
UC Irvine
ICS Technical Reports

Title
Performance analysis of a message-oriented knowledge-base

Permalink
https://escholarship.org/uc/item/7w0054z7

Authors
Wong, Wang-chan
Suda, Tatsuya
Bic, Lubomir

Publication Date
1987-06-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7w0054z7
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Performance Analysis of A Message-Oriented

Knowledge-Bas~

Wang-chan Wong

Tatsuya Suda

Lubomir Bic

Technical Report #87-11

Dept. of Information and Computer Science

University of California, Irvine

Irvine, CA 92717

June 10, 1987

Contents

1. Introduction . 2

2. Horn Knowledge-Based Systems and Resolution . 3

3. The 1Iessage-Driven Knowledge-Base :\Iodel .5

3.1 The Extensional Database (EDB). 1

3.2 The Intensional Database (IDB). . 9

3.3 Inference Engine - :Vlessage Propagation Scheme for SL-Resolution 10

4. Assumptions . 10

.5. Performance Analysis of the Uniprocessor Backtracking Scheme . 12

5.1 Case 1: The ~umber of Correct Answers Is Known. . 14

.5.2 Case 2: The :i" umber of Correct Answers Is Unknown 17

6. Performance Analysis of :Ylessage-Propagation Scheme . . . 18

6.1 Case 1: The ~umber of Correct Answers Is Known. 19

6.2 Case 2: The ~umber of Correct Answers Is Unknown 23

7. ~umerical Results 2.5

7.1 Speedup factor in terms of the tu/if ratio. 2.5

7.2 Irregular Trees, Varying Number of Answers . 26

7.3 Best and vVorst Cases Comparisons. 28

7.4 The Structure of the Knowledge-Base: Bushy vs Skinny. 28

7.5 Comparisons with Large Search Trees 30

8. Concluding Remarks . 31

References :38

Abstract

First-order Horn logic is a useful formalism to design knowledge-based sys­
tems. When implemented on a sequential von Neumann computer, the main
limitation of such systems is performance. We present a message-driven model
for function-free Horn logic, where the knowledge base is represented as a net­
work of logical processing elements communicating with one another exclusively
through messages. The lack of centralized control and centralized memory makes
this model suitable to implementation on a highly-parallel asynchronous computer
architecture.

The primary contribution of this paper is a performance analysis of this
message-driven system and a comparison with a sequential resolution scheme using
backtracking. For both approaches, closed form expressions for the performance
results are derived and compared.

Index Terms - non von Neumann computing, deductive knowledge base, parallel
processing, message-driven computation, performance analysis.

1

1. Introduction
There is a number of possible ways to represent and process knowledge. One

formalism that has attracted much attention by the research community in recent
years is first-order predicate logic. When limited to Horn clauses, i.e., clauses
with only one positive literal, search strategies can be devised tu make the systems
suitable to automatic processing by electronic computers. By far the most popular
search strategy is to scan the clauses from left to right and from top to bottom.
Whenever a goal fails, the search backtracks to the immediately preceding goal and
tries to find an alternate solution. This results in a depth-first search of the solution
space. PROLOG is the most prominent representative of a programming language
based on this strategy termed SL-resolution.

The main limitation of this approach, especially in the realm of knowledge base
applications where significant numbers of unit clauses (facts) must be examined, is
its speed of execution [Kow79]. In an attempt to alleviate this problem, we have
developed a model for parallel processing of a subset of Horn clause logic [BILES 7].
This subset is restricted to function-free binary predicates, which are generally suit­
able to the development of a knowledge base. The model is based on the principles
of asynchronous message-driven computation faun~ in dataflow systems [CoM82,
TBH82] or actor-based models [AGHA85]. The fundamental idea underlying the
model is to view the knowledge base not as a passive data structure stored and
manipulated in memory but as a network of active nodes. Each node represents
a single constant (object) of the knowledge base and is capable of communicating
with other nodes by exchanging messages via the network links. This network will
be called the extentional database.

To extract information from such a knowledge base, each query is viewed
as a template for which a match must be found in the knowledge base network.
This template is formed by searching the rules of the knowledge base; these will
be termed the intentional database. The search for possible matches of a given
query is performed by messages carrying the query template. These are injected
into selected nodes and propagated through the network by being passed from
one node to another. The message propagation does not require any centralized
control; each message carries all the necessary information for a node to determine
if and where to propagate it. This lack of centralized control permits the model to
be implemented on a computer architecture consisting of a very large number of
independent processing elements. Potentially, as many physical elements could be
used as there are nodes in the knowledge base network.

The primary objective of the present paper is to model and analyze the per­
formance of the proposed message-oriented model. To have a reference point for
comparisons, we also model and analyze the conventional Horn database with back­
tracking. For both models, if the search trees are regular, closed form expressions
for the performance results can be derived.

2

The organization of this paper is as follows. In section 2, we describe the
conventional Horn database and explain how information is retrieved. In section 3,
we present our deductive message-driven model. Assumptions used in the analysis
are described in section 4. In section 5, we analyze the performance of the Horn
knowledge-base system that uses backtracking. The performan.::e of our message­
driven model is analyzed in section 6. In section 7, the numerical results are
shown, and performance of our deductive model is compared with that of the Horn
knowledge-base with a backtracking mechanism.

2. Horn Knowledge-Based Systems and Resolution
In this section, we describe a knowledge-based system that is based on first­

order function-free Horn logic and show how resolution is applied to retrieve answers
from such a system.

.
A Horn Knowledge-based system is a collection of clauses, each taking the

form of:

'Po V 'Pl V ··· V 'Pn-l V Pn

Each Pi is called a literal and has the form Pi(t1, ... , tm), where Pi is a predicate
symbol and t1, ... , tm are terms. Terms may be constants or variables. The literal
Pn, which is the only positive literal in the clause, is called the head of the clause;
the remaining literals form its body. A clause with an empty body is called an
assertion and is used to represent explicit facts. Clauses with a non-empty body
are called rules. The head of each rule defines a relation; the predicate gives the
relation name; terms are interpreted as attributes.

Relations defined by assertions are called base relations, while relations defined
as the head of a rule will be referred to as virtual relations. For example, a
predicate supervisor(al ex, bill) is a base relation which can be interpreted as "alex
is the supervisor of bill". With this base relation supervisor, we can define a
virtual relation boss as {-isupervisor(X, Y) V boss(X, Y)}, which means that every
supervisor is also a boss.

A query or goal is viewed as a theorem which can be proven or disproven.
In order to prove a theorem (i.e. a query), we first negate the theorem and then
prove it "unsatisfiable" by deriving an empty clause. In other words, by disproving
the negated theorem, we prove the original theorem. The renowned Resolution
Principle proposed by Robinson [RoB79] is a procedure that makes this proof
technique mechanical. The following example illustrates how this procedure works.
Suppose we have the following two propositional clauses:

(1) p

(2) -,p v Q

3

To see if Q is true with these clauses, we first negate the Q into --,Q and see if we
can d~rive an empty clause. Clauses (1) and (2) can be combined because clause (1)
has a P and clause (2) has --,p_ Consequently, we obtain a new clause with a single
proposition Q which is called a resolvent of clauses (1) and (2). By combining this
resolvent Q with the negated proposition --iQ, we derive an empty clause. We then
conclude that Q is true.

The resolution principle is also applicable to predicate logic by using the
unification process. The unification process is a pattern matching procedure that
finds the most general substitutions among the terms of predicates in order to make
the predicates resolvable. For example, literals P(X) and --iP(Y) can be resolved
by the substitution {X/Y}.

Note that the resolution process neither specifies any order nor imposes any
restriction on resolving clauses. Thus, it is possible to generate redundant and
irrelevant resolvents. The combinatorial explosion of generating these redundant
and irrelevant resolvents makes the proof technique difficult to program. To solve
this problem, a number of refinements of the resolution process have been proposed.
One of these refinements is the binary resolution [CHLE73] which specifies that, at
any time, two clauses can be combined by "resolving" a literal in each of these two
clauses only.

