
Multiple-Way

Network Partitioning

Laura A. Sanchis*

Department of Computer Science

The University of Rochester

Rochester, NY 14627

TR 181

March 1986

Abstract

We present an algorithm for partitioning the cells of a network into an
arbitrary number of segments based on a recent 2-way network
partitioning algorithm by B. Krishnamurthy [4]. By efficient use of
data structures the complexity of the algorithm is shown to increase
only linearly in the number of segments in the majority of cases.
Through theoretical and experimental methods we show that the
concept of "level gain" introduced in [4] becomes more useful as the
number of segments increases.

Key Words: network partitioning, graph partitioning

*AT&T Bell Labs Scholar

1. Introduction
This paper deals with the problem of partitioning the cells of a network into two or

more disjoint subsets in a way such as to minimize the number of nets that have cells in
more than one of the segments of the partition.

This section describes the problem and some of its variants, and compares the
network partitioning problem to the graph partitioning problem. The next section is a
survey of recent attempts to deal with the problem. Most of these restrict the problem to
graph partitioning or to partitioning a network into only two segments. The third section
considers the adaptation of one of these algorithms to the more general multiple-way
network partitioning problem. The fourth, fifth, and sixth sections describe the adapted
algorithm with a complexity analysis. Section seven gives experimental results.

A network consists of a set of cells connected by a set of nets. Each net connects
two or more cells. Thus a graph is a special case of a network in which each net is an
edge connecting exactly 2 cells. A partition of the network is a partition of the cells of the
network into disjoint segments. The cutset of a partition is the number of nets with cells
in more than one of the segments of the partition. The network partitioning problem
consists of finding a partition into s segments (s>2) such that the size of the cutset is
minimized. for a given s. Generally the segments are constrained to be of a cenain size
or within a range of sizes. (If this were not so then the trivial partition where all cells are
in one of the segments would always be the optimum solution).

Variants to the problem which arise in practical situations include assigning costs to
the nets, assigning sizes to the cells, or constraining certain cells to lie in a gi ven segment.
If costs are assigned to the nets, then the partition with a cutset of minimal cost is sought.
If cells have different sizes, then these must be taken into account in calculating and
constraining the size of each segment of the partition.

The network partitioning problem cannot be trivially reduced to the graph
partitioning problem, as is shown in the following analysis. One can try to convert a
network into a graph by making the cells of the network vertices of the graph and
connecting two vertices by an edge if the two corresponding cells are connected by a net
in the original network. Thus each net of k cells in the network would yield k(k-l)/2
edges in the graph. If, however, one attempts to partition this graph so that the smallest
possible number of edges will be in the cutset, this will not necessarily yield a
correspondingly good partition of the network. This is because two or more edges in the
graph model corresponding to the same net in the network will be counted separately
when calculating the cutset of the graph partition, while in the network partition they
should be counted as only one connection. Thus the graph partitioning algorithm will
disregard good partitions from the network's point of view in favor of other partitions
whose cutsets contain less edges but possibly belonging to more nets. An example of this
is shown in Figure 1. Figure la shows a network of 6 cells and 5 nets, and the best
partition of this network into two segments, with a cutset of size 2. Figure Ib shows the
graph transformation of this network, and the best partition for the graph; this partition
gives a cutset of size 3 for the network, which is not optimal.

--

2

-

Figure la Figure Ib

Another approach would be to assign costs to the edges in the graph in such a way
that the total cost of the edges deriving from a single net will add up to one. For
instance, if a net is connected to three cells, then the three resulting edges in the graph
model would each be assigned cost 1/3. This however also leads to problems, asthe
graph partitioning may now underestimate the cost of network partitions whose cutsets
contain edges from each of many different nets. An illustration of this is shown in Figure
2. Figure 2a shows a network of 8 ceUs and 3 nets, and the best partition into two
segments. with a cutset of size 1. Figure Ib shows the graph transformation, where each
of the nets of size 4 is broken up into 6 edges, each with weight 1/6. We thus obtain a
partition with a cutset size of 1 (Figure lb), which includes edges from 2 different nets.
This partition would thus be considered as good as the partition whose cutset consists of
only 1 edge, even though from the network point of view it is worse.

