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Abstract—A testable EXOR-Sum-of-Products (ESOP) circuit realization and a simple, universal test set which detects
all single stuck-at faults in the internal lines and the primary inputs/outputs of the realization are given. Since ESOP
is the most general form of AND-EXOR representations, our realization and test set are more versatile than those
described by other researchers for the restricted GRM, FPRM, and PPRM forms of AND-EXOR circuits. Our circuit
realization requires only two extra inputs for controllability and one extra output for observability. The cardinality of
our test set for an n input circuit is (n+6). For Built-in Self Test (BIST) applications, we show that our test set can be
generated internally as easily as a pseudo-random pattern, and that it provides 100% single stuck-at fault coverage.
In addition, our test set requires a much shorter test cycle than a comparable pseudo-exhaustive or pseudo-random
test set.

Index Terms—Universal test set, AND-EXOR realizations, Reed-Muller expressions, single stuck-at fault model, easily
testable combinational networks, Design for Testing (DFT), self testable circuits, Built-in Self Test (BIST), test pattern

generation.

1 INTRODUCTION

The large increase in the complexity of ASICs has led to a
much greater need for circuit testability and Built-In-Self-Test
(BIST) [1]. The testability properties of different forms of two-
level AND-EXOR networks have attracted many researchers
[2, 3, 4, 5, 6]. The forms investigated include Positive Polarity
Reed-Muller (PPRM) [2], Fixed Polarity Reed-Muller (FPRM)
[6], Generalized Reed-Muller (GRM) [7], and EXOR-Sum-of-
Products (ESOP) [3]. All of the canonical Reed-Muller forms
(PPRM, FPRM, and GRM) have restrictions on the allowed po-
larities of variables or on the allowed product terms. ESOP, on
the other hand, has no restrictions, and is formed by combining
arbitrary product terms using EXORs [3, 7]. Therefore, ESOP
is the most general form of 2-level AND-EXOR networks.

The Reed-Muller expansion of an arbitrary function is:
J =co® iz} @ caxs @ - D ca) @ cpprzizsl @ - D
can—1zi5- - -z, where 7, is a literal term that can be a vari-
able =z, or its negation z,, and ¢, is a constant term that
can be ‘0’ or ‘1’. PPRM, also called the Reed-Muller form,
is the most restricted form in that only positive polarities are
allowed for input variables. FPRM allows only one polar-
ity for each input variable. GRM has no restrictions on the
allowed polarities of variables but does not allow the same
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set of variables in more than one product term. For exam-
ple, f = 1® z1 ® z129 @ z223 IS a PPRM since the vari-
ables appear with only positive polarities in the expression.
f = o1 @ x1T2 @ Toxs is an FPRM because negative po-
larity exists and each variable appears with only one polar-
ity; either negative or positive. f = Z1xy @ Taxz ® T1xo23
is a GRM because the variable xz, appears with both posi-
tive and negative polarities. f = xixzsx3 @ T1Z2T3 IS NOt @
GRM but an ESOP because the same set of variables are used
in more than one product term. We can write the following
inclusion relationship for ESOP and the Reed-Muller forms;
PPRM C FPRM C GRM C ESOP.

Due to the total freedom of input polarity and product term
selection, the minimum number of product terms required to
represent an arbitrary function in ESOP form can never be
larger than the minimum number of product terms in any of the
canonical Reed-Muller forms [3]. This fact can be seen from
the arithmetic benchmark circuits given in Table 1, which was
presented in [7]. Notice that PPRM yields the largest number
of product terms since it is the most restricted form of AND-
EXOR networks. In most cases, an ESOP realization gives a
significantly smaller number of product terms even over the
least restricted Reed-Muller form, GRM. This observation pro-
vides strong motivation for developing a testable ESOP imple-
mentation.

Another aspect of AND-EXOR representations presented in
Table 1 is that AND-EXOR representations (especially ESOP)
usually yield fewer product terms than a SOP representation.
As we will illustrate later, this may be an area and delay advan-
tage when realizing the function in 2-level form.

Our main contributions described in this paper are a highly
testable ESOP realization and a minimal universal test set that
detects all possible single stuck-at faults in the entire circuit,
including the faults in the primary input and output leads. An-
other contribution of our work is a special built-in pattern gen-



Function | PPRM | FPRM | GRM | ESOP | SOP
adrd 34 34 34 31 75
log8 253 193 105 96 123
nrm4 216 185 96 69 120
rdm8 56 56 31 31 76
rot8 225 118 51 35 57

sym9 210 173 126 51 84
wgt8 107 107 107 58 255

Table 1: The number of product terms required to realize some
arithmetic functions for different forms.

erator, which gives 100% fault coverage for single stuck-at
faults and has a much shorter testing cycle than a Pseudo-
Exhaustive or Pseudo-Random Pattern Generator (PRPG). In
addition, the hardware overhead for our special pattern gener-
ator is comparable to that of Linear Feedback Shift Register
(LFSR) based pattern generators, such as PRPG.

The organization of this paper is as follows. In Section 2,
some background on previous researchers’ work is given. Sec-
tion 3 describes our testable realization and the test set for it.
In Section 4, we give a preliminary circuit, which can be used
to generate our test set for BIST applications. In Section 5,
we present our experimental results from area, delay, and test
set size measurements performed on some benchmark circuits,
along with the comparisons of our scheme with other schemes.
Section 6 summarizes our results and gives some possible di-
rections for future work.

