AND terms is equal with 
[+]+4. Because (2)  contains 4(i t 2)  terms the maxi- 

mum fan-in for the gates in the third level is 4 + 2 . 

Therefore, the maximum fan-in is given by 

0 

We proved that the 2 - 1 addition can be performed by a depth- 

3 network of size in the order of O(&) with polynomially 

bounded weights. In the following we keep the same depth of the 
network, we impose the size to be in the order of O(n) and investi- 
gate the consequences such an imposition has on weight values 
and fan-in. The results are stated by the following theorem. 

THEOREM 3. The 2 - 1 addition of two n-bit binary numbers can be 
computed by an explicit depth-3 lineur threshold network with 

6n + 2 size, with the maximum weight value of 2'&' 

and the maximum fun-in of 2 yS + 3 .  

(r-1 1 
M A X  { 2m log n, 4 ([+I + 2)}. 

I ".l 
I 4 

PROOF. Assume that the operands have been subdivided into 

groups and that 0 indicates the Exclusive-or. The sum, S I ,  
of a bit j in a group i can be computed by 

si = xi Q Yi 0 c,-l, 
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carry into position j of group i. The sum equation can be 

transformed to S = sgn{1= + 1: + 3= - 2). + + 
I 

It will be shown that l:, l;, and 3: can be computed 
by: 

k=O 
1 

3 ;  = sgn 2'+1(X1 + 3) + 2k(a, + &) + c,, - 3 2'+l I k=O 

Where the ak and pk are computed for all k, except 
k = z, using the entire group of bits and for k = z the quanti- 
ties ak and p, are computed by considering the bits Y of the 
group z where 0 5 Y 5 1  -1. 

Case 2 (1:) To prove that the (1:) expression is correct 

we must prove that if any of XI , YI , and CI-, is equal to 1 

then 1; = 1 and if none of X I ,  Y, , and CI-i is 1 then 1: = 0 .  

Clearly for it holds true (proven earlier) and it can be 
trivially proven (with substitutions) that the case holds true 
for X , Y, values 

I 
Case 2. (1 z) Analogous to Case 2 

Case 3 (3 L) Analogous to Case 2 with proper considera- 
tions 

The equations that compute the sum require an explicit 
depth-3 network computing on the first level the ak and p k  
for all groups and bits for the group z On the second level 
the network computes 1 L, 11, and 3 L, and finally on the 
third level the network computes the S, for all] 

In order to compute the cost we divide the addition, as 
we did for the comparison, into groups of length x By fol- 
lowing the same way of reasoning as in the Corollary 2 we 
obtain that the optimum value of the maximum number of 
bits in each group is [&I This partition leads to a maxi- 

+ 3 and to a maximum weight of 

Under the assumption that the partition of the operands 
is done in groups of bits the following is required re- 
garding the size of the network In order to compute the 

group a, and p, it is required to have 2 __ threshold 

gates in the first level. Further we require at most 2n thresh- 
old gates in the first level to compute all bit ( x k  and p, On 
the second level we require 3% gates to compute 
12, 1 =, and 3 2 and finally we require n gates on the third 

level to compute the sum SI for all 1. Thus the entire scheme 

[,;,I 

requires at most 6n + 2 threshold gates to compute 

the sum 

REMARK 1. As a consequence of the fact that sum equation in 
Theorem 3 can be rewritten as SI = 1 + 1 + 3 - 1, the 

sum of two n-bit binary numbers can be computed by an 
implicit depth-2 linear threshold network with 

5n + 2 - size, Le., in the order of O(n) . This scheme 

will increase the fan-in for the next network that uses as in- 
put the computed sum by 2 ,  because the value of each sum 
bit is carried by 3 signals instead of 1. 

[ G l ]  

3 COMPARISONS 
In the previous discussion we have determined the network re- 
quirements in general Our scheme for addition presented in 
Theorem 2 provides polynomially bounded weights and a net- 
work size in the order of O(&) and it is superior to the scheme 

presented in [4] which has an O h 2 )  size Consequently, we im- 
posed an optimal O(n) size for depth-3 networks for the addition 
and investigated the influence such an imposition had on the 
weight sizes and fan-in It was established that the weight re- 
quirements are of O(2Jt;) complexity and that the fan-in require- 
ments are of O(&) complexity Consequently, we have proposed 
depth-2 networks for the comparison that have 
O(&), 0(2&), and O( ,h )  complexity for size, weight, and fan-in 
respectively. Our investigation leaves open the questions of O(n) 
size depth-3 addition and O(&) depth-2 comparison with poly- 
nomially bounded weights 