Linear input resolution [CHLE73], a specia~ case of binary resolution, is another
example of refinement of the resolution process. It requires that, during each
resolution step, at least one of the two clauses being resolved must come from
the original input set of clauses, which comprises all the inference rules and data.
In a linear input resolution, since any resolvent may contain a number of literals,
the way to choose which one of these literals as the next goal to be resolved may
affect the efficiency of the resolution process.

SL-resolution (linear resolution with selection function) [KoKu71] is a special
case of linear input resolution, in which the resolution process specifies a computa­
tion rule to select the next subgoal from a resolvent. If the computation rule is to
select the leftmost literal first, the procedure is called left-to-right SL-resolution.

Consider the Horn knowledge-base in Example 1. If query boss(alex, ?) is
asked, the SL-resolution method will generate a proof tree as shown in Figure l.

In this proof tree, the root is the negated goal (--iboss(al ex,?)), and the numbered
edges indicate the corresponding unifiable clauses of Example 1. Starting from the
root and evaluating clauses from left to right, there exist four different paths. Two
of them lead to failures because there is no match for the current subgoal. The
other two lead to an answer (i.e. an empty clause is derived).

Algorithm A summarizes the procedure to retrieve data from the proof tree.

4

1) supervisor(a lex, bill).

2) supervisor(bill, char/es~.

3) •supervisor(X, A) V •boss(A, Y) V boss(X, Y).

4) •supervisor(X, Y) V boss(X, Y).

5) negated query ---,boss(alex, ?).

Example of a Horn Knowledge-Base

Example 1

(1) Negate query as the goal G to be resolved.
(2) Scan through the input clauses;

if an unused input clause R matches goal G;
then mark the R as used; (goto step (3);)
else if G is the root

then terminate the process
else fail the goal G;

goto step (2); (the backtracking step)
(3) Resolve the Rand the clause containing G as immediate goal;

if an empty clause is derived
then succeed and return bindings

fail the last subgoal; (in order to collect the remaining answers)
goto step (2); (the backtracking step)

else the residual literals of R are placed at the left-most
position of the resolvent;

(4) Set goal G equal to the left-most literal of the current resolvent;
Re-initialize all input clauses that are marked in step (2);
Goto step (2);

The Depth-First SL-resolution for Information Retrieval
Algorithm A

3. The Message-Driven Knowledge-Base Model

.5

---, boss(alex, ?)

'3 4
[X = alex, Y =?] (X = alex, Y =?]

---, supervisor(alex, Ai) V---, boss(A1 , ?) ---, super1Jisor(alex, ?)

1 1
[A1 = bill] [? = bill]

---, boss(bill, ?)

3 4
[X = bill][Y =? [X = bill][Y =?]

---, supervisor(bill, A2) V--i boss(A2, ?) ---, supervisor(bill, ?)

1 2
[A2 = charles] [? = charles]

---, boss(charles, ?)

3
[X = charles][Y =?

---, supervisor(charles, A3) V---, boss(A3, ?)
I

I

I

fail

---, supervisor(charles, ?)
I
I

I

fail

Figure 1
Example of a Preorder SL-resolution Proof Tree

Our message-driven knowledge-base model follows the same conventions as the
first-order function-free Horn knowledge-base described in section 2 but is capable
of exploiting parallel processing. The overall structure of our system is depicted in
Figure 2. Queries from the users are processed by the query processors at Layer 3.
These query processors have complete knowledge of the Layer 2 knowledge-based
model that comprises two major components. T:he first component is a model of
knowledge representation that describes the facts and rules of the knowledge-base.

6

Layer 3

Layer 2

Layer 1

Query Processors

Knowledge
Representation

Semantic Nets
for

IDB
EDB

Inference
Engine

Parellel
Implementation
of SL-resolution

Parallel Machine

Figure 2
Overall Structure of The Message-Driven Knowledge-Base Model

The facts and rules are represented by two logically separated sets of graphs. One
set contains all assertions and is called the Extensional Database (EDB). The other
set comprises all inference rules and is called the Intensional Database (IDB). The
second component at Layer 2 is the inference engine that implements a parallel SL­
resolution by means of message propagation. Layer 1 is a parallel machine (actual
hardware), which the IDB and EDB are mapped onto. The machine may contain
a large number of processing elements (PEs) without any central controller. These
PEs can communicate with one another asynchronously via messages. There exist
many possible instances of such a machine. The design of the actual architecture
suitable of our model is beyond the scope of this paper. Here, we are only interested
in Layer 2. Details of this layer will be discussed in the following ~ections.

3.1. The Extensional Database (EDB)

The Extensional Database (EDB) is a graph with labeled arcs. Each node
of the graph represents a "set" or "entity". The arcs are relations between sets.
Figure 3 shows an example. The node employee is a set node which defines the set
of all employees. Individual elements of the set are connected to the set node via
the "in.stance" arcs (depicted as in.st in Figure 3). The labeled arc belong connects
the sets employee and dept. The direction of the arc shows the asymmetry of the
relation (e.g. employee belongs to dept, but not vice versa). Moreover, the labeled

7

inst

lon9
inst

I
inst inst inst

el on

address

Figure 3
An Example of an ED B

arc between two set nodes is also a set which contains many elements of same type of
relation (one may implement the labeled arcs as nodes of the graph). For example,
there exist several instances of the relation between the employee and the dept.

There is a special type of arc called "isa" arc that connects two set nodes.
The isa arc helps to form an inheritance hierarchy of the set nodes. For instance,
the node employee is a person. Therefore, an employee should also have an address.
The isa arc can further be applied to the labeled arcs such that relations also form
a hierarchy.

Our data model can be easily described by the function-free binary logic in
which the predicate names are arcs (relations) and terms are set nodes. For example,
in the predicate belong(employee, dept), the relation belong is the predicate name
and the sets employee and dept are the terms. Instances of a relation are also
represented by binary predicates. For example, belong(al ex, toys) is an instance
of the relation belong(employee, dept). We assume only binary predicates in our
data model. There are three reasons to use binary predicates rather than n­
ary predicates. First, an n-ary predicate can always be represented by (n + 1)
binary predicates [DEKo/9]. Second, we can represent binary assertions easily as a

8

immediate_boss

b, a
supervisor

a
supervisor

a

boss(A, Y)

Figure 4
An Example of an IDB

boss(X, Y)

connected graph in the EDB. Third, we can represent "missing" data better than
with an n-ary predicate.

3.2. The Intensional Database (1 DB)

The intensional database (IDB) consists of all the inference rules, i.e. the
rules whose heads are virtual relations. For instance, there are two rules defining
the virtual relation boss in Example 1. Suppose we have a rule to define another
virtual relation immediaie_boss as follows:

-isupervisor(X, Y) V immediate_boss(X, Y)

A portion of the IDB containing the virtual relations boss and immediate_boss is
shown in Figure 4. The rectangles of the graph represent the virtual relations.
The definitions of these virtual relations (e.g. the bodies of the rules) form a
tree in which nodes are terms and edges are predicate names. The tree is then
connected to the corresponding virtual relations. For example, a tree is formed
for the rules that define relation boss(X, Y) and is attached to the rectangular
node boss(X, Y). Since the rules in the IDB will share the structures of some base
relations (for instance, the virtual relations boss and immediate_boss share the base
relation supervisor), we need to separate them from tangling with one another. In
order to do so, each virtual relation is associated with a color. For example, the
virtual relation immediate_boss has color b. If a message is injected into the node

9

immediate_boss(X, Y), only those arcs marked with color b will allow the message
to go through.

3.3. Inference Engine - Message Propagation Scheme for SL-Resolution
To process queries against the EDB, search messages containing the query are

injected into specific nodes of the EDB network. From each injection point, the
search messages replicate asynchronously into many directions in search of answers.
If a search message refers to a rule in the IDB, a collect message is generated
and injected into the IDB to collect the definitions of that particular rule. After
the content of the requesting search message is updated with these definitions,
propagation is resumed in the EDB. Thus, it allows dereferencing. Moreover, the
graph representation of the IDB allows rule sharing, since collect messages can be
injected into the IDB concurrently.