2 BACKGROUND AND EARLIER WORK

Reddy showed that a PPRM network can be tested for single
stuck-at faults with a universal test set that is independent of the
function being realized [2]. Figure 1a shows an EXOR cascade
implementation of the PPRM expression f = z12s ® 2123 ®
zyzo23. In normal mode of operation, the control input, ¢, is
set to the constant term in the functional expression (in this
example: ‘0%). In testing mode, ¢ is set according to the test set
given in Figure 1b.

The four tests in test set T, detect all single stuck at faults in
the EXOR cascade by applying all input combinations to every
EXOR gate, independent of the number of EXOR gates in the
cascade. The test vector (1111) in T, and the walking-zero test
vectors in test set T, detect a single stuck-at fault in the AND
part of the circuit. Since the number of vectors in T is always
equal to 4 and the number of vectors in T is always equal to
the number of input variables, n, the cardinality of Reddy’s
universal test set is (n+4).

Reddy’s technique is good for self testing because as shown
by Daehn and Mucha [8], the entire test sequence can be in-
expensively generated by a modified LFSR using a NOR gate
and a shift register. However, as shown in Table 1, the num-
ber of terms in a PPRM is usually higher than the number of
FPRM or GRM terms, and much higher than the number of
ESOP terms [5]. For FPRM networks, Sarabi and Perkowski
showed that by just inverting the test bits for the variables that
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Figure 1: (a) A PPRM network implemented according to
Reddy’s scheme given in [2]. (b) Reddy’s test set for the PPRM
implementation.

are negative polarity in the FPRM, Reddy’s test set can be used
for single fault detection in a FPRM network [6]. They also
showed that a GRM network can be decomposed into multiple
FPRMs. This way, each FPRM can be tested separately to test
the combined GRM circuit for single fault detection. The size
of the test set, the worst case, is the number of FPRMs times
(n+4). This method, however, does not yield a universal test
set.

Other researchers have investigated multiple fault detection
in AND-EXOR circuits. Sasao recently introduced a testable
realization and a test set to detect multiple faults in GRM net-
works [7]. As shown in Figure 2a, Sasao uses an extra EXOR
block, called the Literal Part, to obtain positive polarities for
any negated variables and convert a GRM network into a PPRM
network. When the control input ¢ is set to ‘1’, the shaded
part of the circuit in Figure 2a realizes the GRM expression
f =21 ® T 1Ty ® xyT3. The Check Part of the circuit in Fig-
ure 2a is added to test the literal part. Sasao implements the
EXOR-Sum of the product terms with a tree structure instead
of a cascade to obtain a less circuit delay. Nevertheless, his
scheme does not lead to a universal test set. Furthermore, his
scheme cannot be used for ESOP circuits because the conver-
sion of an ESOP into PPRM by the literal part may produce an
AND-EXOR expression that has multiple product terms with
the same set of variables, which is not a PPRM form. For
example, given the circuit in Figure 2b, the ESOP expression
f = 120203 ® T1 T, T3 Yields two z, 2525 terms after the con-
version from GRM into PPRM; one for z,z2z3 and the other
for T1XT2Z3.

Pradhan also targeted detection of multiple stuck-at faults in
AND-EXOR circuits [3]. As shown in Figure 3, he does the
negation of the literals by using an extra EXOR block called
the Control Block. He uses cascaded AND gates in a Check
Block to detect the faults in the control block. Figure 3 shows
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Figure 2: (a) Sasao’s GRM realization scheme, (b) Realizing
an ESOP circuit with Sasao’s scheme.

Pradhan’s testable ESOP implementation for the function f =
x129x3 @ T1T2T3. Like Reddy, he implemented the EXOR-
Sum of the product terms with a cascade structure.
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Figure 3: Pradhan’s testable ESOP implementation.

Pradhan introduced a test set to detect all of the multiple
faults in his testable realization for ESOP expressions. How-
ever, his test set is not universal and is too large to be practical
for single fault detection. The cardinality of Pradhans test set
is:

j
C:6+2n+z<:),
e=0

where j is the order of the ESOP expression. The order is sim-
ply the maximum number of literals contained in any of the
product terms. Notice that the complexity of the test is expo-
nential with respect to the number of literals in product terms.
Furthermore, if a product term has all possible literals, the test
set is even larger than exhaustive (2) due to the additional test
inputs required. For example, if there are four variables in an
ESOP expression (n=4), and the order of the expression is 4
(j=4), the exponential term in the formula;

()= () ()= ()+()+ () 2=

which is exhaustive. The size of the entire test set then is,
J n
C=6+2 E =6+2x44+16 = 30.
+ 2n + 2 <6> +2x44

3 TESTING SCHEME FOR ESOP
NETWORKS

In this section, we introduce an improved testing scheme to
detect single stuck-at faults not only in the internal lines of the
circuit, but also in the primary inputs and outputs of the most
general AND-EXOR circuits, ESOP.

