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1 INTRODUCTION

IN this paper, we describe the methods used to formulate and ver-
ify the memory subsystem of the cache-coherent Sun Scalable
Shared-memory MultiProcessor (S3.mp) [11] at three layers: the mem-
ory consistency model [1], the cache coherence protocol [19], and the
implementation. At the most abstract level, S3.mp supports the Total
Store Ordering (TSO) memory model [20], which disallows proces-
sors to read two write updates as having occurred in a different
order. After defining the cache coherence property in the context
of TSO, we verify the distributed directory-based cache coherence
protocol by state enumeration-based tools. All protocol compo-
nents are modeled as communicating finite state machines. Fi-
nally, we apply three simulation strategies: random-driven, di-
rected script-driven, and application-driven, to catch different
implementation errors.

Learning from our experience, efficient tools and well-planned
simulation strategies reduce engineering effort in getting correct
designs by eliminating ambiguities in the transition from high-
level abstraction to low-level implementation. Moreover, complex
design alternatives can be tried out more quickly. This is particu-
larly important for cache protocols, in which design complexity is
the major obstacle.

2 OVERVIEW OF THE S3.MP ARCHITECTURE

The S3.mp implements a CC-NUMA (Cache-Coherent Non-Uniform
Memory Access) multiprocessor system on a network of commodity
Sparcstation-10 and/or Sparcstation-20 workstations (Fig. 1). Each
node includes several processors with private caches and main-
tains a fraction of a globally shared address space. Processor
caches within a node are kept coherent via the Mbus snooping
protocol. For remote memory accesses, the memory controller
(MC) translates bus transactions into a messages that are sent
across the network to the remote memory controllers. Part of the
physical memory at each node is allocated as a large InterNode

Cache (INC). The S3.mp system maintains inclusion between the
InterNode Cache and the processor caches.

To maintain coherence among internode caches, the S3.mp uses
a distributed directory-based protocol. Every memory block is
mapped to a home node, which contains a directory entry for the
block [3]. The directory entry maintains the global state of the
block as well as a pointer to the first remote node having a copy of
the block. Each INC block also has a pointer to the next node
sharing the block. Thus, nodes which share a memory block form
a linked list.

3 TOTAL STORE ORDERING AND CACHE COHERENCE

The current S3.mp design supports the Total Store Ordering (TSO)
model [20] which is illustrated in Fig. 2a. In this model, each proc-
essor is associated with a first-in-first-out (FIFO) store buffer. All
stores are inserted into the store buffers and are executed at the
memory sequentially in the program order. Loads can bypass
stores, but a load access always looks up the local store buffer for
the latest store to the same memory location. If the store exists, the
load returns the value of the store. Otherwise, the load reads the
value from the memory.

3.1 The S3.mp Implementation Model of TSO
Many possible implementations result in legal and indistinguish-
able behavior from the essential TSO model. The design as em-
braced in S3.mp is to provide the programmers a single global
memory image via coherent cache systems [10], even though the
memory modules may be physically distributed, as shown in
Fig. 2b.

In principle, a coherent cache system allows multiple copies of
the same memory location to exist in the system, but they are al-
ways consistent by having processors broadcast the values of up-
dates or invalidations [19]. To avoid sending updates or invalida-
tions on every store, some state is usually associated with each
cache block. For instance, the simplest write-invalidate protocol
has three states: invalid (data is not present in the cache), shared
(multiple copies may exist and are coherent), and dirty (the copy is
unique). A processor can always read a shared or dirty copy, but it
can only write to a dirty copy. When a processor writes to an in-
valid or a Shared copy, it must first procure an exclusive copy.

Because all misses and all requests for dirty copies to the same
cache lines are serialized either by a shared bus [6], [9] or by the
directory [3], it is not difficult to understand why the memory
system with a write-invalidate protocol behaves the same as the
primary TSO model of Fig. 2a when the memory accesses are
atomic [10]. Under atomicity, it is clear that all stores to all memory
locations are temporally ordered and no two processors can observe
different orders for two stores to the same memory location. Thus,
we can easily identify the latest store performed at the memory, as
defined by Censier and Feautrier [3]:

DEFINITION 1 (Data Coherence). A memory system is coherent if the
value returned on a LOAD is always the value given by the latest
STORE with the same memory location.

However, temporal ordering is impossible in practice because
the memory accesses are actually not atomic and the invalidations
take time to propagate. As a result, the concept of data coherence
and the notion of latest store, as in the definition of data coherence,
must be interpreted in a different way, i.e., not in its literal or tem-
poral sense.

