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Abstract
 

We present an algorithm for partitioning the cells of a network into an 
arbitrary number of segments based on a recent 2-way network 
partitioning algorithm by B. Krishnamurthy [4]. By efficient use of 
data structures the complexity of the algorithm is shown to increase 
only linearly in the number of segments in the majority of cases. 
Through theoretical and experimental methods we show that the 
concept of "level gain" introduced in [4] becomes more useful as the 
number of segments increases. 
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1. Introduction 
This paper deals with the problem of partitioning the cells of a network into two or 

more disjoint subsets in a way such as to minimize the number of nets that have cells in 
more than one of the segments of the partition. 

This section describes the problem and some of its variants, and compares the 
network partitioning problem to the graph partitioning problem. The next section is a 
survey of recent attempts to deal with the problem. Most of these restrict the problem to 
graph partitioning or to partitioning a network into only two segments. The third section 
considers the adaptation of one of these algorithms to the more general multiple-way 
network partitioning problem. The fourth, fifth, and sixth sections describe the adapted 
algorithm with a complexity analysis. Section seven gives experimental results. 

A network consists of a set of cells connected by a set of nets. Each net connects 
two or more cells. Thus a graph is a special case of a network in which each net is an 
edge connecting exactly 2 cells. A partition of the network is a partition of the cells of the 
network into disjoint segments. The cutset of a partition is the number of nets with cells 
in more than one of the segments of the partition. The network partitioning problem 
consists of finding a partition into s segments (s>2) such that the size of the cutset is 
minimized. for a given s. Generally the segments are constrained to be of a cenain size 
or within a range of sizes. (If this were not so then the trivial partition where all cells are 
in one of the segments would always be the optimum solution). 

Variants to the problem which arise in practical situations include assigning costs to 
the nets, assigning sizes to the cells, or constraining certain cells to lie in a gi ven segment. 
If costs are assigned to the nets, then the partition with a cutset of minimal cost is sought. 
If cells have different sizes, then these must be taken into account in calculating and 
constraining the size of each segment of the partition. 

The network partitioning problem cannot be trivially reduced to the graph 
partitioning problem, as is shown in the following analysis. One can try to convert a 
network into a graph by making the cells of the network vertices of the graph and 
connecting two vertices by an edge if the two corresponding cells are connected by a net 
in the original network. Thus each net of k cells in the network would yield k(k-l)/2 
edges in the graph. If, however, one attempts to partition this graph so that the smallest 
possible number of edges will be in the cutset, this will not necessarily yield a 
correspondingly good partition of the network. This is because two or more edges in the 
graph model corresponding to the same net in the network will be counted separately 
when calculating the cutset of the graph partition, while in the network partition they 
should be counted as only one connection. Thus the graph partitioning algorithm will 
disregard good partitions from the network's point of view in favor of other partitions 
whose cutsets contain less edges but possibly belonging to more nets. An example of this 
is shown in Figure 1. Figure la shows a network of 6 cells and 5 nets, and the best 
partition of this network into two segments, with a cutset of size 2. Figure Ib shows the 
graph transformation of this network, and the best partition for the graph; this partition 
gives a cutset of size 3 for the network, which is not optimal. 
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Figure la Figure Ib 

Another approach would be to assign costs to the edges in the graph in such a way 
that the total cost of the edges deriving from a single net will add up to one. For 
instance, if a net is connected to three cells, then the three resulting edges in the graph 
model would each be assigned cost 1/3. This however also leads to problems, asthe 
graph partitioning may now underestimate the cost of network partitions whose cutsets 
contain edges from each of many different nets. An illustration of this is shown in Figure 
2. Figure 2a shows a network of 8 ceUs and 3 nets, and the best partition into two 
segments. with a cutset of size 1. Figure Ib shows the graph transformation, where each 
of the nets of size 4 is broken up into 6 edges, each with weight 1/6. We thus obtain a 
partition with a cutset size of 1 (Figure lb), which includes edges from 2 different nets. 
This partition would thus be considered as good as the partition whose cutset consists of 
only 1 edge, even though from the network point of view it is worse. 

-- -
~

Figure 2a Figure 2b 
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2.	 Survey of Solutions 

It is known that the graph and the network partitioning problem are NP-hard. (See 
[1]). Therefore attempts to solve this problem have concentrated on finding heuristics 
which will yield approximate solutions in polynomial time, or sometimes exact solutions 
in polynomial time with high probability for certain classes of graphs. 

Two general approaches have been taken, namely the development of "constructive" 
algorithms and of "improvement" algorithms. Constructive algorithms attempt to find a 
partition that is near-optimal by doing some kind of analysis on the graph or network 
using graph theory or other applicable methods. Improvement algorithms take a given 
starting partition and try to optimize it locally by making small changes such as iteratively 
switching cells from one segment to another. In the following we will look at a few 
algorithms of the first type and then at a series of papers showing developments in the 
second approach, which is the one which will be pursued in this paper. 

2.1.	 Constructive Methods 

This section will briefly describe some algorithms for partitioning of graphs that have 
appeared in the literature and which use constructive methods. Except for the clustering 
procedures mentioned at the end, these algorithms are not easily adapted to networks. 

An algorithm for graph partitioning which uses methods in linear algebra and linear 
programming to find an approximate solution was introduced by Earl R. Barnes in [6]. 

The problem dealt with is that of partitioning a graph into k segments of given sizes. 
Very briefly, the matrices A and P are considered, where A is the adjacency matrix of the 
graph and P represents a partition for the graph. Pij is 1 if cells i and j are in the same 
segment, and 0 otherwise. Note A is a constant for the problem while P is the variable for 
which we want to find an optimum value. It is shown that finding a minimum partition is 
equivalent to minimizing /IA-P/I where /leiI is the Frobenius norm of matrix C. By using 
the Hoffman-Wielandt inequality this norm is related to an expression involving the 
eigenvalues of A and P, which eventually reduces the approximation to solving a linear 
programming problem. 

Bui,Chaudhuri, Leighton, and Sipser [7] describe a polynomial time graph 
partitioning algorithm which is based on network flow techniques. It is however 
restricted to bisections (i.e. the 2 segments of the desired partition are assumed to have 
the same sizes). It differs from other approximation algorithms in that instead of generally 
finding suboptimal solutions, it sometimes fails to find any solution at all; however, when 
it does find a solution, the solution is optimal. From theoretical and experimental data, is 
seems the algorithm works well (finds the optimal solution with high probability) for 
many natural classes of graphs, and in particular for graphs with small optimal bisections 
and small degree. 