3.1 Easily Testable ESOP I mplementation

Figures 4 shows a new testable implementation for an ESOP
expression. The circuit has up to two extra observable outputs,
o1 and oz, and two additional control inputs, ¢; and ¢s. The
Literal Part, named after the similar part in Sasao’s testable re-
alization, is added to convert the ESOP circuit into a positive
polarity AND-EXOR expression during testing. We do not re-
fer to the expression after conversion as a PPRM because, as
mentioned earlier, it may have some repeated product terms
with the same set of variables. The positive polarity AND-
EXOR expression cannot be tested by Sasao’s multiple fault
detection scheme [7], but can be tested by our single fault de-
tection scheme. The AND Part and the Linear Part implement
the desired ESOP expression as the ¢; control input is set to
‘1’. The f output is implemented with an EXOR cascade so
that Reddy’s universal tests for PPRM can be used for our real-
ization. For the same reason, the Check Part, which is required
to test the literal part, is implemented with an EXOR cascade.
The gates marked with ‘A’ and ‘B’ are added for the detection
of faults in the primary inputs, and the control input ¢;. They
are required based on the function being implemented. We will
later describe the cases where gates ‘A’ and ‘B’ are required
and how each section of our realization is tested when we ex-
plain our test set in the next sections.



Xl gy S,
X, '-"; N S —— 0,
e
Xn C'IC'Z
I g
_ﬁ&/
)T\
>

/ .
/// \\\ .
c 1~ (Literal ]
Part e |
\ /;
ANDY - | o,
Part TN g
\\
\
)

/

Linear 3
Part '

|

i

Figure 4: Easily testable ESOP circuit.

Hayes used mainly EXOR gates as additional circuitry to
make a logic circuit easily testable [9]. Likewise, in our real-
ization, we mainly use EXOR gates in the additional circuitry
to take advantage of the superior testability properties of the
EXOR gate. This allows us to obtain a minimal and universal
test set.

3.2 TheFault Modd

A fault model represents failures that affect functional be-
havior of logic circuits [10]. In a stuck-at fault model of a TTL
AND gate, for example, an output could become shorted to V..
This can be modeled as a stuck-at 1 (s-a-1) fault. In MOS tech-
nology, most of the probable faults are opens and shorts, which
can also be modeled with the appropriate s-a-0 or s-a-1 fault
[11].

We follow the same approach taken by the previous re-
searchers presented in Section 2, and assume a single stuck-at
fault model, which allows only one stuck-at fault in the entire
circuit. We also adopt their testing model for the detection of
stuck-at faults in individual logic gates. An n-input AND gate
requires (n + 1) test vectors to detect a single stuck-at fault in
its inputs or output. The tests for a 3-input AND gate, for ex-
ample, would be: {111, 011, 101, 110}. In this test set, (111)
detects a s-a-0 fault on any of the inputs or the output, and the
remaining tests, commonly referred to as walking-zero tests,
detect a s-a-1 on any of the inputs and the output of the gate.

Some researchers (i.e. Pradhan [3], and Saluja, et al. [12])
analyzed in detail the fault characteristics of the EXOR gate
implementation shown in Figure 5. They considered the faults
in the internal lines of the EXOR gate as well as the faults in
the inputs and the output of the EXOR gate. Table 2 shows the
possible 16 functions that a 2-input circuit can implement. The
circuit in Figure 5 realizes the function g;, EXOR. If only a
single stuck-at fault can occur in this implementation, the gate
produces one of the 10 functions in Class A (g2—11), and it can

never produce the functions in Class B (g12—16). Table 3 gives
a mutually exclusive list of the faults in Class A as they are
detected for each test applied to an EXOR gate.

9.

h —e

Figure 5: The EXOR implementation assumed by Pradhan and
Reddy (et al.).

Inputs| & ClassA ClassB

v h 01 0203040506 979899 910911 | 912013014 915 J16
00 0 0001110010 01111
01 1 000111110 1 01000
10 1 0110110110 00010
11 0 001001010 1 11011

Table 2: Functions that a 2-input logic gate can implement.

For our work we use the EXOR model in Figure 5, and the
exhaustive test set in Table 3 to detect a single stuck-at fault in
this model. By setting the ¢; and e» inputs in the proposed real-
ization to the appropriate logic values, Reddy’s four tests pro-
vide all input combinations for each EXOR gate in the EXOR
cascades (the linear part and the check part) of our realization.

v h | FaultsDetected
0 0] g5 96 97 910
0 1 92, 93, 94
10 g8, 411

1 1 4o

Table 3: The faults exclusively detected by all of the input vec-
tors applied to an EXOR.

3.3 TheTest Set
3.3.1 Fault detection intheinternal linesof therealization

The linear part of the proposed ESOP circuit can be tested by
Reddy’s T; test set. During the testing of this part, the AND
gate inputs are either all 0’s or all 1’s. This makes the AND
part transparent to the linear part because all-0’s or all-1’s are
transferred to the external inputs of the EXOR cascade in the
linear part. The network response to the test vectors is observed
from the function output f. The test set for the linear part, T,
is given below.

C1 €2 T1 Tz I3 Tn

0 0 0 0 O 0

T, = 0 0 1 1 1 1
0 1 0 0 O 0

0 1 1 1 1 1



During the testing of the linear part, the check part of the cir-
cuit receives the same test vectors given in T,, and is therefore
tested at the same time. However, for the check part, output
0o is observed instead of output f for the response to the test
vectors.

The AND part of the circuit is tested for single stuck-at
faults in the same way as in Reddy’s scheme. The test vectors
are applied to the primary inputs and transferred to the AND
part by setting ¢; control input to ‘0’. The test set 7% is ap-
plied to detect a s-a-1 in any input and the output of the AND
gates. The complete test set for the AND gates, T, is obtained
as below by including the test vector (0-11. - -1) to detect a s-a-
0 in any of the inputs and the outputs of the AND gates. A ‘-’
denotes a don’t care logic value.

