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AbstractÐInterval routing is a space-efficient method for point-to-point networks.

It is based on labeling the edges of a network with intervals of vertex numbers

(called interval labels). An M-label scheme allows up to M labels to be attached

on an edge. For arbitrary graphs of size n, n the number of vertices, the problem is

to determine the minimum M necessary for achieving optimality in the length of

the longest routing path. The longest routing path resulted from a labeling is an

important indicator of the performance of any algorithm that runs on the network.

We prove that there exists a graph with D � 
�n1
3� such that if M � n

18DÿO�
���
n
D

p �,
the longest path is no shorter than D��� D����

M
p �. As a result, for any M-label IRS, if

the longest path is to be shorter than D��� D����
M
p �, at least M � 
�nD� labels per

edge would be necessary.

Index TermsÐCompact routing, computational complexity, computer networks,

distributed systems, graph theory, interval routing, optimization, shortest paths.

æ

1 INTRODUCTION

INTERVAL routing was first proposed by Santoro and Khatib [9],
and subsequently refined by van Leeuwen and Tan [15]. The idea
is to label the vertices of a network, v0; . . . ; vnÿ1, by integers (called
vertex numbers) from the cyclicly ordered set f0; 1; . . . ; nÿ 1g,
where n is the number of vertices; and the edges by intervals of the
form hp; qi, where p; q are vertex numbers. hp; qi is the set fp; p�
1; . . . ; qg if p < q, or fp; p� 1; . . . ; nÿ 1; 0; . . . ; qg if p > q. hpi is the
short form for hp; pi, i.e., the set fpg. For convenience, we identify a
vertex by its vertex numberÐfor example, v1 has the vertex
number 1. During routing, a message is routed along an edge
whose interval label contains the destination vertex number until
the message reaches the destination. An example of interval
routing is shown in Fig. 1. The figure shows the routing path of a
message that travels from v2 to v0. The message first takes the edge
to v3 because 0 is contained in the interval h3; 0i and, then, takes the
edge to v4 because 0 is contained in h4; 0i, and so on. Clearly, with
interval routing, at most O�d� space is needed at a vertex, where d
is the vertex's degree. In general, d is smaller than n, the size of the
network and we say that the routing information stored at a vertex
as required by interval routing is ªcompact.º See the survey by Tan
and van Leeuwen [10] for an overview of the field of compact
routing.

One of the main questions in interval routing research is that,

given G, how to label its vertices and edges so that all the routing

paths are shortest paths, where G represents either a specific kind

of graphs or arbitrary graphs (a.k.a. general networks). A

successful labeling satisfying this all-shortest-path condition is an

optimum interval routing scheme (IRS). For a number of specific

graphs, optimum IRSs are known to exist [10]. What about

arbitrary graphs? Ruzicka gave a negative answer using a graph

that would not admit an optimum IRS [8].
What then can be done if indeed no optimum IRS exists for a

given network? One possibility is to relax the compactness

requirement on routing information by allowing more than one

interval label to be associated with an edge. An IRS that uses up to
M labels per edge is called an M-label IRS, or simply M-IRS. Fig. 2
shows a graph, known as a circular-arc graph, which admits no
optimum 1-label IRS, as has been proven by Fraigniaud and
Gavoille [2]. The circular-arc graph, however, admits an optimum
IRS if up to two labels per edge are allowed. The same figure gives
one such optimum 2-IRS for the graph. In the figure, some edges
have one label, while the others have two.

Because of the existence of graphs like the circular-arc graph,

multilabel interval routing has become an interesting branch of

interval routing research. The goal is to find a good trade-off

between storage (in terms of number of labels per edge) and the

routing path lengths. In [6], Kranakis et al. proved that at least

�� ���n3
p � labels per edge are needed for shortest-path interval

routing in some general networks. In [3], Gavoille and GueÂvremont

improved this to the optimal bound of ��n� labels per edge. In [5],

Kranakis and Krizanc proved that each vertex has to keep O�n2�
bits of information are needed in order to have the routing path