The way that messages are being propagated in both IDB and EDB corre­
sponds to the left-to-right SL-resolution described in section 2. To be specific, we
are implementing a parallel left-to-right SL-resolution by means of message prop­
agation. Consider the proof tree in Figure 1. In our model, a collect message is
injected into the IDB as shown in Figure 4. Two separate search messages are gen­
erated. One holds the definition path (--isupervisor(al ex,?)); the other contains _the
definition path (--, supervisor(al ex, A1) V boss(A1, ?)). These two messages are then
injected to the node alex in the EDB. To resolve the literals (--isupervisor(alex, ?))
and (--isupervisor(al ex, A1)) in a conventional manner, the resolution process will
search for assertions with predicate name supervisor in the knowledge-base. In our
model, to search for such assertions in the EDB is equivalent to see if there are
any arcs labeled as supervisor leaving from the node alex. Since an arc supervisor
connects the node a lex to the node bill (as shown in Figure 3), the messages are
propagated to the node bill, and both variables '?' and Ai in the definition paths
of these two messages are bound to bill. The way that message propagation is
done is equivalent to the unification process but the search and the bindings of'?'
and Ai are done in parallel. After receiving the messages, the node bill further
propagates them separately according to the remaining definition paths until either
the definition paths are completed successfully or they are terminated with failure.
Since the messages are propagated independently and not related to one another,
the way to propagate messages in our model is equivalent to search the proof tree
in parallel.

4. Assumptions
We have so far described the conventional Horn knowledge-base model (sec­

tion 2) and our message-driven knowledge-base model (section 3). We will analyze
their performance in sections 5 and 6. In this section, we first state the assumptions
made in our analysis.

The performance measure to be obtained is the time to complete the search for
all correct answers. The analysis can further be divided into two cases depending

10

on our knowledge of the knowledge-base. If we have no knowledge of the number of
correct answers in the knowledge-base, the trees have to be searched ex ha us lively.
This is very much alike the worst case analysis in tree search ,algorithms. We also
analyze the case, in which the number of correct answers is known. For this case,
as soon as all the expected answers are retrieved, the search is terminated. We
assume that, once the answers are found, there are some other mechanisms that
will convey the answers to the users, and hence, the time to report answers for both
cases is not included.

We further make the following assumptions for both the backtracking and the
message-driven models:

(1) All data reside in main memory. It is observed that the declining costs of
memory will make it feasible to store the entire knowledge-base in main
memory. Hence, the conventional I/ 0 bottleneck between processor and
secondary memory will disappear. Therefore, data retrieval from secondary
storage is not considered in this study.

(2) Unless otherwise stated, the search trees are irregular and may have multiple
correct answers.

(3) We have complete knowledge of the search trees such as the connectivity of
the tree.

(4) To make our message propagation scheme and the backtracking scheme
compatible, we extend the depth of the search tree in order to account for
the fact that we use three nodes to repres~nt one binary predicate. For
example, if we implement the labeled arc in our message-driven model as a
node, a binary predicate p(a, b) is represented as a path of a - p - b, which
has a length of 2. Therefore, if a proof tree in the backtracking scheme has
a depth of w, the corresponding message-driven search tree should have a
depth of 2(w + 1). (A tree with one single node has depth of zero.)

(5) We assume all queries will terminate eventually. In other words, we assume
th(1t _there are algorithms to eliminate left-recursion and terminate repeated

. goals [WB86, WB87A].

In the analysi.s of our message-driven model we further assume that:

(6) There are sufficient numbers of processing elements so that messages will
not form a queue at each PE of the underlying architecture.

(7) All PEs are connected through a point-to-point connection network (but it
is not a fully-connected topology; a message may have to go through several
PE's to reach its destination PE). Moreover, sending copies of a message is
done sequentially. For example, when a sending node P Ei sends messages
to its immediate neighbors P Ej and P Eki it replicates and then sends the

•
message to one of these neighbors, say, P Ej. Once this is done, another copy
of the message is sent to P Ek in the same manner.

11

4 6

Figure 5

4

1

1

0

nodes

5

1

0

1

6

0

1

1

An Example Search Tree and Its Assignments

(8) As described in section 3.2, the rules of the IDB are represented by simple
OR trees. All search trees generated by these rules are purely OR trees and
each node is distinct in the tree.

5. Performance Analysis of the Uniprocessor Backtracking Scheme
In this section, we shall look at the performance of the backtracking scheme

implemented in a uniprocessor environment. The following notations are defined
for the subsequent analysis:

Unification Times Edges Backtracking Times Edges

t~ 1-2 tl
b 4-2

t.~ 2-4 t2
b 5-2

t~ 2-5 t3
b 2-1

tt 1-3 t4
b 6-3

t5
'1.L 3-6 t5

b 3-1

Table 1
Unifi.cation and Backtracking Times Among Nodes in Figure 5

(1) The unification time includes the time to search for unifiable clauses and to
bind terms of predicates of the matched goal. The time required for a goal
to unify with another goal may be different from node to node. If the tree

12

is traversed in a preorder manner, it is possible to enumerate the individual
unification time. t~ denotes the i-th unification time (by preorder traversal)
of the given proof tree. To illustrate, for the proof tree in Figure S, the
enumerations of the unification time are shown in Table 1.

(2) The backtracking time includes the time to undo the bindings of the failed
goal and backtrack to its parent. Similar to the unification time, back­
tracking times may be different from node to node. ti denotes the i- th
backtracking time for a given proof tree. 1 For the example in Figure 5, its
backtracking times are also shown in Table 1. These backtracking times are
enumerated in the order as if we are carrying out the unification process. For
instance, if node 5 is the answer, we have to first traverse to nodes 2 and 4.
Since node 4 is not the answer, we backtrack to node 2 before arriving at
node 5. Hence, the time requirvd to backtrack from node 4 to node 2 is the
first enumerated backtracking time' of the tree in Figure 5. The rest of the
backtracking times in Table 1 are en:umerated in this manner.

(3) l is the total number of leaves of the proof tree. c is the number of correct
answers in the tree. A binary variable ai is associated with the ith leaf. ai
equals 1 if a correct answer is assigned to the ith leaf; otherwise, ai equals
0. Vector A= [a1 , a 2 , ... , a1] represents the possible assignments of correct
answers among leaves. Since there are l leaves and c correct answers, we
haven = (!) number of possible assignments. To distinguish them, we use

Aj to refer to the jth assignment (j = 1,2, ... ,n). Accordingly, a~ refers to

the value of the binary variable assigned to the ith leaf of the jth assignment.
For an assingment Aj =[a], .. aJ, ... a;J, the position of the leaf to which the

last correct answer is assigned is denoted by pj. (pj = k, if aJ = 1 and

aj = 0 fork< h :S l.)

For example, the tree in Figure 5 has three leaves 4, 5 and 6 (l = 3).
If there exists two correct answers (c = 2), the total number of possible
assignments n = (;) = 3. These assignments are:

Ai= [ai, ai, arJ [1, 1, OJ

A2 = [a~, a~, a~] [1, O, 1]

A3 = [aL a~, a~] [O, 1, 1]

These assignments are also shown in Figure 5.

Furthermore, values of Pi for j = 1, 2, 3 are equal to 2, 3, 3, respectively.

1 The depth-first left-to-right search of the proof tree naturally suggests a stack implementation.
In fact, most of the SL-resolution implementations such as Prolog utilize stacks to make the
backtracking more efficient. If we adopt the depth-first left-to-right search, t:, is the time to
manipulate these stacks and the time to search for unifiable rules. rt is the time to backtrack,
which involves simple operations on these stacks.

13

(4) Di, or preorder distance between the root and the ith leaf, is the enumeration
of nodes traversed in a preorder manner from the root to the ith leaf. di

is the direct distance between the root and the ith leaf. For example, in
Figure 5, D2, the preorder distance from the root to the second leaf (i.e.
node 5), is equal to 3 since it has to traverse from node 1 to nodes 2 and 4
before it arrives at node 5. On the other hand, d2, the direct distance from
the root to the second leaf (i.e. node 5), is equal to 2 since the length of
direct path from node 1 to node 5 (i.e. 1 - 2 - 5) is 2.

(5) If the tree is regular, let b be the branching factor and w be the depth of the
tree. The total number of nodes vis, then, equal to (bw+l - l)/(b - 1).