€1 €3 X1 Tz T3 -+ ITp

o - 0 1 1 --- 1

0 - 1 0 1 1
T, =

o - 1 1 1 --- 0

0 - 1 1 1 - 1

The literal part is tested through the check part and the extra
observation output, o,. Again, in the case of a fault, any logic
change in the output of the EXOR gates in the literal part is
propagated to the observable output o,. The four tests given
in T. apply all input combinations to each EXOR gate in the
literal part.

Cc1 Cy X1 T9 I3 Ty
0o - 0 0 0 0
T. = 0o - 1 1 1 1
1 - 0 0 0 0
1 -1 1 1 1

3.3.2 Fault detection in the circuit input/output leads

The primary inputs that are applied to the literal part are tested
through the path formed by the literal part, check part, and the
observable output o,. The required test set of this case, Ty,
is given below. The first vector detects a s-a-1 fault, and the
second vector detects a s-a-0 fault.

C1 €C3 X1 X9 I3 S
Tq = o -0 0 0 --- 0
6o -1 1 1 --- 1

The primary inputs that are not applied to the literal part
(when used only in positive polarity in the expression), but that
are applied an odd number of times to the AND part are tested
through the path formed by the AND part, the linear part, and
the function output f. The required test set, T, is given below.
Any stuck-at fault in the primary inputs of this class causes an
odd number of changes in the external inputs of the linear part,
and is detected by observing the function output f.

C1 C2 1 X2 X3 s T
T.= [- -0 00 -+ 0
- - 11 1 -1

The primary inputs that are not applied to the literal part,
and are applied an even number of times to the AND part can-
not be tested with the above test set because an even number of
value changes cannot be propagated to the output by the EXOR
cascade in the linear part. Therefore, the additional AND gate
‘A’ with the observable output o, is required for the primary
inputs of this class. The same scheme is described by Reddy in
[2]. However, the chance of having this extra AND gate is less
likely in our scheme because of the alternative path from the
primary inputs to the observable output o, when the primary
inputs are applied to the literal part. The required test vectors
for the primary inputs of this class and for the observable out-
put o are covered by the required test vectors to test the extra
AND gate ‘A’, which are given in T;. Notice that the faults
in the primary inputs and the faults in the AND gate inputs are
equivalent; and similarly, the faults in the observable output o4
and the faults in the AND gate output are equivalent.

C1 C2 X1 T2 T3 - Tp

- -0 1 1 - 1

- -1 0 1 - 1
Ty =

- -1 1 1 --- 0

- -1 1 1 - 1

The faults in the control input ¢; are detected through the
path formed by the literal part, check part, and the observable
output o,. Detection through the path to the function output f
cannot be guaranteed because it is dependent on the function
being implemented. If the number of the literal part outputs
(the number of EXOR gates in the literal part) is an odd num-
ber, the extra EXOR gate ‘B’ is not required and ¢- is by-passed
to the output of this extra gate. Note that all of the literal part
outputs will change at the same time in case of a fault in ¢;.
Therefore, if the number of changes at the output of the literal
part is an odd number, the EXOR cascade in the check part will
propagate the fault to o,. The required test set, T, is given
below. The first vector detects a s-a-1, and the second vector
detects a s-a-0 in c;.

C1 €2 1 I2 T3 - In
Tg — 0 - - - - ... -
1 - - - - .. -

If the number of the literal part outputs is an even number,
then the extra EXOR gate ‘B’ is required to make the number
of changes fed into the check part an odd number. This con-
figuration also allows the use of the same test set, T,, above
for the detection of faults in ¢;. However, the extra EXOR gate
needs to be tested, as well. The test set for this EXOR gate, T,
is exhaustive by its testing model, and given below.

C1 C2 X1 Xz T3 '+ Tp
00 - - - -
T, = 0o 1 - - - -
1 0 - - - -
1 - - - -

The faults in primary output f and the control input c- are
covered by the test set T, of the linear part due to fault equiv-



alence. Similarly, the faults in the observable output o, are
covered by the test set T, of the check part.

3.3.3 Thecompletetest set

Theorem: An ESOP circuit with the realization in Figure 4 can
be tested for single stuck-at faults in its internal lines and in its
input/output leads requiring a test set of (n + 6) cardinality.

Proof: A test set, T, that covers all of the test sets above, T,_,
detects a single stuck-at fault in the entire circuit. The minimal
testsetthenis: T=T, UT, UT. UTqUT. UT; UT, UTp.

The cardinality of the minimal test set is obtained as follows.

einclude T, inT oo (4 tests),
e combine* the last two vectors of T. and T,

andincludeinT ...t (2 tests),

o include the first n vectorsof T, in T ......... (n tests).

Total: (n + 6)

The remaining tests are covered by T as follows:

o the last vector of T,, the first two vectors of T, the test
set T4, the test set T, the last vector of T, the first vector
of T,, the first vector of T, are covered by the first two
vectors of T,, which are included in T.

o the first » vectors of T are covered by the first n vectors
of T, which are included in T.

e the second vector of T, is covered by the last vector of
T., which is included in T.

o the second vector of Ty, is covered by the third vector of
T,, which is included in T.

