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A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform 
decoding technique used in a previous article is replaced by a time domain algorithm 
through a detailed comparison of  their VLSI implementations. A new architecture that 
implements the time domain algorithm permits efficient pipeline processing with reduced 
circuitry. Erasure correction capability is also incorporated with little additional complex- 
ity. By using a multiplexing technique, a new implementation of Euclid’s algorithm 
maintains the throughput rate with less circuitry. Such improvements result in both 
enhanced capability and significant reduction in silicon area. 

1. Introduction 
Recently a VLSI design of a pipeline Reed-Solomon 

decoder was presented [ l ]  . A modified form of Euclid’s 
algorithm was developed which avoided computations of 
inverse elements. A systolic array architecture was designed, 
from a suggestion by Brent and Kung [ 2 ] ,  to implement the 
modified Euclid’s algorithm. More recently, another VLSI 
design of an RS decoder was introduced [3]. It combined the 
algorithm in [4] and the modified Euclid’s algorithm instead 
of the continued fraction technique. The decoder design in 
[3] used a time domain decoding algorithm to reduce the 
massive circuitry required by the inverse transform in [ 11 . 
The decoder design also included the erasure correction 
capability, and, during the design process, a recursive architec- 
ture was derived to implement the modified Euclid’s algorithm 
by far fewer circuits than used in [ 11 . 

It has been pointed out [SI that the errata locator poly- 
nomial can be obtained directly from the Massey-Berlekemp 
algorithm if initialized properly. This suggestion led to 
improvements in the VLSI design in [3]. 

In this article, an efficient time domain RS decoding algo- 
rithm is described and verified. It is shown that the modified 
Euclid’s algorithm can produce the errata locator polynomial 
and errata evaluator polynomial simultaneously, similar to 
the Massey-Berlekemp algorithm. The VLSI architectures 
for syndrome computations, polynomial expansions, modi- 
fied Euclid’s algorithm performance, and polynomial evalua- 
tions are also described. 

This work was carried out during the architectural phase of 
the Advanced Reed-Solomon Decoder (ARSD) project and 
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should be viewed as a companion to the recent work of 
Truong, er 01. [ 6 ] .  In that article, a transform domain decoder 
architecture is developed which, due to its design simplicity, 
has been chosen for the prototype VLSI implementation of 
the ARSD. However, the work presented here and in [6] 
clearly shows that the time domain architecture has many 
desirable features which make it an attractive candidate for 
future VLSI implementation. 

II. The Time Domain Reed-Solomon 
Decoding Algorithm 

Let N = 2 m  - 1 be the length of the (N,Z) RS code with 
design distance d.  

Let 

Then for each symbol ri that is labeled as an erasure, a-i 
should be the root of the erasure locator polynomial A(X). 
That is, 

A(X) = n ( X - a - ' )  (3) 
-i 

01 E A  

Step 3. Multiply the syndrome polynomial S(X) by the 
erasure locator polynomial A(X) to form the modified syn- 
drome polynomial 

T(X) = S(X)  A(X) mod Xd-' 

d-1 

k = l  
N-1 

+.. .+ r lX+ro  X N - 1  R ( X )  = rixi = rN-l . 
i=O 

be the received message. Suppose e errors and E erasures 
occur, and 2e  + E < d - 1. Define A = {a+Iri declared as an 
erasure}. 

The decoding algorithm is as follows: , 

Step 1 .  Compute the syndromes 

N-1 I 
sk = C rixi 

i=O 

N -1 

= C riaki  
i=O 

Form a syndrome polynomial 

d -1 

k = l  

Step 2. Compute the erasure locator polynomial A(*. Assume 
the erasure location information is received in the form of a 
binary sequence synchronous to the received message 

N -1 

R ( X )  = r iXi  
i=O 

Step 4. I f  deg(A(X)) > deg(T(X)), then no error has occurred, 
i.e., e = 0. Thus there is no need to perform the modified 
Euclid's algorithm. Let the errata locator polynomial a(X) = 
A(X) and the errata evaluator polynomial w(X) = T(X). If 
deg(A(X)) < deg(T(X)), then perform a modified Euclid's 
algorithm on Xd-' and T ( X )  with the following initializations: 
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where 
Qi-, (X) ,  respectively, 

and bi-l are the leading coefficients of Ri-l ( X )  and 

and 

ui-l = 1 if 2 0 

ui-l = 0 if Qi-l < 0 

Stop the iterations when de@,(*) > deg(Ri(X)). Let the 
errata locator polynomial o(X) = $(X)  and the errata evalua- 
tor polynomial w(X) = Ri(X). The u(X) and w(X) polyno- 
mials, obtained by the modified Euclid’s algorithm, both 
carry a common scale factor compared t o  those computed by 
the conventional Euclid’s algorithm. But this scale factor does 
not affect the errata location computations or the errata 
magnitude computations. 