Other constructive algorithms are basedon clustering techniques which attempt to 
put strongly connected cells in the same segment Examples of these may be found in [9]. 
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2.2.	 Improvement Methods 
This section traces the development of improvement algorithms for graph and 

network partitioning. 

Kernighan and Lin [2] described a heuristic procedure for graph partitioning which 
became the basis for most of the improvement type partitioning algorithms generally 
used. Their paper concentrated on the problem of producing a partition of a graph with 
2n vertices (or cells) into 2 segments of n cells each. 

The main idea is to start with a random (or not so random) partition and to improve 
it by iteratively choosing one cell from each of the segments and exchanging them. The 
cells to be switched are chosen to that a maximum decrease in cutset size may be 
obtained. Formulas are provided for computing and easily updating the gains or 
improvements in cutset size that would be obtained by switching any 2 given cells. 

The algorithm consists of a series of passes; in each pass 2 cells are interchanged in 
turn until all 2n cells have been moved. At each iteration the cells to be moved are 
chosen from among the ones that have not yet been moved during the pass, and in order 
to produce the maximum possible improvement in cutset size. Note that at a given 
iteration, all of the possible switches may actually act to increase the cutset size: then the 
switch which would produce the minimum increase is chosen. At the end of the pass, 
since all cells have been exchanged, the cutset of the partition should be exactly the same 
as at the beginning. The n partitions produced during the pass are examined and the one 
with the smallest cutset is chosen as the starting partition for the next pass. Passes are 
performed until no improvement in cutset size can be obtained. 

Note that for any given partition, there exist 2 sets of k cells, one set in each 
segment, which if interchanged will produce the optimum partition. It is not possible in 
polynomial time to determine what these sets are. Each pass in the algorithm just 
described provides an approximation to this optimum exchange. 

The running time of each pass of this algorithm is shown in [2] to be 0 (n 210g n ). 
However, the total running time depends on the number of passes necessary before the 
process stabilizes. From experimentation, it was determined that the number of passes 
was almost always between 2 and 4; thus it is claimed the number of passes is 
independent of n. 

This paper also briefly considers extending the method to partitioning into unequal
sized segments and to multiple-way partitions. The addition of "dummy" elements for 
unequal-sized segments is proposed. The adaptations to multiple-way partitions involve 
variants of reducing the original problem to several 2-way partition problems. 

In a paper by Schweikert and Kernighan [5], an adaptation of the above algorithm 
for networks was presented. The authors discuss the difference between graph and 
network models and then show how the Kernighan-Lin algorithm can be easily adapted 
for nets by changing the manner of computing gains in cutset size resulting from the
 
exchange of two cells.
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Fiduccia and Mattheyses [3] gave a detailed analysis of the effects that moving a cell 
has on the neighboring cells, and from this they were able to devise efficient data 
structures which permit a linear running time per pass for the network adaptation of the 
Kernighan-Lin algorithm. 

One modification suggested in [3] was to move one cell at a time instead of switching 
pairs. This allows for more flexibility in segment sizes and also allows implementation of 
the following idea. 

At first glance it appears that it is necessary to search through O(n 2) items to find 
the best pair of cells to swap each time. In [2] it was proposed to sort the pairs in order to 
do the search, thus requiring 0 (n log n) operations for choosing each pair to be moved. 
So the total sorting time during a pass was O(n 210g n). 

In [3] a method is proposed for keeping the candidates in each segment sorted at all 
times. Let gain(C) be the number of nets by which the cutset would decrease if cell C 
were moved from one segment to the other. Let p be the largest degree of any cell in the 
network. Note that gain(C) must be between -p and p (inclusive) for all cells C. Then a 
bucket array of size 2p+ 1 may be maintained indexed by possible gain values: [- p:p]. 
Each entry in this array consists of a pointer to a linked list of cells whose gains are equal 
to the index. A pointer is maintained to the highest gain value with a non-empty cell list. 
This structure allows for fast retrieval of the cell(s) with the biggest gain, as well as 
constant time transferring of a cell to the appropriate bucket when its gain changes. 

Finally, the amount of time needed to maintain the gains of the cells during a single 
pass is analyzed and found to be also linear in the size of the network. This is based on 
the observation that for each net, the gains of the cells on the net are updated at most 4 
times during the pass. 

This paper also introduced the idea of preserving balance in the sizes of the 
segments. Note that since only one cell is moved at a time, the sizes of the two segments 
cannot be constrained to be constant during the pass. Instead, each segment's size is 
constrained to lie within a given interval. When choosing the next cell to be moved, the 
cell with the highest gain in each segment is examined. It will always be possible to move 
at least one of these cells while preserving balance. If both may be moved, the one with 
the highest gain is chosen. 

Several versions on this type of algorithm have been used for VLSI applications (See 
[10]). 

The latest development in this class of algorithms, which is also limited to 2-way 
partitioning, comes from a paper by Krishnamurthy [4], where a refinement of the 
method for choosing the best cell to be moved next is introduced. This version of the 
algorithm forms the basis for the adaptation to multiple-way partitioning presented in the 
rest of this paper. A brief introduction to it is given below. See [4] for more details. 

Note that if a net contains more than two cells, and if the net is in the cutset of the 
current partition, then moving one of the cells on this net will not necessarily remove the 
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net from the cutset; however, it may make it possible to remove the net in a future 
iteration when another cell on that net is moved. To be concrete, suppose net N connects 
cells Cl, C2. C3, C4, and C5; and that Cl and C2 are in segment 1 while C3, C4, and 
C5 are in segment 2. Moving anyone of these cells will not remove net N from the 
cutset However. moving cell C1 or C2 would be better than moving the other cells, 
since in the next iteration C2 or C1 might be moved to remove N from the cutset. 
Although this example is rather simplified, (because in general the other nets the cells are 
connected to will also playa role in the choice of cell to be moved), it shows how one is 
led to the concept of different level gains, which is introduced next. 

Since the level gain concept will be adapted in the algorithm for multiple-way 
partitioning, we will here give a detailed definition of it, taken from [4]. 

If S is a set of cells, N is a net, we define 

as(N):= I{C ICES and CEN}I 

as(N) is the number of cells on net N which are in set S. 