The final test set T:

€1 C2 1 X2 X3 -+ Inp
0 0 0 0 0 - 07
o o 1 1 1 --- 1
o 1 0o o 0 --- 0
o 1 1 1 1 --- 1
T— |1 0000 -0
11 1 1 1 - 1
o - 0 1 1 - 1
o - 1 0 1 --- 1
L0 - 1 1 1 0 |

O

*The combining process over two test vectors is done by replacing the don’t
care values of the first test vector with the determined values of the second test
vector.

Although we did not prove that there is not a shorter uni-
versal test set than (n + 6) for general ESOP, this result is very
close to the lower bound of the length of a universal test set, (n
+ 4), for 2-level AND-EXOR networks [2, 13, 14]. Note that
by modifying Reddy’s test set based on the function being re-
alized, Kodandapani introduced a test set with (n+3) tests [15],
but his test set is not universal.

34 Example

Figure 6 shows our testable realization for the ESOP expres-
sion f = 2125 DT 1X2X3D L2324 DT2T3T4. IN this example,
the extra observable output o is required for the detection of
the faults in primary input 2, since =, is not applied to the lit-
eral part and it is used an even number of times in the AND
part. The primary input 25 is not applied to the literal part, ei-
ther, but it is used an odd number of times in the AND part.
Note that the extra AND gate ‘A’ is not required since there is
only one primary input to observe at o;. The extra EXOR gate
‘B’ is also not required because the number of EXOR gates in
the literal part is an odd number.

X, 0,
X2
X3
X4
Xg .
2
) >
) >
c, — tJ 02
f
c

Figure 6: An example testable ESOP realization.

The test set for the example implementation is:
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Figure 7: An example EDPG circuit implementation.

4 BUILT-IN SELF TEST CIRCUITRY FOR
ESOP CIRCUITS

A traditional, signature analysis based Built-in Self Test
(BIST) circuitry for a combinational network consists mainly
of a pattern generator, and a signature register. For the com-
plete testing system, a BIST controller, some multiplexers, a
comparator, and a ROM are also embedded inside the chip.
Using a Linear Feedback Shift Register (LFSR)-based Pseudo-
Exhaustive or Pseudo-Random Pattern Generator (PRPG) is a
well-known method for generating test patterns for very large
and complex combinational circuits. The PRPG approach is
used because it is difficult to otherwise generate the large and
irregular test sets required by such combinational circuits. As
shown by Drechsler (et al.) in [16], the PRPG approach does
not work better with AND-EXOR circuits than it does with
equivalent SOP circuits. However, they show that AND-EXOR
networks do have good deterministic testability performance.
Considering this fact and the properties of our design, we can
list the reasons why we propose a deterministic test generation
for built-in self test of ESOP circuits as below;

1. Our ESOP realization is designed for testing and there-
fore requires a minimal test set. Traditional PRPG test
length is much longer than our test set for the same fault
coverage. Also, there is no need for partitioning the cir-
cuit to prevent the long cycles of a pseudo-exhaustive test
generation.

2. Our test set is universal, which allows it to be generated
by fixed hardware that can be used for any function.

3. Our test set has regular patterns and therefore easy to
generate. As a result, the area overhead of our pattern
generator in our scheme is comparable to that of PRPG
based schemes.

4. Our test set gives 100% fault coverage for single fault
detection and does not require fault simulation.

Figure 8 shows the BIST circuitry for ESOP circuits. In
this structure, the only difference from classical BIST circuitry
is the ESOP Deterministic Pattern Generator (EDPG) that is

introduced for our easily testable ESOP implementation. The
results from the applied test vectors are collected from the func-
tion output f and from the extra observable outputs o, and os;
then compressed in the signature register, which can simply be
an LFSR based Multiple Input Signature Register (MISR) [1].
After all the tests are applied, the signature register content is
compared with the correct signature of the implemented ESOP
to generate a go/no go signal at the end of the test cycle.

EDPG

e

Easily Testable 2-level ESOP Network

f| 01 02
‘} Yy v

MISR

G somi] )<rmd—» o

Figure 8: The BIST circuitry for highly testable ESOP circuits.

A real life circuit is more likely to have multiple outputs
rather than a single output as shown in the earlier examples. In
this case, the AND gates in the AND part (the product terms)
are distributed over multiple linear parts (EXOR cascades) for
multiple outputs, and therefore the faults must be observed
from all circuit outputs. Also, for a multi-output circuit, all
the function outputs should be applied to the MISR along with
the extra observable outputs.

Daehn and Mucha designed a simple BIST circuit to test
PLAs [8]. They used LFSRs and NOR gates to generate regular
test patterns such as a walking-onetest sequence. Similarly, our
EDPG can be built to generate the walking-zero sequence along
with the extra ¢; and ¢» bits, as shown in Figure 7.

Part | of EDPG generates the walking-zero portion of the test
vectors. This portion of the BIST circuitry can be expanded lin-
early based on the number of inputs in the ESOP circuit. Part



Il of the EDPG is a Finite State Machine (FSM), and generates
¢1 and ¢ bits of the test vectors. It also provides CLR and
SET signals for the D-Flip-flops in Part | to generate all-0 or
all-1 bits in the first six test vectors of the test set, T. Part Il
is independent of the function being realized, and therefore is
fixed size. Figure 9 gives the state diagram and the circuit im-
plementation for the FSM in Part I1. The FSM generates the six
vectors of the test set, then stops and enables Part | to generate
the walking-zero tests. Figure 10 gives the simulation results
for the EDPG implementation.
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Figure 9: State diagram and the circuit implementation for Part
Il of EDPG.
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Figure 10: Simulation of the EDPG circuit.