Step 5. Evaluate the errata locator polynomial o(X) for a-i ,  
i = 0 , . . . ,  N - 1 to find the roots of a(X). If u( (Y -~ )  = 0, 
then ri is a corrupted symbol. 

Step 6. Compute the corresponding errata magnitudes by 
evaluating w(X) and o‘(X) for a-i ,  i = 0,. . . , N - 1. That is, 
the errata magnitude 

Note that the scale factor carried by w(X) and o(X) is auto- 
matically cancelled by this division. 

Step 7 .  Subtracting 4 from ri yields the decoded codeword 

(12) 
I\ h 

Ci = ri - ei O < i S N - 1  

Note that the modified Euclid’s algorithm in Step 4 is a 
combination of three techniques. First, observe that the error 
locator polynomial h(X) and the errata evaluator polynomial 
w(X) can be obtained from Euclid’s algorithm by computing 
the GCD of the modified syndrome T(X)  and X d - l  with the 
following initializations: 

Since e errors and E erasures occur and 2e t E < d - 1, as in 
Theorem 8.4 of [7] , the following properties hold: 

X(X) A(X)S(X) w(X)  mod Xd-’  (17) 

Applying properties (14) and (17) to Theorem 8.5 of  [7] 
implies that there exist a unique j and a unique polynomial 
p ( X )  such that 

By properties (15) and (16), P(X) is a constant, which can be 
taken t o  be unity without affecting the roots of h(X) or the 
magnitudes ei .  The second technique applied to the modified 
Euclid’s algorithm is that the errata locator polynomial u ( x )  = 
A(x) X ( X )  can be obtained directly from the Euclid’s algo- 
rithm. To achieve this, po(X)  must be initialized t o  be the 
erasure locator polynomial A(X) instead of 1 ,  and the iteration 
stop criterion must be changed t o  deg(Ri(X)) < deg(Xi(X)). 
Such a change simply results in all $(X)  carrying the factor 
A(X). The errata evaluator polynomial w(X)  is not affected 
by such initialization because X,(X) does not involve the 
computation of R,(X). As will be shown later, using the 
modified Euclid’s algorithm t o  compute the errata locator 
polynomial directly eliminates the need for polynomial 
multiplication circuits and delay lines in a VLSI pipeline 
implementation. Thirdly, the modified Euclid’s algorithm 
uses cross multiplication and subtraction t o  replace polyno- 
mial division. Such operations eliminate the need t o  com- 
pute finite field inverse elements, which is performed by a 
table look-up, in this step. Since a look-up table involves 
the use of a large silicon area in VLSI, it is preferable to  d o  
this as infrequently as possible. 

Example. Consider an RS (8,4) code over G F  (17) with 
generator polynomial g(X) = (X - 2) ( X -  22)(X- z3)(X- 24). 
Suppose two erasures and one error have occurred and the all 
zero codeword was sent. Let R ( X )  = -2X5 - 3X2 + 2X be 
the received vector with locations X 5  and X 2  flagged as 
erasures. Thus the erasure locator polynomial 

= X 2 + 1 3 X + 2  
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(1) Compute the syndromes 

7 

sk = C ri2& k = 1,2 ,3 ,4  
i=O 

S, = R ( 2 l )  = 13 

S2 = R ( 2 2 )  = 3 

s3 = ~ ( 2 3 )  = 10 

s4 = ~ ( 2 4 )  = 14 

Form the syndrome polynomial 

4 

S(X)  = c SkXk-'  = s4x3 +s3x2 + S 2 P  +sl 
k = l  

= 14X3 + l o x 2  4- 3 X +  13 

(2) Compute the modified syndromes 

T(X) = S(X) A(X) mod X4 

= (14X3 + 10x2 + 3X t 13) 

X ( X 2  + 13X+2)modX4 

= 8 X 3 + 4 X 2 + 5 X + 9  

Thus 

T4 = 8,T3 = 4,T2 = 5,Tl = 9 

(3) Perform the modified Euclid's algorithm 

p,,(X) = A(X) = X 2  + 1 3 X + 2  

h)(X) = 0 

Ro(X)  = x4 

&(X)  = T(X) = 8X3+4X2 + 5 X + 9  

R J X )  = 8R,(X)-X$(X)  

= 8X4 - X ( 8 X 3  + 4 X 2  + 5x+ 9) 

I = - 4x3 - 5x2 - 9 x  I 

= - X 3  - i3X2 - 2 X  

Q, ( X )  = Qo(X) = 8 X 3  + 4X2 + 5 X +  9 

p (A') = p ( X )  = X 2  + 13X+ 2 

R2(X)  = 8 R l  ( X )  - (-4)Ql ( X )  

= 8(-4X3 - 5 X 2  - 9 X )  

1 

+ 4(8X3 t 4X2 t 5 X +  9) 

= lox2-x+2 

& ( X )  = 81, (X)  - ( - 4 ) ~  ( X )  = 8(X3  - 13X2 - 2X) 

+ 4(X2 + 13X+ 2) 

= 9 X 3 + 2 X 2 + 2 X + 8  

Since deg(h, (A')) - deg(R2 (X))  = 1 ,  Stop. 