between any two vertices no longer than two times the

corresponding shortest path. This result is not restricted to interval

routing, but applicable to compact routing in general. On the other

hand, analysis based on the longest routing path has received

much attention in recent years. In [14], Tse and Lau proved that, in

order to have an IRS with the longest path shorter than 3
2Dÿ 2,

where D is the diameter, ��logn� labels per edge are needed; and,

to have an IRS with the longest path shorter than 5
4D, �� ���np � labels

per edge are needed. KraÂlovic et al. proved the same result in

[7]Ða lower bound of �� ���np � labels per edge with an improved

lower bound of 3
2Dÿ 3 on the longest path.1 Recently, Gavoille

further improved the lower bound on the number of labels, to
n

D log�n=D� [4]. In this paper, we propose a new lower bound on the

number of labels per edge for achieving routing optimality. The

bound is ��nD�, which is applicable to networks with D � 
�n1
3�.

Unfortunately, even using this many labels, the longest path still

falls short of being optimal. The lower bound on the longest path

we prove is D�K, where K � �� D����
M
p �. Our results suggest that it is

not practical to impose optimality on the routing paths for

arbitrary graphs using interval routing.

Note that our pursuit of a new bound on the space requirement

is targeted at graphs whose diameter is a significant parameterÐa

function of n, as opposed to a constant. There exist many graphs

having a small diameter but a large number of vertices; for

example, there is a degree-10 graph having 47; 129; 712 vertices, but

whose diameter is only 10 [16]. For graphs having a small

diameter, the labeling algorithm by Santoro and Khatib (using at

most one label per edge) [9], which generates paths that are

bounded by 2D, is already quite satisfactory. Even if we allow

more labels (up to n
logn say) to be used per edge, one cannot do

better than reducing the bound to 3
2Dÿ 3 [4]. As D is so

insignificant as compared to n in these graphs, the reduction

really cannot justify the extra labels used, not to mention the

insignificance of the reduced length itself. Therefore, graphs with

diameter being an increasing function of n are our main interest in

this paper. For the graphs with D � 
�n1
3�, we improve Gavoille's

result of n
D log�n=D� to n

D . We prove that there exists a graph with

D � 
�n1
3� such that if M � n

18DÿO�
���
n
D

p � for any M-label IRS, the
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longest path is no shorter than D��� D����
M
p �. As a result, for any M-

label IRS, if the longest path is shorter than D��� D����
M
p �, M � 
�nD�.

2 PROPERTIES

The network in question is a connected graph, G � �V ;E�, where
V is the set of vertices and E the set of bidirectional edges. There
are n vertices in V . To implement interval routing, each vertex is
labeled with a vertex number from the set f0; . . . ; nÿ 1g.
Definition 1. An interval ha; bi is the set fa; a� 1; . . . ; b �mod n�g. In

particular, ha; ai � hai � fag and ; is an empty interval.

If u 2 hp; qi, we say that u is contained in hp; qi. Two intervals A and
B are said to be disjoint if A \B � ;.

We use the symbol ª� º to denote cyclic ordering of vertex
numbers, which is useful when expressing the ordering of three or
more vertex numbers, for example, a � b � c. Because of cyclic
relationship, a � b � c is equivalent to b � c � a and c � a � b, but
not to a � c � b, which is a different ordering.

Definition 2. Given an interval ha; bi, a and b are the marginal vertices
of the interval. All other vertices in ha; bi, if any, are the nonmarginal
vertices of the interval.

If an interval has only one vertex, then the vertex is a marginal
vertex of the interval.

Every edge in each direction can be labeled with up to M

interval labels, each containing an interval. For u; v 2 E,

L1�u; v�;L2�u; v�; . . . ;LM�u; v�
denote the M interval labels for the edge �u; v�. And, we use
L��u; v� to denote the set

L1�u; v� [ L2�u; v� [ . . . [ LM�u; v�:
The following properties concern the interval labels.

Property 1. (Completeness) The set of interval labels for edges directed
from a vertex u is complete. That is, every vertex in V 6� u must be
contained in one of u's intervals.