5.1. Case 1: The Number of Correct Answers Is Known
In this section, we assume the number of correct answers is known and examine

how well the backtracking model behaves. The major characteristic of this case lies
in the search termination condition: whenever the foreknown number of answers
are retrieved, the search is terminated. Therefore, the tree does not have to be
completely searched. Since we have knowledge on both the proof tree and the
number of correct answers, the possible assignments of these answers to the leaves
are known. With these assignments, we can further obtain the average and best
completion times.

(I) Average Case

Let iavg be the average completion time to search for all answers from the
root. iavg is given by:

n DPj IAj Dpj IAj-dpj JAj

iavg = L P(Aj) X { L i~ + L tt} (5.1.1)
j=l i=l i=l

where P(Aj) is the probability of assignment Aj being selected, DPi JAj is the
preorder distance from the root to the pj-th leaf to which the rightmost correct
answer in Aj is assigned, and dPi JAj is the direct distance from the root to the
pj-th leaf.

Eq. 5.1.1 is derived in the following manner. Since the rightmost correct
answer is assigned to the pj-lh leaf in assignment Aj, DPi equals the number of

attempts to unify goals. Therefore, the term ~~i jAj t~ is a sum of the individual
unification times starting from the root to the pj-th leaf. In order to arrive at
the pj-th leaf, there are a total of [DPi - dPi] backtracks. Similarly, the term

D IA·-d IA· .
~i:{ J 1'i J tb adds up all the individual backtracking times prior to arriving at
Pi-th leaf. These two terms compose the completion time of assignment Aj.

If the ~alues oft~ and ti are constant and are equal to tu and tb, respectively,

e.q. 5.1.l takes a much simpler form. In this case, the term ~~:{ IAj t~ becomes

14

"DI, IAj-dp IAj i
(Dp1 IAj) x tu and the term Di=l 1 tb becomes (Dp1 IAj - dp1 /Aj) x tb. Since
there are n possible assignments, the probability P(Aj) of an assignment being
chosen is equal to ~· Hence, the average completion time is equal to the total
of the completion time for each assignment multiplied by its probability of being
chosen. For constant tu and tb, Eq. 5.1.1 becomes:

1 n

tavg = ;- L[(Dpj/Aj) x tu+ (DPilAj -dPilAj) x tb]
j=l

(.5.1.2)

Let us illustrate eq. 5.1.2 with the example in Figure 5. If there exists two
correct answers among the three leaves, there exist six possible assignments of
answers to leaves. These different assignments are shown in Figure 5. In the first
assignment Ai, the rightmost correct answer is assigned to the second leaf (i.e.
p = 2). In the second and third assignments (A2 and A3), the rightmost correct
answer is assigned to the third leaf (i.e. p = 3). Hence, we have: .

for assignment Ai, the completion time= [3tu + (3 - 2)tb]

for assignment A2, the completion time= [5tu + (5 - 2)tb]

for assignment A3, the completion time = [5tu + (5 - 2)tb]

Moreover, each of these three assignments has the same probability of t to be
chosen. Therefore, we have:

1 1
iavg = 3{[3iu + ib] + [5iu + 3tb] + [5iu + 3ib]} = 3[13iu + 7tb]

If the tree is a regular tree with depth w, branching factor b and with a single
answer, a closed form solution is derived as follows. In this case, the number of
leaves is equal to the number of possible assignments (e.g. n = bw). The locations of
the correct answer in the assignments Ai, A2, ... ,An are equal to the 1th, 2nd, ... , nth

leaves. The direct distances from the root to each of these leaves are equal to the
depth (w) of the tree. Therefore, the total direct distances of all assignments is
equal to:

n

L dPi IAj = n x w
j=l

Since the correct answers are located at the 1th, 2nd, ... , nth leaves of assignments
Ai, A2, ... ,An, respectively, the average preorder distance from the root to these
leaves is equal to the average of the ·preorder di;,ta11ce_s of the first and last leaves.
By definition, the preorder distance of the first leaf is equal to the depth of the
tree, and the preorder distance of the last leaf is (v - 1). Therefore, we obtain the

15

average preorder distance of all assignments as follows:

}:_ ~ D . /A. = w + ('v - 1)
n ~ P; J 2

j=l

Hence, for the regular tree, we have, from eq 5.1.2:

1 n

iavg = -{2: [(Dpj /Aj) x iu + (Dpj /Aj - dpj /Aj) x tb]}
n .

J=l

1 n n

= ;-{(L[(Dp;/Aj) x (tu +tb)]) - (L(dp;/Aj) x tb)}
j=l i=l

(II) Best Case

(5.1.3)

The best case is the shortest completion time to search from the root to the
pth node (i.e. the rightmost correct answer) among all possible assignments (i.e.
Aj's). From the similar argument used to derived eq. 5.1.1, the shortest completion
time ibest becomes:

(5.1.4)

If the u11ift-cation and backtracking times are constants (i.e. equal to iu and tb,
respectively), eq. 5.1.4 is simplified to:

(5.1.5)

Consider the example in Figure 5. From the table, we obtain the values of
pj's for assignments Aj (j=l, ... ,n). The values of Dp; and dPi are then computed
accordingly. From eq. 5.1.5, the best time becomes:

.
If the tree is regular with one single answer and with depth w, the best case

occurs when the answer is at the leftmost leaf. At each level of the tree, the search

16

process finds the correct branch (the leftmost branch) immediately. There is no
need to backtrack at all. Therefore, eq. 5.1.5 is reduced to:

(.5.1.6)

where the D1 denotes the .direct distance to the leftmost leaf of the tree and is equal
tow.

5.2. Case 2: The Number of Correct Answers Is Unknown
If we do not have any idea of how many answers are in the knowledge-base,

we would have no choice but to search the whole proof tree. In this case, it is
equivalent to analyze the worst case to search the proof tree. Let tworst be the
completion time to search the complete proof tree. We obtain:

Dr Dr-dr

iworst = Lt~ + L tt (5.2.1)
i=l i=l

where Dr and dr are the preorder distance and direct distance from the root to the
rightmost leaf, respectively.

Eq. 5.2.l is derived in the following manner. To search the complete proof
tre~ it will take all the unification times from the root up to the rightmost leaf
(l:i:l t~). It also has to backtrack 2:{:1-dr tt units of time before it reaches the
rightmost leaf.

If the unification and backtracking times are constants, we reduce Eq. 5.2.l
to:

iworst =Dr X tu+ (Dr - dr) X tb

For the example in Figure 5, the worst time becomes:

iworst = 5tu + (5 - 2)tb = 5tu + 3tb

If a tree is regular with single answer, eq. 5.2.2 is reduced to:

iworst = (V - 1) X iu + (V - 1 - W) X tb

(5.2.2)

(5.2.3)

where the preorder distance Dr equals (v - 1), and the direct distance dr equals w.

17

nodes nodes node

2 3 4 5 6

Ri
1 1 0 R2

1 1 1 R3
1 0

Ri 2 1 1 R2 2 1 0 R3 2 1
Rl 3 1 1 R2

3 0 1 R3
3 1

(a) (b) (c)
Table 2

Assignment Table~ for The Tree in Figure 5

6. Performance Analysis of Message-Propagation Scheme
In this section, we show the performance of our model with message propaga­

tion described in section 3. We first define the following notations:

(1) As in section 5, notations l, c, n denote the total number of leaves, number
of correct answers and total number of possible assignments of the answers
in the leaves, respectively. {Ai, ... ,Aj, ... ,An} is the set of all possible
assignments of correct answers in leaves. If the tree is regular, b,w and
v denote the branching factor, depth and total number of nodes of the tree,
respectively.

(2) Starting from the root, an ID number is assigned to each node by enumer­
ating nodes from left to right on each level of the tree;

(3) bi is the branching factor of node i;

(4) Vector gi = {Sf, S~, ... ,st.} denotes the ID numbers of the children of node i.
For example, in Figure 5, S 1 is {2, 3} and S 3 is {6}.

(5) t~ is the fabrication time for node i; the time it takes to receive and process
an incoming message, plus the time to fabricate new outgoing messages.