Consider the example of Fig. 3. Initially, processors p1 and p2
share a copy of memory location x. p0 executes the store as soon as
it receives the data block from the memory, while invalidations
may be still in transit to p1 and p2. As a result, data inconsistency
can occur during the shadowed period of Fig. 3. p0 is allowed to
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read the new value, while the old value is still accessible by p1 and
p2. This violates the strict, temporal definition of data coherence.

However, the strict, temporal interpretation of data coherence
is illusive. The reason is that programmers cannot control the
speed of processors p1 and p2. If p1 and p2 had run a little bit
faster, the two loads of p1 and p2 would have been done earlier
and the temporal interpretation of strict data coherence would
have been respected. Therefore, Scheurich defined the concept of
general coherence [17]:

DEFINITION 2 (General Coherence). A system is generally coherent if a
total store order is enforced on all stores to the same address and if
any processor can only observe these stores in the total order.

In a generally coherent system, processors cannot observe val-
ues of the same data in different orders, but, at any time, proces-
sors can observe different values produced at different times. If, at
any time, all processors would stop issuing memory accesses, all
copies would eventually reach the same value. Provided there is
forward progress, a strict data coherent system is indistinguish-
able from a generally coherent system.

The S3.mp cache system supports general coherence. Write-

invalidations are processed according to the scenario of Fig. 3, in
which the memory controller does not accept any other request to
word x during [t1, t2].

4 VALIDATION OF THE S3.MP CACHE COHERENCE
PROTOCOL

4.1 Model and Correctness Properties
Fig. 4 shows the abstract S3.mp model in which all modules are
modeled as finite state machines. Several abstractions are made to
save complexity, but without compromising the properties to ver-
ify. For checking data consistency, we only model one cache block
of one memory location. Replacement of the block is modeled by
assuming that it can happen at any time [13], [14]. The home node
of the block is distinguished from other homogeneous remote
nodes. Each node consists of only one processor and the first-level
caches are not modeled to focus the verification on the coherence
among INCs (the Mbus snooping protocol supporting the first-
level coherent caches and the mechanisms for maintaining the
inclusion property are well understood).

The topology of the network is not fixed. Processors communi-

Fig. 1. Overview of the S3.mp system and global memory mapping.

Fig. 2. The primary TSO model and an implementation based on a Cache Coherent Memory System.

Fig. 3. Temporary data inconsistency according to data coherence.
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cate via message receiving channels (CH?) and message sending
channels (CH!). The state of a message channel is defined by the
set of messages floating in the channel. These channels are non-
FIFO buffers to model the unordered network. Also, we assume
that messages are never lost and duplicated.

We verify two safety properties:

1) A state machine should never receive a message unspecified
in its current state, and

2) The memory system must correctly support general coherence.

Violations of the first property are called unexpected message recep-
tion errors and are easy to detect. To verify the second property,
the verification model keeps track of the symbolic status of all data
copies, which can be either fresh or obsolete [14]. In short, when a
processor commits a store access, it defines the most recent data
copy and all other data copies are tagged as obsolete. Data inconsis-
tency is detected when a processor can read a obsolete data copy.

4.2 Verification Methods
We have applied two tools, the Murj [5] and the SSM [16], to ver-
ify the S3.mp protocol. The Murj uses a straightforward state enu-
meration method, which is the most commonly used method for
the verification of communication protocols. This method explores
the entire state space of a protocol model; however, this is not fea-
sible when the state space is very large.

The SSM system is based on a symbolic state model which ex-
ploits the symmetry and homogeneity of cache protocols to reduce
the size of the state space. For example, all base machines in Fig. 4
are functionally identical. A single, canonical system state is suffi-
cient to represent the set of states obtained by all permutations of
the states of identical elements. Moreover, a unique property of
cache protocols is that the exact number of data copies in a shared
state is irrelevant to protocol correctness. On the other hand, it is
critical to keep track of a cached copy in state dirty or modified.
Thus, the SSM maps global states to more abstract states by
grouping caches in the same states. For example, an abstract SSM
state (Inv+, RO*) represents all the global states in which “one or
multiple caches are in the Invalid state, and zero, one, or multiple
caches are in the Read-Only state.” Based on this compact repre-
sentation, there is no need to list explicitly all global states as in a
state enumeration method. Recently, a similar approach to SSM
has been developed for Murj [7]. For details of Murj, SSM, and
other techniques, one can refer to [15].

Although the SSM has the general advantage of verifying cache
protocols independently of the model size, we need to adapt the
method for S3.mp because it is difficult to abstract linked lists [14].
Specifically, processors which share the block are explicitly
tracked in a linked list, while other processors are abstractly
lumped together. Similar to the concept of [7], we start the verifi-
cation runs by limiting one cached copy at any time. We then in-
crementally allow one more processor to share the data block in
every successive run until the verification results stabilize [7].