Property 2. (No ambiguity) The interval labels for edges directed from a
vertex u are disjoint. That is, for v 6� u, v is contained in exactly one
of these intervals.

Property 3. (No bouncing) For each �u; v� 2 E, there exists no vertex
w 6� u; v such that w is contained in both L��u; v� and L��v; u�.

It should be noted that these properties are necessary, but not
sufficient, for a valid IRS. A valid IRS is one that has a route from
any vertex to any other vertex.

It is not practical to have two labels that are directly adjacent in
the cyclic ordering of vertices to be associated with the same
outgoing edge. These two labels should be combined into a single
one, thus saving some space. We therefore distinguish between
two kinds of disjointness. So far, such as in Property 2 above, we
have been referring to the kind in which all that is required is that
intersection of two intervals is an empty set. The two adjacent
labels just discussed exhibit this kind of disjointness. A ªstrongerº
kind of disjointness between two intervals would be that there is at
least one vertex not belonging to either interval but falling in
between the two intervals. In the remainder of this paper,
disjointness means strong disjointness.

3 THE LOWER BOUNDS

Fact 3.1. After distributing n items into k buckets, there exists one bucket
containing at least dnke items and bk2c buckets each containing not more
than d2nk e items.

We now present the graph G based on which we will derive our
lower bound on the number of labels needed.

Define G � �V ;E� which is of size n � �L� 1��2C��F � 1� �
�F � 1� � �L� 1� and diameter D � 4C � 2, where L;C; F are
positive integers, and V and E are as follows:

V �fvl;c;f j1 � l � L� 1; 1 � c � 2C; 1 � f � F � 1g
[ fuf j1 � f � F � 1g
[ fwlj1 � l � L� 1g

E �f�vl;c;f ; vl;c�1;f �j1 � l � L� 1; 1 � c � 2C ÿ 1; 1 � f � F � 1g
[ f�uf ; vl;1;f �j1 � l � L� 1; 1 � f � F � 1g
[ f�wl; vl;2C;f �j1 � l � L� 1; 1 � f � F � 1g:

An example of G for L � 12, F � 27, and C � 3 is shown in
Fig. 3. There are three kinds of vertices: u, v, and w. The u and w

vertices are mainly for arguing about distances in the proofs. There
are different groupings of the v vertices, into flaps and layers(and,
later on, slices), as indicated in the figure. G has F � 1 flaps, each
protruding from a u vertex; these flaps are joined at a special
column of vertices (the ws) in the middle. Each flap has 2C

columns and L� 1 layers. We use the subscripts f; c; l to index a
flap, a column, and a layer, respectively.

The graph G is a nonplanar graph. It has the interesting
property that a shortest path between two vertices not in the same
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Fig. 1. An example of interval routing.

Fig. 2. A circular-arc graph with an optimum 2-label IRS.



flap and layer must pass through one u and one w, and that a

routing path between two vertices is longer than D if and only if

the path is not a shortest path.

3.1 Flap, Layer, and Slice

In our main proof (of Theorem 3.1), we will arrive at a

contradiction which is against an assumption about the longest

path. The assumption is: For some M, there exists an M-IRS for G

such that the longest path is shorter than D� 1. In Theorem 3.3, we

will extend this to D�K, where K is some function of D and M.
In the following, we consider the set of v vertices (and, later on,

a subset of this set) alone as a cyclic structure of intervals, ignoring

the u and the w vertices; we use u and w only for determining the

pattern of the ordering of the v vertices in the cycle. For instance, if

hv0; v00i is an interval in which all the vertices between v0 and v00 are

non-v vertices, then hv0; v00i cannot be broken into two or more

(strong) disjoint intervals.
If the above assumption about the longest path is true, then the

following lemmas and corollaries would hold.

Lemma 3.1. For each flap f 2 �1; F � 1�, there exist at most M disjoint

intervals which contain all the vertices in the flap, but not any vertices

in any other flap.