A cell is labelled free if it has not yet been moved during the pass; otherwise it is 
labelled locked. Let A be a segment of the partition, AF the set of free cells in A, and 
AL the set oflocked cells in A. The binding number of a net N with respect to the 
segment A is 

aAF(N) if aA/N):=O 

f3 A(N):= 00 if aAF(N))() 

The binding number of a net with respect to a segment of a partition indicates how 
tightly the net is bound to the segment. If there are locked cells on a net in the segment, 
then the net will be bound to the segment for the rest of the pass, since locked cells can 
no longer be moved during the pass. 

The ith level gain of C, Yi(C), is defined as 

Yi(C):= I(NeNc IPA(N):=i and 13B(N))()} I - I(NENe 113 A(N))() and f3 B(N):=i-l} I 
Note that the first level gain is the actual decrease in cutset size which would result from 
moving cell C: ie. the first level gain corresponds to the regular gain concept used in the 
earlier algorithms. 

The gain vector for a cell C is then defined as 

f,(C) =<Yl(C), ... , y,(CP 

where I is the number of levels used. These vectors are ordered lexicographically. At each 
iteration, the free cell with the largest such gain vector is the one chosen to be moved 
next. 
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In [4] it is claimed that the algorithm using /levels runs in time D(lm). where m is 
the total number of connection points in the network, which is a measure of the size of 
the network. (We show in a later section that a factor involving the maximum cell degree 
also enters into the complexity). 

Computing higher level gains enables the algorithm to better distinguish between 
cells whose first level gains are the same. The concept should be of even greater help in 
multiple-way partitioning. because the probability that more than one cell will have to be 
moved in order to remove a net from the cutset will tend to increase with increasing 
number of segments. This idea is made more precise in a later section where the choice 
of number of levels to use is discussed. 

3. Multiple-way Partitioning Algorithm 
In this section the adaptation of the algorithm in [4] to multiple-way partitioning is 

discussed. 

3.1.	 Terminology 
Following [4]. we let a network consist of a set of c cells and n nets. For a given cell 

e. Newill denote the set of nets incident on e. and nc will denote the size of Ne- For 
a given net N. eN will denote the set of cells on the net N. and CN will denote the size 
of eN' p is the maximal number of nets on any cell and q is the maximal number of 
cells on any net. m will denote the total number of connection points in the network: 

m = ~ nc = ~ CN 
all C all N 

m may be regarded as a measure of the size of the network. 

An s-way partition of the network is described by the s-tuple (A 1,A 2.....As) where 
the Ai are disjoint sets of cells whose union is the entire set of cells in the network. Each 
Ai is said to be a segment of the partition. 

3.2.	 Choice of Strategy 
In adapting the algorithm in [4] to multiple-way partitioning, the following strategies 

were considered. 
1 Partitioning the initial network into segments A1 and B1. using the original 

algorithm for partitioning into two segments; here A 1 would be constrained to have 
the size of the desired first segment of the partition. Then in a similar manner 
partition B1 into A2 and B2. where A2'S size is as desired. Continue this process 
until the s segments A i- ... .As have been obtained. 

2	 Start with an initial partition of s segments. For each i, i= 1 to s, perform a pass in 
which pairwise optimization is done by switching cells in Ai with cells in any of the 
other segments. 
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3 Start with an initial partition of s segments. At. each iteration during a pass, consider 
all possible moves of each free cell from its home segment to any of the other 
segments and choose the best such move. Perform passes until no improvement in 
cutset size is obtained. 
The first strategy is similar to one proposed in [2] for multiple-way partitioning of 

graphs. As mentioned there, a bad choice in the first partitioning will bias the second one, 
and so on, with the largest errors occurring for large s. Also the first partitioning will try 
to minimize the number of connections between A 1 and B i- thus tending to maximize 
the connections inside B1, making it harder to obtain a good partition of B1; and 
similarly for the subsequent partitions. 

The second strategy runs the risk of destroying in one pass the gains made in 
previous passes and thus having to perform a large number of passes before convergence 
is obtained. 

The third strategy seems to offer the best hope of improving the partition in a 
homogeneous way, and is the strategy we will adopt in the following. 

3.3. Balancing 
We will adopt a balancing requirement for the sizes of the segments of the following 

form (analogous to [3]): 

Let '1, '2"""s be such that 

for each i and 
i=s 

~>i = 1 
i=1 

We want to have the size of Ai close to r.c. (Recall that C is the total number of cells in 
the network). We choose a parameter w>O and allow the following range for the size of 
Ai: 

'i C- W < IAil < 'i C+w 

That is, the size of Ai may be as much as "w off' from r.c. A cell move from Ai to Aj 

is allowed if it preserves the above relationship for At and At: In the case of 2-way 
partitioning, it is always possible to move a cell in one direction or the other (or both), 
since if A 1 has more than 'IC elements, A 2 will have less than '2c elements, and 
viceversa. This result generalizes to s-way partitioning as follows: 

Proposition 1: Of the s(s-:1) possible cell move directions at least I~ (~ -1)1 directions 

will be compatible with the balance requirements at anyone time. 
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Proof: Let M be the set of segments which may act as sources for a move; that is. those 
segments Ai whose sizes are strictly greater than ric- w. Let m be the size of M. 
Because the sizes of all of the segments must add up to c, and no segment has size 

greater than 'iC+w, we must have m>I~ l 
Likewise, for each element u in M, there are at least I~ ]-1=I~ -1] segments 

which may serve as targets for a move with source a. This is because there are at least I~ ]segments which may act as targets for a move, i.e. which have size less than 'iC+w, 

and at least I~ -I] of these are not equal to a. Hence at anyone time there are at least 

I~	 I~ -1]> I~ (~ -I)] possible directions for a cell move. 0 

The above shows that there are 8(s2) legal cell directions at all times. (With more 

work a slightly better bound of I5(5; 1) ] can actually be obtained). 

3.4.	 Computation of gains 

In this section we will present the gain concept for a cell move adapted to multiple
way partitioning. 