-- -
~

Figure 2a Figure 2b

3

2.	 Survey of Solutions

It is known that the graph and the network partitioning problem are NP-hard. (See
[1]). Therefore attempts to solve this problem have concentrated on finding heuristics
which will yield approximate solutions in polynomial time, or sometimes exact solutions
in polynomial time with high probability for certain classes of graphs.

Two general approaches have been taken, namely the development of "constructive"
algorithms and of "improvement" algorithms. Constructive algorithms attempt to find a
partition that is near-optimal by doing some kind of analysis on the graph or network
using graph theory or other applicable methods. Improvement algorithms take a given
starting partition and try to optimize it locally by making small changes such as iteratively
switching cells from one segment to another. In the following we will look at a few
algorithms of the first type and then at a series of papers showing developments in the
second approach, which is the one which will be pursued in this paper.

2.1.	 Constructive Methods

This section will briefly describe some algorithms for partitioning of graphs that have
appeared in the literature and which use constructive methods. Except for the clustering
procedures mentioned at the end, these algorithms are not easily adapted to networks.

An algorithm for graph partitioning which uses methods in linear algebra and linear
programming to find an approximate solution was introduced by Earl R. Barnes in [6].

The problem dealt with is that of partitioning a graph into k segments of given sizes.
Very briefly, the matrices A and P are considered, where A is the adjacency matrix of the
graph and P represents a partition for the graph. Pij is 1 if cells i and j are in the same
segment, and 0 otherwise. Note A is a constant for the problem while P is the variable for
which we want to find an optimum value. It is shown that finding a minimum partition is
equivalent to minimizing /IA-P/I where /leiI is the Frobenius norm of matrix C. By using
the Hoffman-Wielandt inequality this norm is related to an expression involving the
eigenvalues of A and P, which eventually reduces the approximation to solving a linear
programming problem.

Bui,Chaudhuri, Leighton, and Sipser [7] describe a polynomial time graph
partitioning algorithm which is based on network flow techniques. It is however
restricted to bisections (i.e. the 2 segments of the desired partition are assumed to have
the same sizes). It differs from other approximation algorithms in that instead of generally
finding suboptimal solutions, it sometimes fails to find any solution at all; however, when
it does find a solution, the solution is optimal. From theoretical and experimental data, is
seems the algorithm works well (finds the optimal solution with high probability) for
many natural classes of graphs, and in particular for graphs with small optimal bisections
and small degree.

Other constructive algorithms are basedon clustering techniques which attempt to
put strongly connected cells in the same segment Examples of these may be found in [9].

4

2.2.	 Improvement Methods
This section traces the development of improvement algorithms for graph and

network partitioning.

Kernighan and Lin [2] described a heuristic procedure for graph partitioning which
became the basis for most of the improvement type partitioning algorithms generally
used. Their paper concentrated on the problem of producing a partition of a graph with
2n vertices (or cells) into 2 segments of n cells each.

The main idea is to start with a random (or not so random) partition and to improve
it by iteratively choosing one cell from each of the segments and exchanging them. The
cells to be switched are chosen to that a maximum decrease in cutset size may be
obtained. Formulas are provided for computing and easily updating the gains or
improvements in cutset size that would be obtained by switching any 2 given cells.

The algorithm consists of a series of passes; in each pass 2 cells are interchanged in
turn until all 2n cells have been moved. At each iteration the cells to be moved are
chosen from among the ones that have not yet been moved during the pass, and in order
to produce the maximum possible improvement in cutset size. Note that at a given
iteration, all of the possible switches may actually act to increase the cutset size: then the
switch which would produce the minimum increase is chosen. At the end of the pass,
since all cells have been exchanged, the cutset of the partition should be exactly the same
as at the beginning. The n partitions produced during the pass are examined and the one
with the smallest cutset is chosen as the starting partition for the next pass. Passes are
performed until no improvement in cutset size can be obtained.