Thus the errata evaluator is 

w(X) = R 2 ( X )  = 10X2 - X +  2 

and the errata locator is 

a(X) = & ( X )  = 9 X 3 + 2 X 2 + 2 X + 8  

(4) Perform Chien search on o(X) and evaluate -w(A')/ 
o ' (X) 

h 

4 2 - 7 1  = 7; 

4 2 4 )  = 12: 

e7 = 0 

e6 = 0 n 

n 4 2 4 )  = 16; 

u ( r 3 )  = 8; 

e4 = 0 

e3 = 0 CI 

,. - 4 2 - 9  - 2 
4 2 - 9  = 0; e l - - - -  u'(2-l) 

h 4 2 - 0 )  = 4; eo = 0 
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i = 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0  h (5) Ci = ri - ei A(X) = n ( X - a - i )  
--I 

(Y E A  
= (O,O, - 2 , 0 , 0 ,  - 3 , 2 , 0 )  - ( O , O ,  -2 ,O,O,-3 ,2 ,0)  

= ( 0 . 0 , 0 , 0 , 0 , 0 , 0 , 0 )  from one root a-i at a time. Similarly, the modified syndromes 

The VLSI architecture of the pipeline RS decoder is shown 
in Fig. 1. The syndromes S(X) are computed by a form of  
polynomial evaluation. The ak generation block converts binary 
erasure location information t o  powers of a which are the roots 
of the erasure locator polynomial. The modified syndromes 
T ( X )  and the erasure locator polynomial A(X) can be com- 
puted by two polynomial multiplication circuits. By the use of 
a multiplexing and recursive technique, the modified Euclid’s 
algorithm is implemented with a significant reduction of cells 
over a previous design [ l ] .  The errata evaluator polynomial 
w ( X )  and the errata locator polynomial o(X)  are then evaluated 
using two polynomial evaluation circuits different from the 
one used for syndrome computation. The errata locations thus 
obtained direct the subtractions of the errata from the received 
messages to  produce the decoded messages. In the following, 
the VLSI design of each functional block is described. 

111. VLSl Implementation of the 
Syndrome Computation 

The syndrome computation 

is an evaluation of a polynomial of length N on d - 1 points. 
Since N > d - 1, it is best t o  compute all syndromes simulta- 
neously in the following manner as each ri is received: 

Sk = (. . . ( T ~ - ~  ak t r N - 2 )  ak  + . . . + rl ak + r,, (19) 1 

T ( X )  E S ( X )  A(* mod Xd-l  

can also be computed in the same manner except T ( X )  uses 
S ( X ) ,  instead of 1, as an initial condition. Therefore, a poly- 
nomial expansion circuit is developed to  calculate T(X)  and 
N X ) .  

Note that for an arbitrary S(X),  which may be 1 ,  

S ( x )  ( X  - a-i)  = X S ( X )  - a-is(x) (22) 

This computation can be accomplished by a linear shift of 
S ( X ) ,  multiplication of every coefficient of S(X)  by a-i, 
and finite field additions. A systolic array is designed, as 
shown in Fig. 3 .  t o  implement such simple operations. The 
control signal “zero” ensures that the resultant polynomial 
would not be changed i fa - ’  = 0. 

V. A New Architecture to Perform the 
Modified Euclidean Algorithm 

A systolic array was designed in [2] t o  compute the error 
locator polynomial by a modified Euclidean algorithm. The 
array required 2 t  cells, twice the number of correctable 
errors. It is capable of performing the modified Euclidean 
algorithm continuously. 

Note that rN-l is the first received symbol. Starting from the 
innermost parentheses, syndrome Sk is gradually computed as 
ri are received. After ro is entered, all d - 1 syndrome compu- 
tations are completed at  the same time. They are ready t o  be 
shifted out serially at that point. A systolic array design of a 
syndrome computation circuit is shown in Fig. 2 .  

In the modified Euclidean algorithm only one syndrome 
polynomial is computed in the time interval of one code 
word. As a consequence, the original architecture in [2] of 
a pipeline RS decoder is not as efficient as it might be. A 
substantial portion of the systolic array is always idling. This 
fact makes possible a more efficient design with fewer cells 

IV. A VLSl Design for Polynomial 
Expansion 

\ and no loss in the throughput rate. 