Instead of defining the function a as in [4], for convenience we will define ep and i\ 
as follows: 

epA,(N) = I(C ICEAi and CECN and C is free JI 

AA,(N) = I(C ICEAi and C ECN and C is locked JI 

SO ep AJN) is the number of free cells on the net N which are in the segment Ai' while 
AA, is the number of locked cells on the net N which are in the segment Ai. For each 
segment Ai and each net N, we define 13 as in [4]: 

ep A,(N) if AA,(N}=O 

13 Ai(N}= 00 if AA,(N)XJ 

For multiple-way partitioning we will also now need the function 13', defined as 
follows: 
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IfA,(N}= '2)3 Aj(N) 
j*i 

That is, /3' A;(N) is the sum of all the binding numbers of net N with respect to all of the 
segments of the partition except segment Ai; it gives a measure of how tightly N is 
bound to the "side" of the partition "opposite" Ai' 

Finally, we define the ith level gain associated with moving cell C from segment Aj 

to segment Ak • 

Yik(C}= I fNeNc1/3'Ak(N}=i and /3 Ak)()} I - IfN eNcl/3'A;(N}=i-1 and /3A )()} I 
J

The first term in the above formula measures the ith level "goodness" of moving cell C 
from the side of the partition consisting of all segments except Ak , to Ak . The second 
term measures the ith level "badness" of moving C from Aj to the side of the partition 
consisting of all segments except Aj' Note that, as is the case for the level gains defined 
in [4], the first level gain is the actual decrease in cutset size that would result from 
making the move. 

Now we will show that if /3, <p, and A values are maintained for each net N, that 
/3' A (N) can be computed in constant time (independent of s, the number of segments in 

k

the partition). 

In [4], a net is defined to be locked when it is connected to locked cells in both 
segments of the partition. Since locked cells can no longer be moved during a pass, once 
a net is locked it cannot be removed from the cutset during that pass. Note that a net N 
is connected to locked cells of a segment Ak if and only if /3 Ak(N}=oo. In s-way 
partitioning, a net is locked as soon as its binding values reach infinity for at least two of 
the segments of the partition. 

For net N define 

status(N) = free if none of its /3 values are 00 

status(N) = loose if exactly 1 of its /3 values is 00 

status(N) = locked if 2 or more of its /3 values are 00 

Note that the status of a net can be easily updated each time one of its binding 
values changes. 

Proposition2: (3'A (N ) can be computed in constant time from the a, A, and /3 values
k

for N, independent of s. 

Proof: If status(N) is free, then there are no locked cells on N. Hence cN is equal to the 
sum of all free cells of N on each of the segments. From this it follows that 
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fJ'Ak(N)= 'LfJ A,(N)=; '2 ep At(N)=;CN-epAk(N). 
i""k i""k 

If status(N) is not free, then N has a locked cell on at least one of the segments, 
with a corresponding fJ value of 00 on this segment. If fJ A

k 
(N):l:-OO, then fJ A

,
(N)=;OO 

for some i:l:-k, implying that 

fJ' Ak(N)=; 'L fJ Ai(N)=; 00. 
i""k 

The other case to be considered is that in which status(N) is not free and 
fJ A

k 
(N)= 00. There are two possibilities. If status(N) is loose, then there are no locked 

cells on any of the other segments. So fJ Ai(N)=; ep At(N) for i:l:- k, and 

CN= 'L ep At(N}+cp Ak(N}+ AA,JN). 
i""k 

Hence 

fJ'Ak(N)=; 'LfJ At(N)=; 'L ep A,(N)=;CN-CP AJN)-AAk(N) 
i""k i""k 

If status(N) is locked, then there is at least one locked cell on some segment Ai other 
than Ak • For this segment fJ A,(N)=oo, which implies that 

fJ'Ak(N)=; 'LfJA,(N)=oo. 
i""k 

We have therefore shown that the following algorithm computes fJ' Ak(N): 

if status(N)= free then
 
fJ' Ak(N) = CN - ep A/lv')
 

else if fJAk(N):l:-oo then {fJAJ(N) must be 00 for some j:l:-k}
 
fJ'A/N) = 00
 

else if status(N) = loose then {fJAk(N) = 00, all other fJ"s for N are not oo]
 
fJ'Ak(N) = CN - epAk(N) - AAk(N)
 

else {status(N) = locked}
 
fJ'A/N) = 00
 

endif
 
o 

3.5.	 Updating Gains 
In this section we will investigate the effect a cell move has on the values of the gain 

vectors of free cells connected to the moved cell. Let I be the highest level gain 
computed for the cells. Note that since the cell which is being moved becomes locked, its 
gain values do not need to be maintained after the move. 
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Suppose cell C is being moved from segment Aj to segment Ak • Consider a single 
net N connected to C. The move implies that PAiN) will decrease by one, and pAt(N) 
will become 00. This means that 13' Ah(N) becomes 00 for all h:;:.k, and p'A/N) is 
decreased by one. 

Let D be any free cell distinct from C and connected to N. We will first consider 
the changes in the gains associated with D caused by the changes in 13'A 

h
(N) and 13 A 

h
(N) 

for each h e k, Suppose D is not in Ah . If the old value of p'Ah(N), call it i, was less 
than or equal to I, and if the old value of 13 A 

h
(N) was greater than zero, then these terms 

were contributing to the ith level gain of cell D for moving to segment Ah. This 
contribution is no longer in effect since 13'Ah(N) is now 00. Hence 1 must be substracted 
from the ith level gain of cell 0 for moving to Ah . In a similar way it may be seen that if 
D belongs to Ah , and if the old value of p'Ah(N) was i-I, with i<I, and if the old value 
of pA/N) was greater than zero, that these terms were contributing (in a negative way) 
to the ith level gain of cell D for moving to each of the other segments: so the ith level 
gain of D must be incremented. 

Similarly, if D is not in Ak, and if the old value of p'At(N), call it i, was <I. and if 
the old value of pAt(N) was greater than 0, then the ith level gain of moving cell D to 
Ak must be decremented, Also in this case, however, if the new value of 13' At(N) is 
greater than 0, its contribution must be added to the 13' At(N) level gain of moving D to 
Ak . Similar updates may take place in the gains for moving cell D to each of the other 
segments, if D is in Ak and if p'At(N)<I. 

It is important to note that none of these updates need take place unless the old 
value of p'Ah(N) was <I for h e k , or unless the old or new 13' AJN) is <I. This fact 
will be used in the section dealing with complexity of the algorithm. 

4.	 I>ata Structures 

This section describes the main data structures used by the algorithm. 