(6) t;~ is the communication delay from node i to its h-th child; ip includes the
start-up time to communicate and the propagation delay for a message to
travel between PE's;

(7) For a given assignment Aj, a vector Rj = [R~(l), ... , R~(h), ... , R~(bi)] is

associated with node i. An element R~(h) is a binary variable and is equal

to 1, if the subtree rooted at the h th child of node i contains at least one leaf
with a correct ans>ver; otherwise, R~(h) is equal to 0.

For example, consider the tree in Figure 5. For assignment Ai, R~
equals [1, OJ, since the subtree rooted from the first child of node 1 (i.e.

18

node 2) contains two correct answers and the second child of node 1 (i.e.
node 3) contains no correct answer in its subtree. Similarly, R~ and Rj are
equal to [1, 1] and [1, 1], respectively. These values are shown in Tables 2 (a),
(b) and (c).

6.1. Case 1: The Number of Correct Answers Is Known
If we assume that the number of correct answers is known, the search will be

terminated as soon as the foreknown number of answers have been retrieved. With
the knowledge of the search tree and the number of answers, we are able to derive
all possible assignments of answers to the leaves as described previously. With these
assignments, we can further analyze the average and best behavior of our model.

(I) Average Case

For the assignment Aj, the completion time of node i becomes:

T~=
J

o,
max{ (t} + t;f + Tjf) x R}(l), ... ,

(h t i ts;, Ts~) Ri (h) x I+ p + j x i , ... ,
i i

(bi x t} + t;1" + r;bi) x R}(bi)},

if node i is a leaf;

oth~rwise

(6.1.1)

Eq. 6.1.1 can be derived in the following way. Since the message propagation is
done sequentially from the leftmost to the rightmost child, a node i takes h x t}
units of time to prepare a copy of the message to the h-th child. Note that the time
to process an incoming message at node i is the same (i.e. t}) since it only involves

processing of the message within the PE. It further takes t;~ units of time for a
message to propagate from node i to its h-th child. Once the h-th child receives the

message, it will propagate the message in the same fashion. It will then take Tr
time to find an answer. However, not every branch will lead to an answer. If the
h-th branch leads to an answer, the corresponding element R}(h) is 1; otherwise, it

is 0. By multiplying the R}(h)'s to the time discussed above (e.g. h xt}+t;~ +T}~),
we eliminate the nodes which lead to no correct answers. Since there are multiple
correct answers, the completion time is the longest time among the various paths
that lead to an answer. Hence, a function max is applied to these paths to obtain
the overall completion time.

Si
If we assume that the t} and iph are constants and are equal to t f and tp,

respectively, eq. 6.1.1 becomes:

19

T~=
J

o,
max{(t1 + tp +Tj~) x Rj(l), ... ,

(h x t1 + ip + Tj;') x R;·(h), ... ,

(bi x t f + ip + T;;,i) x Rj(bi)},

if node i is a leaf;

(6.1.2)

otherwise

By recursively solving eq. 6.1.2, we can derive T}, the time to complete the
search for a given assignment of correct answers Aj from the root. Then, the average
completion time, Tavg, becomes:

n

(6.1.3)

where P(Aj) is the probability of assignment Aj being chosen. Since P(Aj) = ~
for all j, eq. 6.1.3 becomes:

1 n

Tavg = - · LTl
n .

J=l

(6.1.4)

Let us illustrate eq. 6.1.4 with the example given in Figure 5, assuming the t f
and tp are constants. The answer assingments and the vector values of the R1 are
shown in Figure 5 and in Tables 2(a), 2(b) and 2(c). From eq. 6.1.4, we obtain:

Tavg =~ X {max{ (tf + tp + T{) X Ri(l), (2 X tf + ip +Tl) X Ri(2)}
3

+max{ (tf + tp +Ti) x R~(l), (2 x t1 + tp + T{) x R~(2)}

+ max { (t f + tp + Ti) x R~ (1), (2 x t f + tp + T{) x R~ (2)} }

By substituting the values of the Rj(h) from Table 2, we obtain:

Tavg =~ x {max{(t1 + ip + T{) x 1, (2 x tf + tp +Tl) x o}
3

+max{ (tf + ip +Ti) x 1, (2 x tf + ip +Ti) x 1}

+ max{ (t f + ip + Ti) x 1, (2 x t f + ip + T]) x 1}} (6.1.5)

In order to solve eq. 6.1.5, we have to apply eq. 6.1.2 recursively to obtain T} and

Tj (j = 1, 2, 3). From eq. 6.1.2 and with the values of Rf in Table 2(b), \Ve obtain:

Tl= max{(tJ + ip +T{) x 1, (2.x tf + tp + T15) x 1}

Ti= max{(tf +tp +Ti) x 1,(2 x tj +tp + T;) x O}

Tl= max{(tj + ip + T{) X 0,(2 X if+ ip + T{) X 1}

20

(6.1.6)

Figure 6
An Example of a Regular Tree

Similarly, with the values in Table 2(c), we obtain:

T{ = max{(tf + tP + T16-j x O}

T:j = max{(tf + tp + r;) x 1}

T{ = max{(tf + tp + Tt) x 1}

Since nodes 4, 5 and 6 are leaves, we have:

Tf = Tl = Ti6 = 0 (j = 1, 2, 3)

By substituting (6.1.8), (6.1.7) and (6.1.6) to eq. 6.1.5, we obtain:

1
Tavg = 3 X {max{ (t f + tp + 2 · t f + tp) X 1, (2 · t f f tp + 0) X 0}

+ max { (t f + tp + t f + tp) x 1, (2 · t f + tp + t f + tp) x 1}

(6.1.7)

(6.1.8)

+ max{(tf + tp + 2 ·it+ tp) x 1, (2 ·it+ tp +ti+ tp) x 1}}
1

= 3 x { (t f + tp + 2 . t f + tp) + (t f + tp + 2 . t f + tp) + (t f + tp + 2 . t f + ip)}

1
= 3 x { 9 . t f + 6 . tp}

= 3- d f + 2 . tp
(6.1.9)

If the t.ree is regular with depth w and branching factor b, and if there is only
one answer, we can derive a closed form solution for Tavg in the following manner:

For a regular tree with only one answer, we observe the following character­
istics: (1) if the root is at level 0, each subtree of a node at level l has b(w-l)

leaves (0 _:::; l _:::; w). (2) each subtree at a given level l has the same number of
possible assignments that lead to an answer from that subtree. The number of such
assignments is equal to b(w-l). For example, at level 1 of the tree in Figure 6, each
subtree rooting from nodes 2, 3 and 4 has (3(2 - 1) = 3) leaves. Of the total (3 2 = 9)

•
possible leaf assignments, each of these subtrees has 3 possible assignments that
yield an answer.

21

I
I

I
i
I

With respect to the node 1 (the root) at level 0, the total time to complete
the search for answers of all possible assignments has two components: (1) the time
it takes to propagate messages to its immediate children at level 1 (bw-l . { (t f +
tp) + (2 ·it+ tp) ... + (b ·it+ tp)}), and (2) the time it requires to search for the
answer from its children at level 1. Since the search time of each node at the same

l

level is the same, we obtain the term b x L,j=1 Tj 1 • Therefore, the term I:,j=1 Tj
in eq. 6.1.4 becomes:

n n

L Tj = b w-l . [(t f + tp) + (2 . t f + tp) ... + (b . t f + tp) l + b x L r;i
j=l j=l

Hence, from eq. 6.1.4, Tavg becomes:

1 n

Tavg = - ·LT}
n .

J=l

l

For illustration purpose, let Y1 be the term L,j=l Tj 1 • Then, Y1 is the
completion time of a node at level 1 of the tree. Therefore, we obtain:

n

°LTJ = bw-l · (t1 + tp + ... + b · t1 + tp) +bx Y1
j=l

Y1 = bw-2 · (t f + tp + ... + b · t f + tp) + b x Y2

Y2 = bw-3 • (t f + ip + ... + b · t f + ip) + b x Y3

where Yw is at the leaf level and is equal to 0. By substituting and simplifying the
above equations, we have:

n

LT} = w · bw-l · (tJ + tP + ... + b · tf + ip)
j=l

22

I
I
I

. I

Therefore, the average completion becomes:

1 n 1
Tavg = - · LTj

n .
J=l

= b~ · W · b w- l · (t f + ip + 2 · if + ip + ... + b · if + ip)

w
= b . (t f + ip + 2 . t f + ip + ... + b . t f + tp)

w
= -[(1+2 + ... + b) x t1 +bx ip]

b
w b(b + 1)

=--,;[2 xt1 +bxtp]

(b + 1)
= w[if +tp]

2

(II) Best Case

(6.1.10)

The best case is defined as the shortest completion time to search from the root
for all answers among the possible assignments. Let Tbest be the best completion
time. We have:

Tbest = min T}
l:::'.j:S:n

where the term T} is obtained from eq. 6.1.1.