5 EXPERIMENTAL RESULTS

We performed area, delay, and test set size measurements
on some benchmark circuits using our realization scheme and
2-level/multi-level synthesis schemes. We selected the circuits
from LGSynth’93 and Espresso benchmark sets to provide a
wide variety of function types. For example, we selected cir-
cuits with different numbers of primary inputs; implementa-
tions in 2-level or multi-level; and of different classes such as
math, logic, etc.

All the circuits were optimized for area and mapped to a
technology library before performing the measurements. SIS
[17] was used to optimize and synthesize the circuits in multi-
level; and Exorcism [18] was used to optimize ESOP expres-
sions. For a multi-level benchmark circuit, we used SIS to ob-
tain the equivalent two-level SOP expression; and used Disjoint
[19] to convert it to a two-level AND-EXOR expression before
optimizing with Exorcism.

A 0.5 micron, array-based library developed by LSI Logic
Corp. [20] was used for synthesis. We limited the number of
components in the library according to Table 4. All area mea-
surements are expressed in cell units, excluding the intercon-
nection wires.

Area Delay(ns)
Component Function (cells)| Block | Fanout

INV O=la 1 0.03 0.036
NAND2 O=!(a*b) 1 0.06 0.036
NAND3 O=!(a*b*c) 2 0.09 0.04
NAND4 O=!(a*b*c*d) 2 0.12 0.05
NOR2 O=!(at+b) 1 0.06 0.075
NOR3 O=!(at+b+c) 2 0.15 0.115
NOR4 O=!(at+b+c+d) 4 0.22 0.155
AND2 O=a*b 2 0.15 0.035
AND3 O=a*b*c 2 021 0.035
OR2 O=atb 2 0.19 0.025
OR3 O=atb+c 2 0.33 0.025
XOR2 O=a*!b+la*b 3 0.3 0.035
XNOR2 O=a*b+la*!b 3 0.28 0.04
AOI21 O=!(a*!b+c) 2 0.14 0.025
AOI22 O=!(a*!b+c*d) 2 0.18 0.075
OAI21 O=!((a+b)*c) 2 0.1 0.06
OAI22 |O=!((atb)*(c+d))| 2 0.15 0.075

Table 4: The technology library used in measurements.

Table 5 gives the number of test vectors and the fault cover-
age obtained from different schemes for single faults. This ta-
ble compares our test scheme with LFSR based pseudo-random
test generation and with algorithmic test generation. Pseudo-
random and algorithmic test vectors were generated for the
multi-level implementation of the circuits, where our test set
was generated (predetermined) for the easily testable ESOP im-
plementation. SIS was used for algorithmic test generation. Up
to 10,000 LFSR patterns were generated for each circuit using
the program used in [21]. The goal was to cover a wide range
of circuits to determine circuits that are random vector resis-
tant and require more than 10,000 patterns. Almost half of the
selected benchmark circuits required more than 10K pseudo-
random patterns for 100% fault coverage, whereas our scheme
required no more than 150 patterns for all the circuits. For ex-
ample, the fault coverage for the circuit x9dn is 73.1% for 10K
random patterns. In comparison, our scheme yields only 33
patterns for 100% fault coverage. In all circuits, our test set
is smaller than either pseudo-random or algorithmic test sets.
Also, note that algorithmic test sets are generally not universal
and therefore cannot be utilized in a simple self-test circuit.

The next measurement was performed to see the testability



Multi-level Our ESOP
Implementation Implementation
Pseudo-random Test Set Algorithmic Test Set
Number of (LFSR) (SIS Our Test Set
Primary Total Fault Fault Fault
Circuit Inputs #Tests | Undetected | Faults | Coverage | #Tests | Coverage | #Tests | Coverage
9symml 9 512 0 513 100 137 100 15 100
adr4 8 96 0 146 100 37 100 14 100
alul 12 64 0 91 100 35 100 18 100
alu2 10 864 0 664 100 117 100 16 100
aud 14 10K 108 4158 97.4 961 100 20 100
apex5 117 10K 979 4129 74.6 1245 100 121 100
apex6 135 10K 27 1680 98.3 400 100 141 100
ex4 128 10K 92 1042 911 474 100 134 100
f51ml 8 256 0 465 100 101 100 14 100
mux 21 320 0 104 100 53 100 27 100
rd73 7 128 0 341 100 78 100 13 100
x1 51 10K 50 1342 96.2 301 100 57 100
X2 10 320 0 105 100 26 100 16 100
x4 94 3744 0 991 100 280 100 100 100
x2dn 82 10K 438 467 89.7 147 100 88 100
x9dn 27 10K 129 480 73.1 126 100 33 100
Table 5: Comparisons of the number of test vectors for different circuits.
improvement of the proposed ESOP implementation that re- _
quires some additional gates and input/output pins (labeled in Number of | Algorithmic/ | Our Scheme/
Table 6 as: “ESOP with DFT (Design for Test)”), over the or- o Primary Ordinary ESOP with
. . . . Circuit Inputs ESOP DFT
dinary 2-level ESOP implementation that does not include any 5
L - o . " symml 9 181 15
additional hardware (labeled in Table 6 as: “Ordinary ESOP”). 204 9 173 15
The test vectors for the ordinary ESOP implementation were alul 12 8 18
algorithmically generated with the program used in [22], and alu2 10 133 16
compared with the universal test set of our implementation aud 14 1174 20
scheme. In Table 6, our test set is significantly smaller than dk16 7 77 13
the algorithmically generated test sets for the majority of the mux 21 48 27
benchmark circuits. Only one of the benchmark circuits, alul, rd73 7 48 13
yielded fewer number of algorithmically generated test patterns rdg4 8 62 14
than our universal test set. However, as mentioned earlier, our sse 11 60 17
test set is universal, which eliminates the need for test genera- x2 10 2 16