4.1.	 Cell I>ata Structure 

The following information needs to be kept and updated for each cell. 

1 A list of the nets incident on the cell. 

2 The segment to which the cell currently belongs. 

3 An indication of whether the cell is free or locked. 

4 If the cell is free, the gain values associated with moving the cell to each of the other 
s-I segments. 

5 If the cell is free, s-I pointers to the s-I gain nodes included in the gain structures 
described in a later section. (These pointers make it easy to update the structures 
when the gain value of the cell changes). 
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4.2.	 Net Data Structure 
A table may be maintained with entries for each net. Each entry should contain the 

following: 

1 A list of the cells on the net. 

2 The net's current status: free, loose, or locked. 

3 cp, A, and f3 values for the net corresponding to each of the s segments of the 
partition. 

4.2.1.	 Segment Data Structure 
The number of cells currently in each segment must be maintained. 

4.3.	 Gain Structures 
Recall that in [3] a data structure was introduced which allows fast retrieval of the 

cell with the biggest gain in each segment. This structure consists of a bucket array 
indexed by the possible gain values for a cell: [-p:p]. Each entry in the array consists of 
a pointer to a doubly-linked list of cells whose gains are equal to the index of the entry. 
We will call each of the entries in these lists a gain node for the cell; a gain node consists 
of a cell number, a forward pointer, and a backward pointer. A special maxgain pointer 
points to the highest index in the array whose list of gain nodes is not empty. 

With the introduction of different level gains in [4], each cell has associated with it a 
gain vector instead of a single gain value. In [4], the following adaptation of the bucket 
array described above is proposed. If I is the number of levels used, the gain structure 
may consist of an I-dimensional array, each dimension being indexed from - p to p; thus 
there is an entry in this array for each of the (2p+1)' possible gain vector values. Each 
entry would as before point to a list of cells having that gain vector value. 

We will return to the issues involved in the implementation of this structure below, 
but first we will examine the complications introduced in increasing the number of 
segments. 

For 2-way partitioning, one of these structures must be maintained for each of the 2 
segments. In s-way partitioning, s(s-l) structures must be maintained, corresponding to 
the s(s-l) possible directions for a cell move. 

At first glance it may seem that 0(s2) steps will now be required to locate the cell 
that may be legally moved (i.e. moved while preserving balance) with the biggest gain. 
Since each cell move causes the legal move directions to change (affecting potentially 
2(s-l) of these directions) it is not sufficient to keep track of the biggestmaxgain pointer, 
since this pointer may correspond at anyone time to an illegal move direction. Hence 
0(52) comparisons may have to be made in order to determine the next cell move. What 
is needed in order to decrease this complexity is to keep a sorted list of the maxgain 
pointers corresponding to legal move directions. 
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This may be done by using a binary heap (see [11]) whose entries are maxgain 
pointers for the currently legal move directions. The pointer with the highest value will 
be found at the root of the tree. An array indexed by move directions must be 
maintained holding pointers to the elements in the heap. 

Figure 3a shows a network of 21 cells partitioned into 3 segments of sizes 6, 8. and 
7. The arrows between the segments show the currently legal move directions. Each of 
these directions corresponds to an entry in the heap, which is also shown. If a cell move 
is then made from segment 2 to segment 1, the legal cell move directions and the heap 
will change as shown in Figure 3b. 

Figure 3a 

,~ 

Figure 3b 
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We will now look at the operations necessary to maintain the heap, and in panicular 
at what happens when a cell is moved from one segment to another. This movement will 
cause changes in the legal move directions which will in tum cause changes to the heap. 
Whenever a cell is moved from segment Ai to segment Aj' it is possible that segment Aj 

becomes full, so that no more cells may be added to it, and that segment Ai becomes too 
small to remove any more cells from it. This may result in at most 2(s-I}-1 possible cell 
move directions which before were legal becoming illegal (namely those involving Aj as 
target or Ai as source). In the same way it may be seen that the move from Ai to Aj may 
result in at most 2(s-1}-1 move directions becoming legal which before were illegal. So 
at each cell move 0 (s) insertions and/or deletions will have to be made to the heap to 
keep it consistent with the legal move directions. 

The number of elements in the heap will be 8(s2) (see Proposition 1), hence each 
insertion and deletion should take O(log s2)=O(log s) time. So the total complexity 
involved is O(slog s) for each cell move. 

Deletions and insertions to the heap will also need to be made because of changes in 
cell gains resulting in corresponding changes to the maxgain pointers stored in the heap. 
As shown later in section 6, there will be 0 (lms) of these gain updates, hence the 
complexity involved here in heap maintenance will be 0 (lrns log s) during an entire pass. 

Turning now to the implementation of each single gain structure, we note that the 
I-dimensional array proposed in [4] will if implemented naively add a factor of 2lp l to 
the complexity of the algorithm. The reasons for this are as follows. 

Whenever a gain node with highest gain is removed from a gain structure, and it 
happens that there was only one gain node associated with this highest gain, then the 
maxgain pointer must be reset. In order to do this it is necessary to search down the 
bucket array looking for the next non-empty gain node list. The time spent doing this 
must be included in the complexity' of the algorithm. 

In [3], where the use of the bucket array was introduced for the single-level 
algorithm, it is pointed out that the total time spent searching down the bucket array is 
Oip-« R), where R is the sum of all the amounts by which the maxgain pointer is reset 
upwards during the pass. R=O(g), where g is the total number of gain adjustments 
performed. Since g=O(rn), the total time spent searching down the bucket array is 
O(m). 

For the multilevel algorithm, assuming for the moment 2-way partitioning, this 
complexity is O(2'p'+R). This is because the size of the bucket array is now O(2lp'). 
Moreover in this case R=O(g2'-lp ' - I), because incrementing a 1st level gain actually 
adds «2p+ 1)'-1) to the gain vector in the lexicographic ordering. Hence, since g=O(lm) 
for the multilevel algorithm, the total complexity is 0 (2'p '+ 1m 2'-1p [-1). This is higher 
than the desired O(/m) complexity for the entire algorithm. 