(6.1.11)

However, if if and ip are constants, the term T} is derived from eq. 6.1.2. For
instance, consider the irregular tree in Figure 5, which contains two correct answers
distributed among the three leaves. The T~ is obtained in the same manner as in

J •
eqs. 6.1.5 to 6.1.8. Thus, we obtain:

nest= min{(t1+ip+2t1 + tp), (tf + ip + 2it + tp), (tf + ip + 2t1 + tp),}

= 3t1+2tp

If the tree is a regular tree with depth w, branching factor b and with one
answer, the best case occurs if the answer is the leftmost leaf. Since, at each level,
the first generated message is propagated into the correct path immediately. Tbest

becomes:
(6.1.12)

6.2. Case 2: The Number of Correct Answers Is Unknown

In the case that we have no knowledge regarding the number of correct ansvvers
in the search tree, the completion time will equal to the longest time it takes to
traverse all paths until it reaches the leaves. For any node i, its completion time Ti
becomes:

23

0,

max{ (t~ + t;; +rs;), ... ,

(h x t} + t;~ +rs~), ... ,
(bi X t} + t;~i + rs~i)},

if node i is a leaf;

(6.2.1)

otherwise

The completion time starting from the root is equivalent to the worst case of the
parallel tree search. Therefore, we obtain:

rworst = rl (6.2.2)

where T 1 is solved recursively with eq. 6.2.1

The difference between this equation and Eq. 6.1.1 is as follows. Since we do
not know the number of correct answers, and we have to traverse all branches of
the tree in any case, the binary variables R~(l), ... , R~(h), ... , R~(bi) as in eq. 6.1.1
are no longer needed.

Similarly, if t f and tp are constants, eq. 6.2.2 is simplified to:

rworst =

o,
max{(t1 + tp +rs~), ... ,

(h X if+ ip +rs~), ... ,
(b1 x t1 + tp + T9 ~1)},

if node 1 is a leaf;

otherwise

For the example given in Figure 5, we derive the worst case as follows:

rworst = max{(tf + ip + r 2), (2tj + ip + r 3)}

We solve T 2 and T 3 recursively and obtain:

r 2 = max{(tf + tp + r 4), (2t1 + tp + r 5)}

r 3 = max{(t1 + tP + r6)}

(6.2.3)

where T 4 , T 5 , r 6 are equal to zero since they are leaves. Therefore, rworst becomes:

rworst = max{(tJ + ip + 2tj + ip), (2tf + ip + tf + ip)}

= 3t f + 2tp

Again, if the tree is a regular tree with depth w, branching factor b and with
a single answer, the worst case occurs when the answer is the rightmost leaf. Since
there is only one assignment and the maximum time equals (b x t f + ip) at each
level of the tree, we obtain the closed form solution for the worst case as follows:

24

Tworst = W X (b X it+ ip) (6.2.4)

7. Numerical Results
We shall first compare the backtracking scheme described in section 2 with

the message propagation scheme described in section 3. We assume the values
. . . s'

oft~, i'/i, tj and iph to be constants throughout the numerical analysis. Through
the numerical results, we demonstrate that our message propagation scheme will
perform better than the backtracking scheme, especially when the knowledge-base
is large.

7.1. Speedup factor in terms of the iu/it ratio

In this section, we would demonstrate the speed up in performance of our
model over the backtracking scheme. Let us define the speedup factor S as:

average completion time of backtracking scheme S= ~~~~~~~~~~~~~~~~~~~~~~-
average completion time of message propagation scheme

S > 1, if the message propagation scheme performs better than·the backtracking
scheme. We consider the speedup for the regular tree with single answer because
the closed form solutions enable us to have general observations. From eqs. 5.1.3
and 6.1.10, the speedup factor becomes:

H(w + v - l)tu + (v - l)tb]
s = [(b+l) J

W1 2 it+ip

where w and w1 are the depth of the regular tree of the backtracking scheme and
that of the message propagation scheme, respectively. From our assumption (4)
described in section 4, in order to make sensible comparisons, we let w1 = 2x(w+l).
Thus, the speedup factor S becomes:

S = _H_(w_+_v_-_1)_tu_+_(v_-_l_)t_b]

2 (w + 1) [(b; 1) t t + ip J

Let tb = c x iu and ip = k x it, where c and k are constants. Thus S becomes:

S = _(w_+_v_-_l_)_tu_+_c_(v_-_l_)i_u

4(w + l)[(b;l)it + k x it]