tion programs; and it has regular patterns, which can be gener-
ated easily. As a result, it is very suitable for BIST.

We did not generate pseudo-random vectors for our imple-
mentation scheme as an alternative to our EDPG for three rea-
sons. First, the fact that AND-EXOR circuits are not more
testable with pseudo-random patterns than AND-OR circuits
was shown by Drechsler (et al.) in [16]; second, our ESOP
implementation is constructed considering certain regular and
minimal patterns, and therefore it requires those patterns for
guaranteed 100% fault coverage; and third, as shown next, the
area overhead for our EDPG is very close to that of LFSR based
PRPGs.

In Table 8, the area of different patterns generators is given
in cell units based on the library components given in Table 4.
The total BIST area is not calculated for comparisons because,
as mentioned earlier, the only difference between a classical
BIST circuitry and the ESOP BIST circuitry is the pattern gen-
erators used in them. We selected circuits with a wide range of
number of primary inputs since the area of a pattern generator

Table 6: Number of deterministic test vectors for two ESOP
implementations.

is directly related to the number of primary inputs. An LFSR
based pseudo-exhaustive or pseudo-random pattern generator
mainly consists of D-Flip-flops and EXOR gates [23, 24]. The
number of 2-input EXOR gates changes typically from one to
the number of primary inputs (n), based on the characteristic
polynomial used to generate the patterns. Therefore, the area
of an LFSR-based PRPG is given as a range in the table. The
area of a BILBO register is also included in the table since it is
used for pseudo-random pattern generation [25].

As shown in Table 8, the area of EDPG is comparable to
those of other pattern generators for all benchmark circuits. It
is always better than BILBO’s if » > 8, and is in the range
of PRPG’s if n > 48. For example, for the circuit rd73, the
BILBO register is smaller than EDPG, but 128 pseudo-random



Multi-level 2-level
Using All Using AND2, Our
Number of |Number of | Components OR2, INV SOP ESOP
Primary | Primary Area | Area
Circuit| Inputs Outputs | Area| Delay | Area| Delay | #Terms| Area |Delay | #Terms|(Function) |(DFT)|Delay
9symml 9 1 193 | 29 468 | 4.13 87 617 | 2.33 51 530 27 (18.15
adr4 8 5 54 | 1.38 123 | 2.16 75 362 | 1.98 31 233 27 | 5.85
aul 12 8 31 0.6 74 | 0.89 19 44 | 0.67 16 114 33 | 158
alu2 10 6 320 | 7.72 685 | 10.28 260 | 1998 | 2.58 69 643 33 | 138
aud 14 8 1800| 11.38 | 6020| 14.75 1138 |10278| 2.93 455 5603 45 |69.74
apex5 117 88 1482| 5.73 3517| 7.46 1216 | 6901 | 2.22 399 4951 185 | 5.09
apex6 135 99 694 | 2.39 1537| 3.57 657 | 3548 | 2.22 408 4127 221 |13.08
ex4 128 28 439 | 211 1029 351 559 |3925| 2.33 317 3829 299 |14.47
f51ml 8 8 106 | 6.62 256 | 8.86 97 522 | 1.98 31 238 21 | 451
mux 21 1 36 | 1.76 9% | 243 16 116 | 1.62 16 156 15 | 6.18
rd73 7 3 118 | 4.04 279 | 5.07 187 | 1187 | 2.33 41 304 21 | 9.87
x1 51 35 307 | 2.39 669 | 3.19 324 | 2124 | 2.58 414 5834 133 |32.56
X2 10 7 50 | 111 111 | 1.88 31 76 | 1.27 15 144 27 | 2.83
x4 94 71 456 | 5.18 921 | 3.65 531 | 2407 | 1.87 297 2906 243 | 542
x2dn 82 56 182 | 1.23 375 | 243 120 477 | 1.87 101 865 155 | 5.76
x9dn 27 7 144 | 1.99 320 | 3.03 120 | 1141 | 2.22 184 2605 77 |25.86
Table 7: Area and delay comparisons for different implementation schemes.
formed for two different cases: one by using the entire set of
Itlruimafyf/ oR ?(;(a(?_(gSR) A(;;aa A(r);ea library components presented in Table 4, and the other by using
Circuit| Inputs [ TEXOR | nEXORS | BILBO|EDPG only AND2, OR2, and INV gates. The_se _two _dlfferent mea-
surements were performed to see the variations in area and de-
aud 14 129 168 236 202 . .
apex1 5 408 540 747 | 543 lay as the con_1ponen_ts in the targetgd I_|brary were changed for
apexs | 117 1056 1404 1935 | 1335 synthesis. This provides a more objective comparison.
i2 201 1812 2412 3321 | 2259 A column is provided for 2-level SOP implementations to
rd73 7 66 84 120 | 125 evaluate our design in the PLA environment. The delay in-
x4 94 849 1128 1556 | 1082 formation for a 2-level SOP circuit is calculated by assum-
X9dn 27 246 324 450 | 345 ing a tree-of-OR-gates structure (using 3-input and 2-input OR