Proof. Consider w1. A routing path from w1 to any vertex inside the

flap f must begin with the edge �w1; v1;2C;f �; otherwise, the

routing path (beginning with any other edge) will be of length

at least D� 1. Hence,

fvl;c;f j1 � l � L� 1; 1 � c � 2Cg 2 L��w1; v1;2C;f �:
If these vertices fall into more than M disjoint intervals, then at

least one of the M interval labels of the edge �w1; v1;2C;f � would

contain two of these disjoint intervals and in between them

there would be at least one v vertex that is not in the flap f . But,

the routing path from w1 to this vertex via the edge �w1; v1;2C;f �
will have a length of at least D� 1. tu
In the following, we focus on a subset of the v vertices and their

cyclic ordering. This subset contains only vertices in even columns

and excludes vertices in the L� 1st layer and vertices in the

F � 1st flap. The vertices in this subset exhibit a special ordering

on which the proof of Lemma 3.3 will capitalize. This ordering

would not exist if we also include the odd-column vertices.

Corollary 3.1. For each flap f 2 �1; F �, there exist at most M disjoint

intervals which contain the vertices fvl;2c;f j1 � l � L; 1 � c � Cg,
but not any vertices in other flaps.

Proof. A direct consequence of Lemma 3.1. tu

We call the disjoint intervals (at most M of them) in the above

corollary for a given flap flap intervals, which together contain all

the vertices in the flap's even columns (c � 2; 4; . . . ; 2C), not

including the ones in the L� 1st layer.

Lemma 3.2. For each layer l 2 �1; L� 1�, there exist at most M disjoint

intervals which contain all the vertices in the layer but not any

vertices in other layers.

Proof. Consider u1 and the proof is similar to that of Lemma 3.1.tu
Corollary 3.2. For each layer l 2 �1; L�, there exist at most M disjoint

intervals which contain the vertices fvl;2c;f j1 � c � C; 1 � f � Fg,
but not any vertices in other layers.

Proof. A direct consequence of Lemma 3.2. tu

We call the disjoint intervals (at most M of them) in the above

corollary for a given layer layer intervals, which together contain all

those vertices of the layer that are in even columns except those in

the last flap (F � 1).
The vertices contained in the flaps or the layers identified in

Corollaries 3.1 and 3.2 constitute the set

B � fvl;2c;f j1 � l � L; 1 � c � C; 1 � f � Fg;
which comprises all the v vertices in even columns in the first L

layers of the first F flaps. In the following, we focus on this set B.

The vertices of this set form a cyclic structure of intervals (we

ignore all the v vertices that are not in B). The union of all the flap

intervals is exactly the set B; so is the union of the layer intervals.

Thus, flaps and layers represent two views of the set B (see Fig. 4).

There is a third view, which is based on what we call a slice.
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For c 2 f2; 4; . . . ; 2Cg, define

Sc � fvl;c;f j1 � l � L; 1 � f � Fg � B:
Sc is a slice.

Lemma 3.3 For each slice Sc, c 2 f2; 4; . . . ; 2Cg, there exist at most 2M

disjoint intervals which contain Sc, but not any vertices in Sc
0
, c 6� c0.

Proof. Without loss of generality, assume there exist 2M � 1

disjoint intervals Sc1; S
c
2; . . . ; Sc2M�1 containing Sc, but not any

vertices in Sc
0
, c 6� c0, and the following cyclic structure of

intervals is true.

Sc1 � S 6�c1 � Sc2 � S 6�c2 � � � � � Sc2M�1 � S 6�c2M�1 � Sc1:
There are 2M � 1 disjoint intervals which contain

S>c [ S<c, w h e r e S>c � Sc�2 [ Sc�4 [ � � � [ S2C a n d

S<c � S2 [ S4 [ � � � [ Scÿ2. Hence, without loss of general-

ity, there are at least M � 1 disjoint intervals which contain S>c

but not S<c [ Sc. Suppose there are M � 1 such intervals. Then,

we have the following cyclic structure of intervals.