W + (C + 1) (V - 1) iu
~~~~~~~~- x -
2(w+l)(b+2k+l) it 

Therefore, the speedup factor S is a function of the n;) ratio. In order to study 
the speedup of our model, we vary the valu ;; oi k against a range of c. vVith 
c = 0.1, 0.01 and different values of k, we show the speedups of our message 
propagation scheme in Figure 11. 

25 



4 6 7 8 

Figure 7 
An example of a Proof .Tree 

Two observations can be made from this figure. First, the speedup factor 
increases as the size of the tree grows larger. In other words, the speedup is greater 
for a larger tree than that for a smaller tree. We can attribute this result to the fact 
that our message propagation model can exploit a higher degree of parallelism as the 
size of the tree increases. If the tree is very small, or when the iu/t f ratio is small, 
the backtracking scheme performs better. For example, consider lines 1,3,5, and 7 
with very small iu/t f ratios. This is due to the fact that in our propagation model, 
the overhead in doing the parallel search (i.e. the communication time ip) may be 
relatively higher. However, for a practical knowledge-base, the size of the search 
tree is usually large. Therefore, our proposed model is good for such applications. 

Second, for the same size of tree, the constant k (sometimes it is called the 
coupling factor) has significant effect on the speedup. For example, consider lines 2 
and 6. The speedup increases as the coupling factor k decreases. The coupling 
factor k is a measure of how much time we spend in communication between PEs. 
If k is a fraction of ti (e.g. ti > ip), then we spend relatively more time in 
processing and fabricating messages in the PE than in communication. If the tree 
becomes larger, the cost of communication becomes larger. Therefore, in designing 
our message-driven knowledge-base machine, we prefer k to be relatively small in 
order to have- better speedup. 

7.2. Irregular Trees, Varying Number of Answers 
In this section, we compare the average completion times of irregular trees with 

different number of answers. Consider the proof tree in Figure 7. We obtain the 
corresponding search tree by extending each node in Figure 7 with three nodes (as 
discussed in assumption 4 of section 4.) The resulting tree is depicted in Figure 8. 
The numerical results obtained from eqs. 5.1.2 and 6.1.4 are plotted in Figure 12 
against different numbers of correct answers in the trees. 

We notice that: 

26 



2 3 

Figure 8 
The Corresponding Search Tree of Figure 7 

(1) the slope of the message propagation scheme is so flat that the extra time 
required to search for an additional answer is relatively small. 

(2) in the backtracking scheme, the extra time required to search for an addi­
tional answer tends to be very high when the number of correct answers is 
small. It then levels off as the number of correct answers increases. 

(3) the coupling factor k has a dominant effect in the performance in our 
message-driven model. For example, when k is increased from 0.5 to 1.5, 
the performance of the model degrades sharply. 

The first observation is due to the fact that propagation in our model is done 
in parallel. Once a message is injected to the tree, it propagates asynchronously to 
search for all possible answers. The time difference to search for different number 
of answers is then very small. 

For the second observation, we notice that, with a backtracking model, to 
search for an additional answer would mean to fail the currently found answer and 
to backtrack in order to get to the remaining branches of the tree. This backtracking 
time (tb) is a dominant factor in determining the average completion time. We no­
tice that the increase in the backtracking time to find additional answers diminishes 
as the total number of answers increases. For the example given in Figure 7, the av­
erage backtracking times (the second term of eq. 5.1.2, ~ '2.:j=l (Dp31Aj-dp3 /Aj) x tb) 
are 4.8, 7.4, 8.8, 9.5 and 10.0 units of time for the number of answers ranging from 
1 to 5, respectively. If the number of answers is changed from 1 to 2, the average 
backtracking time increases 2.6 (7.4 - 4.8) units of time. However, the average 
backtracking time only increases 0.5 (10.0 - 9.5) units of time for the case from 4 
to 5 answers. Therefore, the additional time required to search for an answer levels 
off gradually as the number of answers is approaching to the number of leaves. The 
last observation just confirms our previous discussion in section 7 .1. 

27 



7 .3. Best and Worst Cases Comparisons 
In this section, we show how our message-driven model compares to the 

conventional backtracking model in the best and worst cases. From Figure 12, we 
notice that, with parameters t f = 2 ip = 1.0 k = 0.5 and iu = 2 tb = 0.6 c = 0.3 for 
our model and the backtracking model, respectively, their average performances are 
very similar. Therefore, we use these parameters to analyze the corresponding best 
and worst cases for both models. The numerical results obtained from equations 
5.1.5, 5.2.2, 6.1.11 and 6.2.3 are plotted in Figure 13 for the examples given in 
Figures 7 and 8. As described previously, the worst case analysis assumes no 
knowledge of the number of correct answers in the tree. In this case, the tree 
has to be searched completely. Therefore, its completion time is a constant for a 
given tree regardless of the number of answers to be retrieved. Thus, its completion 
time is plotted as a horizontal line in Figure 13. We observe that: 

(1) for the worst case, our model has better performance than the backtracking 
model. 

(2) for the best case, we see the same performance characteristic found in the 
average case. For example, the performance of the backtracking is better 
when the number of answers is less, which is indicated in Figure 12. 

(3) if the number of answers is equal to the number of leaves, the best and worst 
cases are equivalent. 

The first observation is due to the fact that, in the worst case, the backtracking 
model needs to backtrack every time when it reaches the leaves until it arrives at 
the rightmost leaf. In our model, the message propagation allows to search for 
different paths asynchronously. Therefore, it behaves better in the worst case. 

If the backtracking model performs better in the average case, it is obvious 
that it will also perform better in the best case. This is because most of the 
inefficiency of such a model lies in the backtracking mechanism while our model has 
the fixed overhead of propagation. If the overhead is less costly, our performance 
will definitely be better. 

For the last observation, it is obvious that if the number of answers equals the 
number of leaves, the best case still has to traverse all branches to retrieve all the 
answers. 

7.4. The Structure of the Knowledge-Base: Bushy vs Skinny 
In this section, we show how the structure of the knowledge-base may affect 

the performance of our model. Consider the tree in Figure 9. The tree has a 
total of ten nodes with one level. With the same number of nodes, we arbitrarily 
restructure the bushy tree with three levels as in Figure 10. vVe vary the number of 
correct answers and the values of k in both cases. Their average completion times 
are plotted in Figure 14. vVe make the following observations: 

28 



7 

Figure 9 
Example of a Bushy Tree 

Figure 10 
A Skinny Tree Restructured From Figure 9 

10 

( 1) if k (the communication delay) is relatively large (for a certain size of tree), 
a bushy structure (i.e. shallow hierarchy with many branches as in Figure 9) 
is more desirable than a skinny structure (i.e. deep hierarchy with fewer 
branches as in Figure 10). For example, if k = 1.5, the average completion 
time of the bushy tree is smaller than that of the skinny tree. 

(2) in the case that k (the communication delay) is small, a skinny structure 
(such as Figure 10) becomes more desirable. For instance, if k = 0.5, the 
average completion time of the skinny tree is smaller than that of the bushy 
tree. 

(3) even though a skinnier structure may have worse performance when k is 
large, the extra time to search for an additional answer seems less when 
compared to that of a bushy structure. For example, the slopes of all curves 
of the skinny trees are relatively flat. 

The reasons of observations (1) and (2) can be explained as follows. Since a 
skinny structure has deeper hierarchy than a bushy structure, a message has to pass 
through each level prior to reaching the leaves. Hence, the time required is affected 
significantly by the depth of the structure. If the communication delay (i.e. lp) is 

29 



relatively large (when compared tot f ), it will be more costly to propagate a message 
in a skinny structure than in a bushy structure. This result suggests that we may 
improve the performance by manipulating the structure of the knowledge-base: if 
we have a priori knowledge of the communication delay, we may re-structure the 
knowledge-base to be bushy if k is relatively large; otherwise, we may organize it 
to be skinnier. 

For the last observation, we realize that a skinny structure has fewer branches 
than a bushy structure. Moreover, our message propagation scheme generates copies 
of message sequentially (as described in section 6.1 ). Therefore, the time difference 