4.3 Verification Results and Quality
Due to maintenance of linked lists by a distributed algorithm and
the non-FIFO behavior of the interconnect network, the complex
S3.mp protocol is a challenge for design verification tools. The
protocol has a rough count of about 30 stable/transient cache
states and 20 memory states. (These states represent branches in
the microprogram implementation of the protocol.) The number of
states is far more than what is typically needed for protocols using
a central directory [16].

Table 1 summarizes the verification results by using Murj and
SSM on a Sun4/690 system with 500Mb memory. Learning from
our experience, Murj is efficient with small models (up to three
nodes, memory bounded). It is a useful tool for catching most er-
rors in the early stage of a design. However, an error due to rup-
tured linked lists was not detected by Murj, since this error in-
volved four or more nodes to be activated [14]. This error was later
found by the SSM tool, which demonstrates its strength in verify-
ing protocols independent of model size.

TABLE 1
VERIFICATION RESULTS BY USING MURj AND SSM.

5 VALIDATION OF THE IMPLEMENTATION

A correct cache protocol at the level of finite state machines does
not preclude implementation errors, but it provides invaluable
guidance toward implementation. At present, testing and simula-
tions are still the most efficient methods to detect implementation
errors because formal verification methods, such as state enu-
meration, cannot handle the overwhelming complexity of all im-
plementation details. In this section, we first overview the S3.mp
cache coherence engine. The simulation environment and results
are then described.

5.1 The S3.mp Cache Coherence Engine
The S3.mp cache coherence engines, RMH and RAS, which are
both microprogrammed and multithreaded [12], are integrated on
a customized memory controller (Fig. 5). When a memory access is
received from the Mbus, the address is checked to determine
whether it is mapped locally or cached in the INC. If the memory
address is mapped remotely and the data is not in the INC, an
appropriate request is sent to the home node of the block. Mean-
while, the access is suspended and monitored by the RMH. The
RMH retrieves data from the home node, services invalidations
and data forwarding requests, and maintains the INC. On the
other hand, the RAS is responsible for handling requests from

Fig. 4. Verification model for the S3.mp protocol.
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remote nodes to locally mapped blocks. It services remote data
requests, maintains the directory, and generates invalidation and
data forwarding messages.

Another critical design feature is that messages are given pri-
orities and are delivered according to their priority to prevent
deadlock. Due to flexible topology and the message transport
protocol, the order of message delivery network is not guaranteed.
To detect performance bottlenecks, transactions are aborted after a
preset time-out counter expires.

5.2 Test and Simulation
5.2.1 The Simulator
We have developed a cycle-accurate simulation system, which
models the activities of the processors, the Mbuses, and the mem-
ory controllers cycle by cycle (Fig. 6). Inputs to the simulator are
high-level scripts or memory reference streams provided by the
CacheMire, a program-driven functional simulator of SPARC
processors [2]. The simulator provides several features which, in
our opinion, are important for multiprocessor design verification
tools:

1) It provides a high-level input language with useful con-
structs such as loop control and if-else conditionals,

2) It allows quick changes of system configurations such as
parameterizing the number of processors on a bus,

3) It facilitates quick simulations by swapping functionally
equivalent modules in C language for the corresponding,
but slow RTL (register transfer level) modules,

4) It lets explicit specification of network delays on coherence

messages in order to exercise various parts of the design
such as microcode segments of cache protocol engines, and

5) It has accurate bookkeeping of coverages and allows selec-
tive report of diagnostic traces which can be displayed in an
interactive visual debugger.

5.2.2 Strategies and Results
In accordance to the classification in [21], we check the design for
three types of errors:

1) The system should never enter wrong states and produce
incorrect results (functional errors),

2) The system should not deadlock and processors should not
be starved due to the priority scheme (performance errors
which are detected when a time-out counter expires), and

3) The system operation should never result in violations of
the TSO memory model (behavior errors).

We use three simulation strategies:

1) random-driven,
2) directed script-driven, and
3) application-driven simulations.

The parallel applications are from the SPLASH suite [18]. Applica-
tions of the three schemes to check different categories of errors
are shown in Table 2.

Generally speaking, random simulation is the most popular
validation strategy at the chip level (RTL). For example, the SPUR
system [21], the SGI Challenge [6], and the recent Pentium Pro
multiprocessor system [9] are validated by random simulations.

Fig. 5. Structure of the memory controller.

Fig. 6. The S3.mp simulation environment.

TABLE 2
APPLICATIONS OF SIMULATION STRATEGIES
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Ideally, the simulation strategies are geared toward two requirements:

1) All state transitions are exercised, and
2) The system is in a correct state after a series of test sequences.