However, by adding more pointers to the I-dimensional bucket array, the complexity 
of searching down the bucket array may be reduced to O(ml(p+l)). This is done as 
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follows. 
For each level i, O<i <I, define the ith level hyperplane induced by the constants 

Ql,••. ,Qj. where each Qj is between - p and p, to be the set of entries of the array whose 
first i indices are Ql,...•Qj. For example, if /=2 then the bucket array is a matrix, the Oth 
level hyperplane is the whole array or matrix, the 1st level hyperplanes are the rows of 
the matrix, and the 2nd level hyperplanes are the entries of the matrix. For 0<;<1. the 
tth level hyperplane is composed of (2p+1) (;+ l)st level hyperplanes, which will be 
referred to as its component hyperplanes. 

For each ith order hyperplane, where O<i<l, we define a minpointer and a 
maxpointer which will point respectively to the first and last of its component 
hyperplanes (in lexicographic order) which are not empty. Because there is lOth level 
hyperplane, 2p+ I Ist level hyperplanes, (2p+ 1)2 2nd level hyperplanes, etc., this entails 
0(21-1pi-l) pointers. 

Each time a gain node is inserted or removed from the structure, some of these 
pointers may have to be adjusted. Suppose an entry of the array pointed to by an (I-l)sl 
maxgain pointer becomes empty. If the corresponding mingain pointer does not point to 
the same entry, then it will only be necessary to traverse at most 2p+1 entries to reset the 
maxgain pointer and no lower order pointers need be adjusted. If on the other hand the 
two pointers were equal, then they are both set to null and the pointers belonging to the 
enclosing (1- 2)51 hyperplane must be examined and possibly updated Following this 
line of reasoning it is not difficult to see that a traversal of (at most) 2p+ 1 entries or 
pointers need only take place at one of the levels, so the time required is O(p+ I). Hence 
the time required to delete a gain node is Otp-rl). The time required for insertion of a 
gain node is 0(1) since at most 2 pointers will have to be adjusted at each of 1 levels and 
no sequential search is necessary. 

The only problem arises in the initialization of the 0(21-1pl-l) pointers. However, 
this iaitialization may be performed on line, as it were, as gain nodes are inserted into the 
structure. For a hyperplane whose entries are all empty, it is not necessary to maintain 
values for pointers of its component hyperplanes. At the beginning of the pass all entries 
of the array are empty and hence only two pointers need to be initialized, corresponding 
to the single Oth level hyperplane (which is actually the whole array). As gain nodes are 
inserted into the structure, more pointers are initialized. Each insertion will require at 
most the initialization of 2(1-1) pointers. So the time required to insert a gain node is 
still 0(1). 

Returning to the case of varying number of segments, we can now prove the 
following: 

Proposition s: Insertion of a gain node requires O(log s+1) time; deletion of a gain 
node requires O(log s+1+p ) time. 

P'DO!: The log s term comes from the possible update to the maxgain heap caused by a 
change in the maxgain pointer for the structure. The other terms were discussed in the 
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preceding discussion. 0 
Note that the above analysis indicates that for large values of 21pi, only a small 

fraction of the array is actually used. In our implementation we ran into memory 
allocation problems for this array, so we devised another data structure which requires 
less space. Although as shown below the time complexity is higher, in practical situations 
it may be a more expedient implementation in terms of memory requirements. 

The more space efficient data structure involves I levels of one-dimensional bucket 
arrays, each bucket array consisting of 2p+1 entries. At level 1 there will be one bucket 
array indexed from - p to p. Each of the entries in this array will either be null or will 
point to a bucket array at level 2. The non-null entries in the bucket arrays at level 2 will 
point to bucket arrays at level 3, etc.. A bucket array at the last level will consist of 
pointers to gain nodes. Thus in order to find the gain node corresponding to a given 
gain vector, it is necessary to traverse I pointers. 

Each bucket array wil) have a rnaxgain pointer and a mingain pointer indicating the 
highest and lowest indices whose entries are non-empty. Thus because of the 
lexicographic ordering of the gain vectors, in order to find the gain nodes corresponding 
to the maximum gain, it is only necessary to follow I maxgain pointers. 

Bucket arrays are allocated and deallocated as needed. Since there are no more than 
c different gain nodes per structure, there will be no more than c bucket arrays at each 
level at anyone time, for a total of at most cl bucket arrays. (In fact there will be less at 
the lower levels, since there is only one bucket array at level I, at most 2p + 1 at level 2, 
etc.). So the space required is O(clp). 

Now accessing a gain node with highest gain will take 0 (I) time. Removing a node 
may cause a downward search to look for the next nonempty bucket at at most 1 of the 
levels, so the complexity of removing a gain node will be 0(1+p). However inserting a 
gain node may take O(p/) if all I buckets have to be newly allocated. 

5. Description of the Algorithm 
Following is a description of the algorithm for s-way network partitioning. 

After the network is initialized and a starting partition is obtained, passes are 
performed until no more improvement in cutset size results. Network initialization 
consists of reading in a description of the network and initializing the lists of cells 
associated with each net and the lists of nets associated with each cell. The network 
description may for instance be in the form of a list of net numbers, each followed by the 
numbers of the cells in the net. A partition P is assumed to be an array indexed by cell 
number specifying which segment each cell should be in. The starting partition is 
assumed to be read in from a file. 

Partition_Network
 
1) do network initialization
 
2) obtain a starting partition P
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3) repeat
 
call Init Partition to initialize partition P
 
call Do_Pass to perform a pass and return new partition P
 

until there is no improvement in cutset size 

Initializing the partition consists of assigning each cell to its corresponding segment 
and then initializing the gain values and gain structures for the partition. 

InitPartitiontP) 
1) for each cell C
 

let Ak be the segment specified by P for C
 
put C in Ak
 
for each net N incident on C
 

increment ep Ak(N)
 
increment {3 Ak(N)
 

end for
 
end for
 

2) for each net N
 
for each segment Ak
 

if {3' A(N)<1 and {3 A.)()
 

for each cell C on net N
 
call Update_Gain(C ,AkIN)
 

end for
 
end if
 

end for
 
end for
 

3) for each cell C
 
let Ak be the segment to which C belongs
 
for each segment Ai:;t:A k
 

create gain node for C's gain in moving to Ai
 
insert gain node in appropriate gain structure
 

end for
 
end for
 

4) initialize maxgain pointer heap
 

An explanation for the code in Update_Gain and Reverse_Update_Gain was provided in 
a preceding section. 