Table 8: Area measurements in cell units for different pattern
generators.

patterns are required for 100% fault coverage, where only 13
EDPG patterns are required for the same fault coverage. An-
other advantage of EDPG is that it does not need an initializa-
tion seed, unlike most of the LFSR based pattern generators
that require one or more seeds. We did not include the area
overhead of the additional hardware that provides the initial-
ization for the PRPGs in Table 8.

Table 7 presents the results of another set of measurements
to show the area and delay performance of our ESOP imple-
mentation in Figure 4 as compared to the multi-level and 2-
level SOP implementations. The area information is separated
into two parts for the ESOP implementation. Those are, the
area required for the implementation of the function being im-
plemented (the literal part, the AND part, and the linear part),
and the area required for the gates added for better testability
(the gates ‘A’ and ‘B’, and the check part), denoted in the table
as “Design for Testing” (DFT).

The measurements on multi-level implementations are per-

gates) to combine the product terms. Similarly, the AND gates
with more than three inputs in both SOP and our ESOP imple-
mentations were implemented as a tree of smaller AND gates
(3-input and 2-input). The tree structure assumption does not
affect the testing of the AND gates in our ESOP scheme. An-
other comparison of 2-level SOPs and ESOPs is given by Saul
(etal.) in [26] for PLA and XPLA implementations.

Although it is not fair to compare a cascade implementation
to a tree-like implementation, Table 7 shows that our 2-level
ESOP implementation is comparable to multi-level implemen-
tations in most of the cases. For example, the ESOP implemen-
tations of apex5 and f51ml have better delay than multi-level
implementations. Also, adr4, alul, mux, x2, x4, and x2dn have
fairly low delays when implemented with our ESOP scheme.
In a few cases, our ESOP scheme yielded significantly larger
delays than multi-level and 2-level SOP implementations, such
as for the circuits alu4, x1, and x9dn.

Similarly, the ESOP circuits implemented for alu2, alu4, and
f51ml have areas between the area of their multi-level version
implemented using all library gates and the area of their multi-
level version implemented using only AND2, OR2, and INV
gates. Also the areas of 9symml, alul, and rd73 are very close
to those of their multi-level versions.

As 2-level implementation comparisons, for 50% of the



benchmark circuits, our ESOP implementation scheme yielded
smaller area than 2-level SOP implementation. Especially for
circuits rd73,alu2,f51ml, and alu4 the areas of SOP implemen-
tations are 3.65, 3, 2.01, and 1.8 times larger, respectively, than
those of ESOP implementations.

The area overhead for DFT in our ESOP implementation is
typically less than 0.1% (the least, 0.001%, for alu4). And,
the largest area overhead, 28%, was obtained for alul since the
functionality of the circuit is relatively small in comparison to
those of the other benchmark circuits.

6 CONCLUSIONSAND FUTURE
RESEARCH

In this paper, we have shown a highly testable ESOP realiza-
tion and a minimal universal test set for the detection of single
stuck-at faults in both internal lines and primary inputs/outputs
of the circuit with 100% fault coverage. An EXOR cascade
is used in the check part instead of AND gates or OR gates be-
cause the EXOR cascade yields much fewer test vectors and to-
day’s advanced technology makes it possible to have an EXOR
gate almost as fast as an AND gate.

The experimental results show that our test set is always
smaller in exponential degree than pseudo-random test set, and
smaller in multiples than an algorithmically generated test set
for 100% single stuck-at fault coverage. A deterministic test
pattern generator is presented to be used as a part of the built-in
self-test circuitry. The experimental results show that the over-
all overhead of our BIST circuit is comparable to that of the
traditional PRPG based BIST circuit. More importantly, our
pattern generator is superior to a PRPG because of its 100%
single fault coverage and much shorter testing cycle. Also, it
does not require an initialization seed and the circuitry for gen-
erating it. The results also show that our 2-level ESOP imple-
mentation is comparable to (or in some cases better than) the
multi-level and 2-level SOP implementations in the area and
delay measurements. Furthermore, our implementation gives a
very small DFT area overhead.

In addition to detecting all single stuck-at faults, our ar-
chitecture and test set detect a significant fraction of multiple
stuck-at faults. More tests can be added to improve the multiple
fault coverage even though it is very unlikely that a minimal
and universal test set can be found. For instance, more zero-
weighted test vectors can be added to improve the multiple fault
coverage for the AND part of the circuit as explained by Saluja
and Reddy in [12]. Another method to improve the fault cover-
age is to detect multiple faults with the help of multiple outputs
in a multi-output ESOP circuit. Our BIST methodology with
an MISR is an ideal method for this purpose. Our test set can
also be improved for bridging faults using a method similar to
that presented by Bhattacharya (et al.) in [27]. We are cur-
rently investigating our test set and implementation scheme for
detecting bridging faults and multiple faults. The results will
be presented in our next paper.
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