S>c1 � S�c1 � S>c2 � S�c2 � � � � � S>cM�1 � S�cM�1 � S>c1 :

Consider vl;c�1;f , where l � L� 1; f � F � 1. By the assump-
tion about the longest path, the routing from vl;c�1;f to any
vertex in S>c will pass through the edge �vl;c�1;f ; vl;c;f �;
otherwise, the shortest routing path from vl;c�1;f to

vl0 ;c0 ;f 0 ; l
0 6� l; f 0 6� f; c0 2 fc� 2; c� 4; . . . ; 2Cg

would go through vl;c�2;f ; . . . ; wl; . . . ; uf 0 ; . . . ; vl0 ;c0 ;f 0 , implying a

routing path of length

D

2
ÿ �c� 1�

� �
� D

2

� �
� c0 � D� c0 ÿ �c� 1�

� D� �c� 2� ÿ �c� 1� � D� 1:

Likewise, the routing from vl;c�1;f to any vertex in S�c will pass
through the edge �vl;c�1;f ; vl;c�2;f �. Hence, S>c will be contained
by at most M disjoint interval labels on the edge �vl;c�1;f ; vl;c;f �
and S�c by at most M disjoint interval labels on the edge
�vl;c�1;f ; vl;c�2;f �. By Property 2, these two sets of intervals cannot
overlap; therefore, it is impossible to realize the cyclic structure
of intervals as shown above. tu
We call those disjoint intervals (at most 2M of them per slice)

introduced in the above lemma slice intervals.

3.2 The Main Results

Refer to Fig. 4 which shows the set B being viewed in three
different ways, as F flaps, as L layers, and as C slices. A flap has
LC vertices, a layer FC vertices, and a slice LF vertices.

We define an interslice interval to be an interval that 1) contains
two or more marginal vertices of different slice intervals of
different slices, and 2) does not contain any nonmarginal vertices
of any slice intervals, as depicted in Fig. 5. Note that a nonmarginal
vertex of an interslice interval must be a slice interval having only
one vertex (a singleton).

Lemma 3.4. If a vertex v is a nonmarginal vertex of a slice interval as
well as a nonmarginal vertex of a layer interval, then fvg is a
singleton flap interval.

Proof. The vertex v is as shown in Fig. 6, where v0 and v00 are two
other vertices that are immediately adjacent to v in the cyclic
ordering of the vertices in B. All three vertices belong to the
same slice interval as well as to the same layer interval, as
shown. Assume that fvg is not a singleton flap intervalÐi.e., v is
either a marginal or a nonmarginal vertex of a nonsingleton flap
interval. Suppose the former without loss of generality. There-
fore, we have an intersection of a slice interval, a layer interval,
and a flap interval containing at least two vertices, v and v0,
which is impossible because the intersection of a slice and a
layer contains at most one vertex in any flap. Hence, the
assumption cannot be true. tu

Theorem 3.1. There is a graph G such that, for any valid M-IRS, the
longest routing path will be no shorter than D� 1, where D is the
diameter.

Proof. By Lemma 3.3, we have at most 2M disjoint slice intervals
for each slice and there are C slices. Hence, we have at most
2MC slice intervals. Therefore, there are at most 4MC marginal
vertices of slice intervals, which translates into at most 4MC
vertices in interslice intervals, by the definition of interslice
intervals. These vertices are distributed among L layers. By Fact
3.1, there exist bL2c layers each of which contains at most 8MC

L

� �
vertices belonging to interslice intervals. In other words, each of
these layers contains at least FC ÿ 8MC

L

� �
vertices not belonging
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to interslice intervals. By Corollary 3.2, each layer has at most M

layer intervals. Therefore, in each of these layers, we have at

least

FC ÿ 8MC

L

� �
ÿ 2M

vertices not belonging to interslice intervals and which are

nonmarginal vertices of layer intervals. By Lemma 3.4, each of

these vertices as a set is a singleton flap interval, since a vertex

not belonging to an interslice interval must be a nonmarginal

vertex of a slice interval. Hence, we have a total of at least

L

2

� �
�FC ÿ 8MC

L

� �
ÿ 2M�

singleton flap intervals in the L
2

� �
layers just identified. By Fact

3.1, there exists a flap which has at least

bL2c�FC ÿ 8MC
L

� �ÿ 2M�
F

singleton flap intervals. Let C � d �����
M
p e, L � 4d �����

M
p e, and

F � 9d �����
M
p e. Substituting, the above becomes

2d
�����
M
p
e2 ÿ 4M

9
ÿ 4M

9
;

which is > M .
As a result, these singleton flap intervals of the flap in

question cannot be grouped into M or fewer disjoint intervals,
which is in contradiction with Corollary 3.1 and, hence, the
assumption about the longest path cannot be true. tu

Next, we give the main results of this paper.