Update_Gain(C .At,N)
 
let Aj be the segment to which C belongs
 
if Aj:;f: At
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set i to f3' A/r.(N)
 
increment ith level gain for moving cell C to Ak
 

else if f3' A/r.(N)<1
 
set i to f3 I AIr.(N}+ 1
 
for each segment Ah ~ Aj
 

decrement ith level gain for moving cell C to Ah
 
end for
 

end if
 

Reverse_Update_Gain(C ,Ak,N)
 
let Aj be the segment to which C belongs
 
if Aj~Ak
 

set i to f3'A/N)
 
decrement ith level gain for
 

moving cell C to Ak
 
else if f3 ' Al:(N )<1
 

set i to f3' A/r.(N}t 1
 
for each segment Ai~Aj
 

increment ith level gain for
 
moving cell C to Ai
 

end for
 
end if
 

Each pass consists of repeatedly moving a free cell with highest gain until no more 
moves are possible. Once moved a cell becomes locked. The partition with the lowest 
cutset which was found during the pass is returned as the new partition. 

In order to keep track of the best panition a list is maintained of the moves which 
are performed during the pass. Together with each move a record is kept of the gain in 
cutset size which has been obtained from the beginning of the pass up to that move. A 
pointer is kept to the move with the largest such gain; this pointer is updated as 
necessary. At the end of the pass, all moves up to the pointer are applied to the partition 
in effect at the beginning of the pass. This new partition is returned as the result of the 
pass. 

Do_Pass(P) {P is the current partition} 
1) set Move_array to be empty
 

set Gain_array to be empty
 
set Bestgain pointer to 0
 

2) While (a move is possible)
 
a) get Nextmove from gain structures
 
b) call Make_Move to perform Nextmove
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c) add Nextmove to Move_array
 
add new gain to Gain_array
 
if new value in Gain_array is better than the one pointed
 

to by Bestgain pointer
 
update Bestgain pointer
 

end While
 
3) use moves in Move_array up to Bestgainjiointer to update P
 

return(P)
 

Following are the instructions for Make_Move. The criteria for updating gain values 
for the affected cells were given in a previous section. 

Make_Move(~ extmove) 
1) C = Nextmove.cell
 

Aj = Nextmove.source
 
Ak = Nextmove.target
 
lock cell C and remove from gain structures
 

2) for each net N connected to C
 
a) for each segment Ah
 

if f3'A.(N)<1 and f3A 
h
(N »)()
 

for each free cell D on net N, D:#. C
 
call Reverse_Update_Gain(D ,Ah,N)
 
update D's gain nodes
 

end for
 
end if
 

endfor
 
b) update cp A;(N), AA/c(N), 13 A/(N), and 13 A/N)
 
c) if 13'A/N)<L and 13 A/c(N) >0
 

for each free cell D on net N, D:#.C
 
call UpdateGaintf) ,Ak.N)
 
update D's gain nodes
 

end for
 
end if
 

end for
 

6. Complexity Analysis 

We will now show that the algorithm described in the preceding section has time 
complexity O(/ms(log s+l+p». 

Proposition 4: During each execution of Do_Pass, the inner loops of Make_Move 
where Update_Gain and Reverse_Update_Gain are called are executed at most 1+ 1 
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times for each net N in the network. 

Proof: Note that these loops are performed only when a cell on net N is moved and one 
of the old or new values of /3' for N are less than or equal to f. 

If the first f cell moves when the conditions for executing the loops are met include 
two moves to two different segments, then the net N will become locked after these two 
moves. Its /3' values will all equal 00 and will no longer change during the pass; hence 
the conditions for the inner loops to be performed will no longer be met during the pass. 

Suppose on the contrary that there are f moves to a single segment Ak involving 
cells on net N where at least some of the /3' values are less than or equal to f. Note that 
in fact, after the first such move, all /3' values for N will be 00 except for /3'A (N), which 

k: 

will decrease by 1 at each move. Hence, since the conditions are not met while 
/3' Ale(N»f, the conditions for executing the inner loops will be met at most f times, after 
which /3'AJN) will be O. At that time all cells on net N will be in segment Ak and any 
further move of a cell on net N will take a cell to another segment, thus locking the net 
and setting /3'A. to 00. Thereupon the conditions for executing the loop will no longer be 
met. 0 

Proposition 5: The algorithm described in the preceding section has time complexity 
O(lms(log s+p+l). 

Proof: Network initialization, step 1 of the main procedure in the algorithm, is 
independent of the number of segments and may be performed in O(m) time, if the 
network description read in consists of net lists or cell lists. Step 2 may clearly be 
performed in O(c )<O(m) time. 

Following [2], [3], and [4], we will assume that the number of times the loop in step 
3 is performed (Le. the number of passes performed by the algorithm) is 0(1). 

In the procedure Init Partition, step 1 is performed in O(m) time. Each call to 
Update_Gain requires either O(s) or constant time, depending on whether the input cell 
C is in the input segment Ak • Hence step 2 of InitPartition should take O(ms) time. 
From Proposition 3, we know each insertion of a gain node takes O(log s+I) time. So 
step 3 of Init Partition requires O(cs(log s+ f» time. Step 4 of Init.Partition will take 
0(s2) < O(ms) time. Hence the InitPartition procedure requires at most 
O(ms(log s+I) time. 

We will now examine the complexity of Do_Pass. Step 1 takes constant time. Since a 
cell becomes locked after it is moved, the while loop in step 2 is performed at most c 
times. Choosing the next move requires O(slog s) time. Hence all move selections 
during execution of the while loop can be performed in O(cslog s)<O(mslog s) time. 

Step 2b in Do_Pass consists of calls to Make_Move. Step 1 of Make_Move can be
 
performed in 0 (s(log s+P+I) time since each free cell has a node in only s-l of the
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gain structures, corresponding to each of the s-l directions in which it can move. Hence, 
during all calls of Make_Move in a pass, the time spent in step 1 will be 
O(cs(log s+p+/»<O(ms(1og s+p+I). The outer for loop in step 2a of Make_Move is 
executed s times. However, by Proposition 4, the inner loop is executed at most 1+ 1 
times for each net in the network during a single pass. Moreover, Reverse_Update_Gain 
takes O(s) or constant time depending on whether the input cell C belongs to the input 
segments Ak . The updating of a gain node, which takes O(log s+p+1) time, is done only 
each time a gain is updated in Reverse_Update_Gain. Hence step 2a will take 
O(lms(log s+p+/)) time during the entire pass. Similar arguments may be made to 
show that step 2c takes O(lms(1og s+p+ I) time during one execution of Do_Pass. Step 
2b requires constant time each time it is performed, and it is performed at most O(m) 
times during: a pass. So we have shown that calls to Make_Move take up 
O(lms(log s+p+ I)) time during one execution of Do_Pass. 