Note that for any given partition, there exist 2 sets of k cells, one set in each
segment, which if interchanged will produce the optimum partition. It is not possible in
polynomial time to determine what these sets are. Each pass in the algorithm just
described provides an approximation to this optimum exchange.

The running time of each pass of this algorithm is shown in [2] to be 0 (n 210g n).
However, the total running time depends on the number of passes necessary before the
process stabilizes. From experimentation, it was determined that the number of passes
was almost always between 2 and 4; thus it is claimed the number of passes is
independent of n.

This paper also briefly considers extending the method to partitioning into unequal
sized segments and to multiple-way partitions. The addition of "dummy" elements for
unequal-sized segments is proposed. The adaptations to multiple-way partitions involve
variants of reducing the original problem to several 2-way partition problems.

In a paper by Schweikert and Kernighan [5], an adaptation of the above algorithm
for networks was presented. The authors discuss the difference between graph and
network models and then show how the Kernighan-Lin algorithm can be easily adapted
for nets by changing the manner of computing gains in cutset size resulting from the

exchange of two cells.

5

Fiduccia and Mattheyses [3] gave a detailed analysis of the effects that moving a cell
has on the neighboring cells, and from this they were able to devise efficient data
structures which permit a linear running time per pass for the network adaptation of the
Kernighan-Lin algorithm.

One modification suggested in [3] was to move one cell at a time instead of switching
pairs. This allows for more flexibility in segment sizes and also allows implementation of
the following idea.

At first glance it appears that it is necessary to search through O(n 2) items to find
the best pair of cells to swap each time. In [2] it was proposed to sort the pairs in order to
do the search, thus requiring 0 (n log n) operations for choosing each pair to be moved.
So the total sorting time during a pass was O(n 210g n).

In [3] a method is proposed for keeping the candidates in each segment sorted at all
times. Let gain(C) be the number of nets by which the cutset would decrease if cell C
were moved from one segment to the other. Let p be the largest degree of any cell in the
network. Note that gain(C) must be between -p and p (inclusive) for all cells C. Then a
bucket array of size 2p+ 1 may be maintained indexed by possible gain values: [- p:p].
Each entry in this array consists of a pointer to a linked list of cells whose gains are equal
to the index. A pointer is maintained to the highest gain value with a non-empty cell list.
This structure allows for fast retrieval of the cell(s) with the biggest gain, as well as
constant time transferring of a cell to the appropriate bucket when its gain changes.

Finally, the amount of time needed to maintain the gains of the cells during a single
pass is analyzed and found to be also linear in the size of the network. This is based on
the observation that for each net, the gains of the cells on the net are updated at most 4
times during the pass.

This paper also introduced the idea of preserving balance in the sizes of the
segments. Note that since only one cell is moved at a time, the sizes of the two segments
cannot be constrained to be constant during the pass. Instead, each segment's size is
constrained to lie within a given interval. When choosing the next cell to be moved, the
cell with the highest gain in each segment is examined. It will always be possible to move
at least one of these cells while preserving balance. If both may be moved, the one with
the highest gain is chosen.

Several versions on this type of algorithm have been used for VLSI applications (See
[10]).

The latest development in this class of algorithms, which is also limited to 2-way
partitioning, comes from a paper by Krishnamurthy [4], where a refinement of the
method for choosing the best cell to be moved next is introduced. This version of the
algorithm forms the basis for the adaptation to multiple-way partitioning presented in the
rest of this paper. A brief introduction to it is given below. See [4] for more details.

Note that if a net contains more than two cells, and if the net is in the cutset of the
current partition, then moving one of the cells on this net will not necessarily remove the

6

net from the cutset; however, it may make it possible to remove the net in a future
iteration when another cell on that net is moved. To be concrete, suppose net N connects
cells Cl, C2. C3, C4, and C5; and that Cl and C2 are in segment 1 while C3, C4, and
C5 are in segment 2. Moving anyone of these cells will not remove net N from the
cutset However. moving cell C1 or C2 would be better than moving the other cells,
since in the next iteration C2 or C1 might be moved to remove N from the cutset.
Although this example is rather simplified, (because in general the other nets the cells are
connected to will also playa role in the choice of cell to be moved), it shows how one is
led to the concept of different level gains, which is introduced next.