Given that asymptotic complexities need not apply to realistic 
scenarios we considered as a final exercise a comparison with 
other schemes assuming existing architectural formats. In par- 
ticular we considered 32- and 64-bit architectures and estimated 
the requirements of the various schemes The results of our esti- 
mations are reported m Table 1 and Table 2 For the evaluation of 
Siu and a1 and Roychowdhury and a1 schemes performance we 
used the formulas reported in [41, [111. The PW Addition row cor- 
responds to the addihon scheme presented m Theorem 2 for m = 1 
i e ,  the division of operands in groups of log n bits. For the other 
rows we assumed that the subdivision of the operands is made 
using [,h] The depth-3 comparison is done by first dividing the 

operands in two and after that in The first level computes 

the carry-force and carry-preserve for all the groups of bits 

The second level produces the carry out of the least significant $ 
bits and the third level the result of the comparison 

What is noticeable from the tables is the small amount of linear 
threshold gates to reahze the addition-comparison for the common 
32- and 64-bit operand sizes Clearly, the improvement for the size 
over existing art is substantial. In particular our addition scheme 
with polynomially bounded weights requires up to 71% for the 
realization of 32-bit adders and up to 47% for the realization of 64- 
bit devices when compared to the Siu et a1 scheme [41 The fan-in 
reduction is also significant because our scheme requires up to 
28% for the realization of 32-bit adders and up to 18% for the reali- 
zation of 64-bit devices As the tables suggest the scheme proposed 
in Theorem 3 can be realized with a very small fraction of gates for 
the 32- and 64-bit operand sizes In particular, it requires up to 
18% for the realization of 32-bit adders and up to 9 32% for the 
realization of 64-bit devices when compared to the Siu et a1 
scheme [41 While, as it can be observed in Table 2 for 32-bit oper- 
ands, our scheme implies a maximum weight value twice the 
maximum weight value deduced from [41, it provides an 8 5 times 
lower fan-in 
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Function 

1067 

32-bit operands 64-bit operands 

Depth S W F S W F 

TABLE 1 
COMPARISONS FOR SOME OPERAND LENGTHS 

Siu and a1 

Roychowdhury and a1 

Comparison 3 96 32 32 192 64 64 

Addition 3 1121 32 128 4289 64 256 

Comparison 3 19 64 12 31 128 14 

Function 

TABLE 2 
RATIO BETWEEN SCHEMES 

32-bit operands 64-bit operands 
S W F S W F  

Ratios YS 

Siu and al 

Ratios YS 
Roychowdhury and aJ 

Comparison in depth 2 0.66 1 1.08 0.54 2 1.21 

Regarding the comparison when we consider a depth-2 net- 
work, as expected, the weights requirements are greater for our 
scheme when compared to [41, [11] and superior in size. This con- 
clusion however is reversed when the depths of the network are 
assumed to be equal. Our estimations indicate that the scheme we 
propose is better in all counts including the size of the weights (at 
the exception of 64 operands which the weight size of the Siu et al. 
scheme are equal to ours). In particular, our depth-3 scheme re- 
quires up to 18% gates, 50% weights and 28% fan-in for the reali- 
zation of 32-bit comparators and up  to 13% gates, equal weights 
and 20% fan-in for the realization of 64-bit devices, when com- 
pared to the Siu et al. scheme [4]. When compared with Roy- 
chowdhury and al scheme [ l l ]  it requires up  to 94% gates, 25% 
weights and 75% fan-in for the realization of 32-bit comparators 
and up to 83% gates, 50% weights and 92% fan-in for the realiza- 
tion of 64-bit devices. 

Comparison in depth 3 0.94 0.25 

4 CONCLUDING REMARKS 
The main concern of this paper was the reduction of the size of 
networks computing fixed point arithmetic operations while 
maintaining small network depths with bounded and unbounded 
weights. It was shown that the addition can be performed by a 
depth-3 network with: the size in the order of O(&) and poly- 

nomially bounded weights; with the size of 6n + 2 &e., of 

optimal O(n) complexity), a maximum fan-in of 2 yS + 3 and 

a maximum weight value of 2rJ;;1. Related to comparison it was 
shown that the comparison of two n-bit operands with carry can 

be computed by a depth-2 network with 2 yS + 1 size (Le., of 

O(&) complexity), a maximum fan-in of M A X ( 2  r./ + 1, 

2rfi1) and a maximum weight size of 2[&l. The open questions 

left by the investigation are optimal O(n) size depth-3 addition and 
O ( f i )  depth-2 comparison with potentially polynomially 
bounded weights. 

1 4 
I ‘“11 

I ‘“11 

I 4 

0.75 0.83 1 0.50 0.92 
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