Step 2c in Do_Pass takes constant time each time it is executed. So step 2 of 
Do_Pass has time complexity 0 (lms(log s+p+I). Finally it is easy to see that step 3 of 
Do_Pass has complexity O(c). Hence Do_Pass can be performed in time 
O(lms(log s+p+/». 

This completes the proof that the entire algorithm may be performed in time 
O(lms(log s+p+l). 0 

7.	 Experimental Results 

A version of the algorithm has been implemented in C. Experiments were performed 
using nets artificially created to have a certain distribution of net sizes. As was done in 
[4], we randomized arbitrary choices and performed a number of runs. Figure 4 shows 
the results of these runs applied to a net having 300 cells, 300 nets, with q =8 and p =9. 
The net sizes come from a uniform distribution between 2 and 8. Runs were made for 
s =2,3,4,5 and 1=1,2,3,4. Each line shown in the table corresponds to 40 runs, and gives
 
the average, minimum, and maximum final cutset sizes obtained from the runs.
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No Segments Level Average Cutset Minimum Cutset Maximum Cutset 
2 1 161.44 154 170 
2 2 156.45 150 164 
2 3 157.87 154 167 
2 4 156.60 153 166 

3 1 188.92 179 197 
3 2 181.45 174 189 
3 3 180.12 173 186 
3 4 178.12 171 184 

4 1 216.22 207 225 
4 2 193.85 187 204 
4 3 188.07 183 194 
4 4 189.27 183 195 

5 1 224.22 217 232 
5 2 196.90 191 204 
5 3 191.80 187 200 
5 4 193.17 188 199 

Figure 4 

The following observations can be made. For each s there seems to be a level after 
which no more or negligible improvement is obtained. This level appears to be 2 for s = 2 
and 3. and 3 for s =4 and 5. Moreover, the improvement obtained, up to this level, is 
greater for greater number of segments. This is shown more clearly in Figure 5, where 
the average normalized cutset size is plotted against level for each s. Normalized cutset 

ct-ct . 
size is defined to be mm , where ct min and ctmax are the smallest and largest 

ctmax- ct min 
cutset sizes obtained for all of the runs involving the given number of segments s, and ct 
is the average cutset for each different I and s. Note that the slopes of the curves get 
steeper as the number of segments increases, indicating the greater effect of higher levels 
for greater number of segments. 
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Figure 5 

In [4] a method is presented for choosing the optimal number of levels, I, to use for 
a particular network. Briefly, it is assumed that the (2p+ Ii possible gain vector values 
are uniformly distributed over the c cells, and 1 is chosen such that exactly one cell will 
tend to have a gain equal to the maximum at any time; this is done by setting 
- (2p+ 1)/ h' h i li 1- log c 
- c ' W lC lffip les - log (2p+1) . 1
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Generalizing the formula to an arbitrary number of segments, we obtain 

1= logl~: f~;~~) 1) since each cell will have s-1 gain vectors corresponding to moves to 

each of the other 5-1 segments. This indicates a slight increase in the optimal level with 
increasing number of segments. We computed this formula for our network for 
5 =2,3,4,5, and obtained the values 1.94, 2.17, 2.31, and 2.41, respectively. These are fairly 
consistent with the experimental results for 5 = 2 and 3 but the slight increase in the 
numbers does not seem to reflect the increased usefulness of level 3 for s =4 and 5. 

Looking at the situation from another point of view, we may consider the following 
probabilistic analysis. Consider a net of size r . Assume that each cell on the net has 

equal probability ; of being in anyone of the 5 segments, thus inducing a multinomial 

distribution for the cell locations. Let K be the minimum number of cells that would 
have to be moved in order to put all cells in a single segment and thus remove the net 
from the cutset. K is thus the minimum positive level gain that this net could induce on 
any of its cells. For O<k<r, the probability that K>k, i.e. the probability that at least k 
cells will have to be moved, equals the probability that no segment contains more than 
r- k of the cells. This is because the way to move the least number of cells is to put all 
cells in the segment which contains initially the largest number of cells. 

Now the probability that no segment contains more than j cells is 

Pl( .) ~ r ! (l )r
r.s.j = L.. " 

05,ri5,j r1 .... rs · 5 
rl+r2+ ... +rs=r 

~ 
05, ri5,j 

r2+rrt ... +rs=r-rl 

= ~ r!
 
05,r 15,j r1!(r- r1)!
 

for 5 >1, while for 5 =I, 

P1(r,l,j) =0 if j<r 

Pl(r,l,j) = 1 if j>r 

Then the probability that at least k cells will have to be moved is 

P2(r,5,k)=P l(r,s ,r-k) 

Using the above formulas values were computed for P2(r,s,k) for 2<r<8, 2<5<5, 
O<k<r. It was found that for all cases P2(r,s+l,k»P2(r,s,k). Moreover the expected 
numberof cells that would have to be moved also increases with increasing s. This also 
indicat.es that for each levell, increasing the number of segments increases the 
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probability that gains of level I will be required. Of course the above analysis does not 
hold unless the uniform cell distribution assumption is a good approximation to the cell 
distribution in a particular network partition. 

Finally, we computed the expected number of cells that would have to be moved to 
remove a net from the cutset, assuming a uniform distribution of net sizes between 2 and 
8. The numbers we obtained are 1.63, 2.23, 2.56, and 2.77 for s =2,3,4,5, respectively. 
These numbers seem to give a slightly better approximation to the best level to use for 
our panicular network. 

8. Conclusions 
We have presented an adaptation of the network partitioning algorithm in [4] to 

multiple-way' partitioning, whose time complexity is O(lms(log s+p+ I)). As the original 
algorithm has complexity O(lm(p+l) this represents only a linear increase in s in the 
majority of cases. Through both theoretical and experimental results we have indicated 
the increasing usefulness of higher levels for increasing number of segments. 

One area for further investigation involves finding an effective way of choosing the 
level to be used based on both the network parameters and the number of segments in 
the partition. Further work along the lines of the probabilistic analysis in a previous 
section may prove useful in this regard. 
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