For the ( N ,  I )  RS code the length of the syndrome poly- 
nomial is N - I .  The maximum length of the resultant Forney 

Recall that A is the set of a-i  where  EA implies the 
location of ri is an erasure. The computation of the erasure 
locator polynomial A(X) demands the expansion of 

syndrome polynomial is also N - I .  Imagine now that a single 
cell is used recursively t o  perform the successive steps of the 
modified Euclidean algorithm instead of pipelining data to  
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the next cell. Then it would take N - I  recursions to complete 
the algorithm, where each recursion requires N - I symbol 
times. Therefore, using a single cell recursively requires only a 
total of ( N  - symbol time to complete the modified form 
of Euclidean algorithm. Since a syndrome polynomial needs 
to arrive every N symbol times, only L(N - I)2/NJ cells are 
needed to process successive syndrome polynomials at a full 
pipeline throughput rate. 

Figure 4 shows the new alternate architectural design. The 
input multiplexer directs the syndrome polynomials to differ- 
ent cells. Each processor cell is almost identical to the cell 
presented in [2] ,  except that it is used to process data recur- 
sively. 

The architecture of the new basic cell is given in Fig. 5 .  
Compared with the previous systolic array design [ 2 ] ,  the 
present scheme for multiplexing the recursive cell computa- 
tions significantly reduces the number of cells and as a conse- 
quence the number of circuits. Table 1 shows that the cell 
reduction is greater for high rate codes. 

VI. A VLSl Design of a Polynomial 
Evaluation Circuit 

In RS deco’ding the errata locator polynomial 

e+E ’ .  
a(X) = U i X i  

i=O 

its derivative 

e+E 

CJ’(X) = CJ; xj-1 
i= 0 

2 

and the errata evaluator polynomial 

e+E-1 

= OiXi 
i=O 

all need to be evaluated for each 1 < i < N .  Note that the 
syndrome computation is another form of evaluating the 
received message polynomial R (X): 

’k = R ( m  
X=lYk 

N -  1 

= riXi  
X = a k  i=0 

for 1 < k < d - 1 (26) 

However, the syndrome computation is an evaluation of a 
polynomial of length N on d - 1 points and both o(X)  and 
w(X), having length < e t E t 1 < d - 1, are evaluated on N 
points. If one evaluates a ( X )  or w ( X )  using the design in 
Section I11 for syndrome computation, it would take N of 
these cells. Since N > d - 1, there is a more efficient design 
which uses only d - 1 cells with less complexity. 

Consider evaluating a polynomial A ( X ) ,  deg(A(X)) < 
d - 2  

d -2 

i=O 

f o r X =  a-1, j =  1,2,. . . , N 

Hence, 

IX=(y-i i=o 

d -2 

= for j = 1 , 2 , .  . . , N  (28) 
i=O 

For each ai ,  the quantity ~ ~ ( a - ~ ) j  can be obtained by recur- 
sively multiplying a fixed constant ai a s j  goes from 1 t o N .  

A finite field summation of d - 1 terms results in the desired 
polynomial evaluation. A systolic array design of such an 
operation is shown in Fig. 6.  Note that the results of evaluat- 
ing o(X), u’(X), and w(X) are produced sequentially. This 
matches perfectly with the sequential nature of the received 
data R (X)  in a real-time decoding environment. 

One last observation on the polynomial evaluation: the 
evaluation of o’(X) uses only the coefficients of a(X) with 
odd power terms. This property makes it possible to obtain 
the evaluation of o’(X) as a by-product from the evaluation 
of o(X) at no cost. As illustrated in Fig. 7, simply use two 
smaller exclusive-OR trees to sum the even terms and odd 
terms of a(X) separately. The summation of the odd terms 
yields C J ’ ( ( Y - ~ ) .  Another exclusive-OR operation on the two 
partial sums results in o(a-’) itself. 
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Table 1. Comparison of the number of cells required in the 
modified Euclid’s algorithm computation 

RS code Full systolic array Multiplexing on recursive cells 
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R(X)  A 

DELAY 

S(X) 
POLYNOMIAL - POLYNOMIAL T(X_I 

Fig. 1. VLSl architecture of a pipeline time-domain Reed-Solomon decoder lor both error and 
erasure correction 

REcEI;Er 
MESSAGES 

L - - - - A  

Fig. 2. A systolic array to compute syndromes 
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I 
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POLYNOMIAL 
EVALUATION 2 

Fig. 3. A systolic array lor polynomial expansion computation 
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Fig. 4. The new architecture for performing the modified form of Euclid’s algorithm 
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I 
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t 

Fig. 5. Block diagram of basic cell for computing the 
modified Euclid’s algorithm 
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I 
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I 
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I SUMMATION BY XOR TREE 

REGISTER 

Fig. 6. A systolic array for polynomial evaluation 

CELL 
1 

1 
XOR TREE 

Fig. 7. The polynomial evaluation circuit for 4 X )  and d(X)  
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