Theorem 3.2 There is a graph, with diameter D � ��n1
3� such that if the

length of every path is bounded by D, the lower bound on the number

of labels needed per edge is � n72�
2
3 ÿO�n1

3�.
Proof. Referring to the proof of Theorem 3.1, the graph G is of size

n � �4d
�����
M
p
e � 1��2d

�����
M
p
e��9d

�����
M
p
e � 1� � �9d

�����
M
p
e � 1�

� �4d
�����
M
p
e � 1�

� 72d
�����
M
p
e3 � 26d

�����
M
p
e2 � 15d

�����
M
p
e � 2

< 72�d
�����
M
p
e � 1

7
�3:

Or

M > � n
72
�23 ÿ 8

7
�n
9
�13 � 64

49
:

It is not difficult to see that in the above, M < � n72�
2
3. Since

D � 4C � 2, we have D � ��n1
3�. tu

We can push the lower bound further up by extending the

graph G. We modify the graph G such that each edge �vl;c;f ; vl;c�1;f�
is replaced by the chain of vertices

vl;c;f ; xl;c;1;f ; xl;c;2;f ; . . . ; xl;c;Kÿ1;f ; vl;c�1;f ;

�vl;2C;f ; wl� by the chain of vertices

vl;2C;f ; xl;2C;1;f ; xl;2C;2;f ; . . . ; xl;2C;Kÿ1;f ; wl;

and �uf ; vl;1;f � by the chain of vertices

uf ; xl;0;1;f ; xl;0;2;f ; . . . ; xl;0;Kÿ1;f ; vl;1;f ;

for all l 2 �1; L� 1�; c 2 �1; 2C ÿ 1�; f 2 �1; F � 1�.
Theorem 3.3. There is a graph with D � 
�n1

3� such that, by using not

more than n
18DÿO�

���
n
D

p � labels per edge, the longest path cannot be

shorter than D�K, where K � �� D����
M
p �.

Proof. The graph is the extended graph G above, which has a

size of

n � �L� 1���2C � 1�K ÿ 1��F � 1� � �F � 1� � �L� 1�
and diameter D � �4C � 2�K. If we replace the term D� 1 in

the longest-path assumption by D�K, then the proof of

Theorem 3.1 would apply to the extended graph.2 Substituting

D � �4d �����
M
p e � 2�K into the proof of Theorem 3.1, the D�K

lower bound follows.
Filling in the values for L, C, F , and K, we have

n � �L� 1���2C � 1�K ÿ 1��F � 1� � �F � 1� � �L� 1�
� �4d

�����
M
p
e � 1��D

2
ÿ 1��9d

�����
M
p
e � 1� � �9d

�����
M
p
e � 1�

� �4d
�����
M
p
e � 1�

� 18Dd
�����
M
p
e2 � 13

2
Dd

�����
M
p
e �D

2
ÿ 36d

�����
M
p
e2 � 1

< 18Dd
�����
M
p
e2 � 13

2
Dd

�����
M
p
e �D

2
;

n

D
< 18d

�����
M
p
e2 � 13

2
d
�����
M
p
e � 1

2

< 18�d
�����
M
p
e � 13

72
�2;

M >
n

18D
ÿ 85

36

���������
n

18D

r
� �85

72
�2:

Hence, M > n
18DÿO�

�������
n

18D

p �.
From the above, we have D � 
� nM�. By Theorem 3.2, the

maximum value of M is ��n2
3�; therefore, D � 
�n1

3�. Since

D � �4d �����
M
p e � 2�K, K � �� D����

M
p �. tu
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