Since the level gain concept will be adapted in the algorithm for multiple-way
partitioning, we will here give a detailed definition of it, taken from [4].

If S is a set of cells, N is a net, we define

as(N):= I{C ICES and CEN}I

as(N) is the number of cells on net N which are in set S.

A cell is labelled free if it has not yet been moved during the pass; otherwise it is
labelled locked. Let A be a segment of the partition, AF the set of free cells in A, and
AL the set oflocked cells in A. The binding number of a net N with respect to the
segment A is

aAF(N) if aA/N):=O

f3 A(N):= 00 if aAF(N))()

The binding number of a net with respect to a segment of a partition indicates how
tightly the net is bound to the segment. If there are locked cells on a net in the segment,
then the net will be bound to the segment for the rest of the pass, since locked cells can
no longer be moved during the pass.

The ith level gain of C, Yi(C), is defined as

Yi(C):= I(NeNc IPA(N):=i and 13B(N))()} I - I(NENe 113 A(N))() and f3 B(N):=i-l} I
Note that the first level gain is the actual decrease in cutset size which would result from
moving cell C: ie. the first level gain corresponds to the regular gain concept used in the
earlier algorithms.

The gain vector for a cell C is then defined as

f,(C) =<Yl(C), ... , y,(CP

where I is the number of levels used. These vectors are ordered lexicographically. At each
iteration, the free cell with the largest such gain vector is the one chosen to be moved
next.

7

In [4] it is claimed that the algorithm using /levels runs in time D(lm). where m is
the total number of connection points in the network, which is a measure of the size of
the network. (We show in a later section that a factor involving the maximum cell degree
also enters into the complexity).

Computing higher level gains enables the algorithm to better distinguish between
cells whose first level gains are the same. The concept should be of even greater help in
multiple-way partitioning. because the probability that more than one cell will have to be
moved in order to remove a net from the cutset will tend to increase with increasing
number of segments. This idea is made more precise in a later section where the choice
of number of levels to use is discussed.

3. Multiple-way Partitioning Algorithm
In this section the adaptation of the algorithm in [4] to multiple-way partitioning is

discussed.

3.1.	 Terminology
Following [4]. we let a network consist of a set of c cells and n nets. For a given cell

e. Newill denote the set of nets incident on e. and nc will denote the size of Ne- For
a given net N. eN will denote the set of cells on the net N. and CN will denote the size
of eN' p is the maximal number of nets on any cell and q is the maximal number of
cells on any net. m will denote the total number of connection points in the network:

m = ~ nc = ~ CN
all C all N

m may be regarded as a measure of the size of the network.

An s-way partition of the network is described by the s-tuple (A 1,A 2.....As) where
the Ai are disjoint sets of cells whose union is the entire set of cells in the network. Each
Ai is said to be a segment of the partition.

3.2.	 Choice of Strategy
In adapting the algorithm in [4] to multiple-way partitioning, the following strategies

were considered.
1 Partitioning the initial network into segments A1 and B1. using the original

algorithm for partitioning into two segments; here A 1 would be constrained to have
the size of the desired first segment of the partition. Then in a similar manner
partition B1 into A2 and B2. where A2'S size is as desired. Continue this process
until the s segments A i-As have been obtained.

2	 Start with an initial partition of s segments. For each i, i= 1 to s, perform a pass in
which pairwise optimization is done by switching cells in Ai with cells in any of the
other segments.

8

3 Start with an initial partition of s segments. At. each iteration during a pass, consider
all possible moves of each free cell from its home segment to any of the other
segments and choose the best such move. Perform passes until no improvement in
cutset size is obtained.
The first strategy is similar to one proposed in [2] for multiple-way partitioning of

graphs. As mentioned there, a bad choice in the first partitioning will bias the second one,
and so on, with the largest errors occurring for large s. Also the first partitioning will try
to minimize the number of connections between A 1 and B i- thus tending to maximize
the connections inside B1, making it harder to obtain a good partition of B1; and
similarly for the subsequent partitions.