of generating the first and last copies of the outgoing messages is less than that in a 
bushy structure. Therefore, the curve of a skinny structure tends to have a smaller 
slope. 

7.5. Comparisons with Large Search Trees 
In the previous sections, the size of the search tree was quite small. In this 

section, we consider cases of larger search trees. 

For simplicity, we adopt the analyses of regular trees .with a single answer. 
The closed form equations 5.1.3 and 6.1.10 are used. From our previous analysis 
in subsection 7.1, we observed that our model has better performance than the 
backtracking model in large search trees. In order to verify this perspective, we 
intentionally choose the values of the parameters that are favorable to the back­
tracking model in a small tree. However, as we shall demonstrate, if the tree grows 
very large, our message propagation model reverses the situation: it performs far 
much better than the backtracking model. For this reason, parameters chosen for 
the analysis are: t f = 2, k = 1.5 for the message propagation model and iu = 2, 
c = 0.1 for the backtracking model. Note that, with these parameters for small 
trees, the backtracking model performs better as shown in Figure 12. 

For a bushy structure (i.e. with branching factor from 30 to 150 and depth 
of 2 or 4), the performance of both models are shown in Table 5. Note that 
we have extended the depth of the search tree for the message-driven model as 
we did in section 7.1. As shown in Table 5, the time required in the message 
propagation model is much less than in the backtracking model. For example, when 
the branching factor is 150 and the depth is 4, the backtracking scheme requires 
1.1 x 109 units of time while the message propagation scheme only takes 3.1 x 103 

units of time. This confirms the observation in subsection 7.1: as the size of the 
knowledge-base grows, our model performs better because the message propagation 
scheme achieves a higher degree of parallelism. Furthermore, as the size of the tree 
grows, the times that the backtracking model takes to complete the search increase 
sharply (e.g. from 2.1~<10 3 to 1.1x109 ). On H'.·:' other hand, the completion times 
that the message propagation model takes show a relatively flatter slope (e.g. from 
4.1 x 102 to 3.1 x 103 ). 

30 



When the structure of the knowledge-base is skinny rather than bushy (for 
instance, the depth has a range from 4 to 10 while the branching factor is either .5 
or 8), the results are shown in Table 6. The results agaiR cor;ifirm the observation 
that our model can achieve better performance as the size of the knowledge-base 
increases. Consider the case where the depth is 10 and the Lranching factor is 
8. The backtracking model requires 2.7 x 109 units of time, while the message 
propagation model only needs 5.3 x 102 units of time to complete the search. 

Furthermore, the results show that the structure of the knowledge-base does 
not have much effect on the backtracking model. In Tables 5 and 6, for a tree with 
similar total number of nodes, we notice that the backtracking model shows similar 
performance regardless of the structure of the tree. Consider the case where the size 
of the tree (i.e. n) equals 14,521and19,531 in Table 5 and Table 6, respectively. 
On the other hand, the results of the message-driven model show that the structure 
of the knowledge-base is a salient factor of performance. For example, consider the 
case that the branching factor is 150 and depth is 4 in Table 5 and the case that 
the branching factor is 8 and the depth is 10 in Table 6. The first case represents a 
bushy tree. The latter case is a skinnier tree with a size twice that of the first tree. 
However, the time needed in the skinnier tree is even less than that of the bushy 
tree (e.g. 5.3 x 102 versus 3.1 x 103). Note that this is not contradictory to the 
observation in section 7.4. It shows that the coupling factor k is relative to the size 
of the tree. 

8. Concluding Remarks 
In this paper, we have presented a message-oriented knowledge-based model. 

The major components of our model are the semantic networks representation of the 
IDB and EDB, and the implementation of the SL-resolution by means of message 
propagation. Since, the message propagation is done asynchronously, the resolution 
done in this manner is a set at a time instead of. using the backtracking method 
which carries out the resolution a tuple at a time. 

Both our model and the conventional backtracking model were analyzed and 
compared.-We demonstrated that our model outperforms the backtracking model 
in most cases. 

31 



Speedup Factor S 

14 

12 

10 

8 

6 

4 

2 

1 

0 1 

Figure 11 

/ 
/ 

/ 

2 

/ 
/ 

/ 

2 

6 

/8 
/ 

3 
~/tr ratio 

Speedup Factor versus tu/tr ratio 

line 1 : v = 40, w = 3, b = 3, k = 0.5 
line 3 : v = 40, w = 3, b = 3, k = 0.5 
line 5 : v = 40, w = 3, b = 3, k = 1.5 
line 7 : v = 40, w = 3, b = 3, k = 1.5 

32 

line 2 : v = 259, w = 3, b = 6, k = 0.5 
line 4 : v = 259, w = 3, b = 6, k = 0.5 
line 6 : v = 259, w = 3, b = 6, k = 1.5 
line 8 : v = 259, w = 3, b = 6, k = 1.5 



Average Completion Time 

30 
tu = 2.0, tb = 3.0, c = 1.5 

25 

20 

15 

10 

5 

0 

___ token propagation 

If = 2.0, Ip 

backtracking 

./ 
3.0,k = 1~ ---- •/. 

/' 
/ 

/ 
I 

/ 
I 

I 

tu = 2.0, tb = 1.0, c = 05 -------...--- - tu = 2.0, tb = 0.6, c = 0.3 
_,,,.,,.- ---------- ...... ---< ;;>" 1u = 2.0, tb = o_.2. c_: 0.1 

tf = 2.0, tp = 1.0, k = O~ __... _ ----- _/ -- ----/ - ::> t1 = 2.0, rP = o.6, k = o.~ ___ 

~ ./ ---/ ./ / 
/ ./ ./ 

./ / 
./ / 

./ 
./ 

1 2 3 4 5 

Number of correct answers 

Figure 12 

Irregular tree with different number of correct answers 

33 



Search Completion Time 

18 

15 

12 

9 

6 

3 

0 

lworst ---------------------7 
Tworst 

I 

I 
I 

I 

/ 
/ 

Tbest / 
I 

/ 
/ 

/ 
tbest 

1 

/ 
/ 

/ 

/ 

2 

/ 
/ 

/ 

Figure 13 

/ 
/ 

/ 

/ 

3 

I 

I 
I 

Best and Worst Cases Analysis 

34 

token propagation 

backtracking 

4 5 

Number of correct answerli 



Average Completion Time 

20 

2.0, Ip 

15 

lJ = 2.0, 'P 
10 

5 

0 

_,.,,,,-- -- -- --
3.0, k = 1.s __ ---

---

11 = 

11 = 

11 = 

------ --- --- --- ----- -----
1.0, k = 0.5 

1 2 

Figure 14 

3 

Bushy (Figure 9) 

Skinny (Figure 10) 

4 
Number of correct answers 

Bushy Versus Skmny Trees 

35 

2.0, Ip 3.0, k 1.5 

2.0, Ip 2.0, k 1.0 

2.0, tp 1.0, k 0.5 



~ng de 30 

n=931 
2 1=900 

tavg=2.lxlo3 
? 

Tavg=4.lxHr 

n =837,931 

4 
1=810,000 
tavg = 1.8x106 

Tavg=6.8x1o2 

tu=Z c=0.1; tf=Z k=l.5 
n = total numf>er or nodes 
I= total number or leaves 

60 90 

n =3,661 n=8,191 
1=3,600 1=8,100 
t3 vg=8.lxlo3 tavg = 1.8xlo4 

Tavg=7.7xto2 Tavg= 1.lxtoJ 

n=l3,179,661 n =66,347,191 
1=12,960,000 I =65,610,000 
tavg=2.9xto7 tavg = 1.sx1o8 
Tavg= l.3xto3 Tavg=l.9Xlo3 

tavg= the time for backtracking scheme 
T avg= the time for token propagation scheme 

Table 5 

Large Bushy Trees 

36 

120 150 

n=14,521 n=22,651 
1=14,400 1=22,500 
tavg=3.2xto4 tavg=S.Oxto4 
Tavg = I.5xto3 Tavg= 1.8xto3 

n=209,102,521 n = 509,647,651 
1=207,360,000 I= 506,250,000 
tavg=4.6Xlo8 
Tavg = 2.5xlo3 

tavg= ux109 

Tavg = 3.1xto3 



~h bra g 4 

n=781 
5 1=625 

tavg=l.7xlo3 
Tavg=l.Sx1o2 

n =4,681 

8 
1=4,096 
tavg = 1.0x1o4 
Tavg=2.4xlo2 

tu=Z c=O.l; t =2, k=l.5 
n = total num6er of nodes 
I= total number of leaves 

6 

n= 19,531 
1=15,625 
tavg = 4.3xto4 
T avg= 2.sx1o2 

n=299,593 
1=262,144 
tavg = 6.6Xlo5 
Tavg=3.4x1o2 

lavg= the time for backtracking scheme 
T avg= the time for token propagation scheme 

Table 6 

8 

n=488,281 
1=390,625 
tavg = 1.lx1o6 
Tavg = 3.2xto2 

n= 19,173,961 
1=16,m,216 
tavg=4.2X107 

T3vg=4.3xlo2 

Large Skinny Trees 

37 

10 

n=12.207,031 
1=9,756,625 
tavg=2.7x107 

Tavg=4.0xlo2 

n = 1,227,133,513 
I= 1,073, 741,824 
!avg= 2. 7x109 

Tavg=S.3xto2 



REFERENCES 

[AGHA85] AGHA, G.A. Actors: A Model of Concurrent Computation In Dis­
tributed Systems. Tech. Rep. No. 844. MIT Artificial Intelligence Lab., 
MIT, Cambridge, Mass .. 

[BILE87] Bic, L., LEE, C. A Data-Driven Model for a Subset of Logic Program­
ming. To appear in TOP LAS (1987). 

[CHLE73] CHANG, CHIN-LIANG AND LEE, RICHARD CHAR-TUNG Symbolic Logic and 
Mechanical Theorem Proving, Academic Press, New York, 1973. 

[CoM82] Computer, Special Issue on, Data.flow Systems VJ 5, n2 (Feb., 1982) . . 
[DEKo79] DELIYANNI, AMARYLLIS AND ROBERT A. KOWALSKI Logic and Semantic 

Networks. In CACM, Vol. 22-3, 1979, pp. 184-192. 

[Kow79] KOWALSKI, R. Logic for Problem Solving, North-Holland, New York, 
1979. 

[KoKu71] KOWALSKI, R.A. AND KUEHNER, D., Linear Resolution with Selection 
Function. In Artificial Intelligence, 2(1971), pp. 227-260. 

[RoB79] ROBINSON, J.A. Logic: Form and Function, North-Holland, New York, 
1979. 

[TBH82] TRELEAVEN, P.C., BROWNBRIDGE, D.R., HOPKINS, R.P Data-Driven and 
Demand-Driven Computer Architecture. Computing Surveys V14, nl 
(March, 1982), 93-143. 

[WB86] WONG, WANG-CHAN AND Bic, LUBOMIR, Efficient Recursion Termina­
tion For Function-Free Horn Logic. TR 86-26. ICS Dept, University of 
California, Irvine (1986). 

[WB87A] WONG, WANG-CHAN AND Bic, LUBOMIR A Tagging Scheme to Prevent In­
finite Recursion in First-Order Databases Function-Free Horn Database. 
To appear in Proc of the Second Int 'l Conj on Computer Applications 
(June, 1987), IEEE. 

38 