Unfortunately, these two requirements are difficult to meet. In
random simulations, processors issue arbitrary memory accesses,
and very long simulation runs are needed in order to exercise all
state transitions. Moreover, it is difficult to determine whether the
outcome is correct if no appropriate control is applied. A general
approach is to write a value to a memory location, read the loca-
tion, and compare the returned value with the previously written
value [6], [21]. In this approach, no new stores to the same mem-
ory location should be executed before the location is read and
checked. This requirement is, unfortunately, difficult to achieve in
random simulations without explicit blocking mechanisms for
access generation [21].

For reasons listed in Table 3, random tests are unlikely to
achieve the same validation quality for the S3.mp as for other de-
signs. Although many functional errors were found by random
simulations during the early validation phase, due to the random-
ness, the scheme failed to find some functional errors which were
then discovered by directed scripts.

In principle, directed scripts are written to practice all branches
of the microprograms for the cache coherence engines. This is
done by explicitly generating coherence requests and delaying the
transmission of coherence messages among nodes. Fig. 7 is a sim-
ple example with two nodes. Node 1 is the home node which ini-
tializes the target cache line with value 0xfffffff0. The remote node 2
then has a read miss, which have node 1 provide a data copy and
an acknowledgment CR_ACK. We delay the CR_ACK, followed
by a write-invalidation by node 1. Thus, we create a race between
the CR_ACK and the invalidation from node 1 to node 2.

Fig. 7. A simple example diagnosis program.

One of the most notable errors which were not uncovered by
random simulations is caused by write-back requests. Again, it is
difficult to control random simulations to generate enough cache
replacements to observe a particular access pattern for the three-
ways set-associative INCs of S3.mp. Another interesting error ex-
clusively discovered by directed scripts was a violation of the TSO
memory model. This error was due to a mistake in the locking
mechanism used by the memory controller to prevent a node from
exporting values of stores which are not yet globally performed.
The scripts were elaborately designed to test whether processors
observe the same order of stores to different memory locations.

Unfortunately, directed scripts must be developed manually,
which is inefficient and tedious. Therefore, the testing scripts are
normally short programs which are designed to explicitly check
particular parts of the system design.

To complement the random simulations and directed scripts,
we have also tested the system under memory access streams ob-
tained from the SPLASH benchmark [18]. The hope is that bench-
mark programs normally demonstrate a wide range of access pat-
terns and, thus, the simulation of actual benchmarks is likely to
discover errors which are sensitive to access patterns difficult to
make up in random simulations and directed scripts. In our ex-
periments, only one performance error was discovered by this
scheme. The source of this error derives from the different priority
levels assigned to messages. Messages of lower priority are nor-
mally blocked by requests of higher priority. During initialization
of large arrays, requests of lower priority may be accidentally
starved when a node is swamped by continuous flows of requests
of higher priority. This error was not found by random simula-
tions and directed scripts because the size of the data set is nor-
mally small in these two schemes.

6 CONCLUSION

We have described the various schemes applied to validate the
memory system design of the S3.mp cache-coherent shared-
memory system at different levels of abstraction. Based on a top-
down approach, we clearly define the cache coherence property in
the context of TSO memory model supported by the S3.mp. We
have then shown that development and validation of cache proto-
cols can greatly benefit from state-based verification methods. For
the detailed implementation, we have demonstrated that random
simulation is simple and efficient for catching errors in early
phases, but it is difficult to generate tests to cover all possible
cases. This is particularly true for the S3.mp system, which allows
messages to be delayed in the network for a long time. To assist
random simulations, we further test the system by the applications
of specifically written scripts and of benchmarks. Our results show
that the two schemes complement random simulations by detect-
ing additional errors.

TABLE 3
CHARACTERISTICS OF DESIGNS AND THEIR IMPLICATIONS ON QUALITY OF RANDOM SIMULATIONS
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From our experience, we expect a tighter integration of formal
methods and simulations in the future. One important feature of
formal verification methods is to visit all possible states and ex-
plore all possible transitions. Therefore, it should be feasible to
generate test scripts during the exploration of the state space in a
formal method. This approach will significantly reduce the effort
needed to develop suitably directed scripts. Another issue is the
synthesis of a protocol implementation, which is the micropro-
gram in the case of S3.mp. The approach taken in Teapot [4] is to
derive the protocol and the model for verification from a common
specification. This technique has great potential because it is diffi-
cult to design a correct cache protocol. With the aid of synthesis
tools, it is possible to develop protocols which are suitably opti-
mized for applications with different memory access behaviors.
However, it is not clear whether the technique can be generalized
to architectures and memory models.
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