The second strategy runs the risk of destroying in one pass the gains made in
previous passes and thus having to perform a large number of passes before convergence
is obtained.

The third strategy seems to offer the best hope of improving the partition in a
homogeneous way, and is the strategy we will adopt in the following.

3.3. Balancing
We will adopt a balancing requirement for the sizes of the segments of the following

form (analogous to [3]):

Let '1, '2"""s be such that

for each i and
i=s

~>i = 1
i=1

We want to have the size of Ai close to r.c. (Recall that C is the total number of cells in
the network). We choose a parameter w>O and allow the following range for the size of
Ai:

'i C- W < IAil < 'i C+w

That is, the size of Ai may be as much as "w off' from r.c. A cell move from Ai to Aj

is allowed if it preserves the above relationship for At and At: In the case of 2-way
partitioning, it is always possible to move a cell in one direction or the other (or both),
since if A 1 has more than 'IC elements, A 2 will have less than '2c elements, and
viceversa. This result generalizes to s-way partitioning as follows:

Proposition 1: Of the s(s-:1) possible cell move directions at least I~ (~ -1)1 directions

will be compatible with the balance requirements at anyone time.

9

Proof: Let M be the set of segments which may act as sources for a move; that is. those
segments Ai whose sizes are strictly greater than ric- w. Let m be the size of M.
Because the sizes of all of the segments must add up to c, and no segment has size

greater than 'iC+w, we must have m>I~ l
Likewise, for each element u in M, there are at least I~]-1=I~ -1] segments

which may serve as targets for a move with source a. This is because there are at least I~]segments which may act as targets for a move, i.e. which have size less than 'iC+w,

and at least I~ -I] of these are not equal to a. Hence at anyone time there are at least

I~	 I~ -1]> I~ (~ -I)] possible directions for a cell move. 0

The above shows that there are 8(s2) legal cell directions at all times. (With more

work a slightly better bound of I5(5; 1)] can actually be obtained).

3.4.	 Computation of gains

In this section we will present the gain concept for a cell move adapted to multiple
way partitioning.

Instead of defining the function a as in [4], for convenience we will define ep and i\
as follows:

epA,(N) = I(C ICEAi and CECN and C is free JI

AA,(N) = I(C ICEAi and C ECN and C is locked JI

SO ep AJN) is the number of free cells on the net N which are in the segment Ai' while
AA, is the number of locked cells on the net N which are in the segment Ai. For each
segment Ai and each net N, we define 13 as in [4]:

ep A,(N) if AA,(N}=O

13 Ai(N}= 00 if AA,(N)XJ

For multiple-way partitioning we will also now need the function 13', defined as
follows:

10

IfA,(N}= '2)3 Aj(N)
j*i

That is, /3' A;(N) is the sum of all the binding numbers of net N with respect to all of the
segments of the partition except segment Ai; it gives a measure of how tightly N is
bound to the "side" of the partition "opposite" Ai'

Finally, we define the ith level gain associated with moving cell C from segment Aj

to segment Ak •

Yik(C}= I fNeNc1/3'Ak(N}=i and /3 Ak)()} I - IfN eNcl/3'A;(N}=i-1 and /3A)()} I
J

The first term in the above formula measures the ith level "goodness" of moving cell C
from the side of the partition consisting of all segments except Ak , to Ak . The second
term measures the ith level "badness" of moving C from Aj to the side of the partition
consisting of all segments except Aj' Note that, as is the case for the level gains defined
in [4], the first level gain is the actual decrease in cutset size that would result from
making the move.

Now we will show that if /3, <p, and A values are maintained for each net N, that
/3' A (N) can be computed in constant time (independent of s, the number of segments in

k

the partition).

In [4], a net is defined to be locked when it is connected to locked cells in both
segments of the partition. Since locked cells can no longer be moved during a pass, once
a net is locked it cannot be removed from the cutset during that pass. Note that a net N
is connected to locked cells of a segment Ak if and only if /3 Ak(N}=oo. In s-way
partitioning, a net is locked as soon as its binding values reach infinity for at least two of
the segments of the partition.

For net N define

status(N) = free if none of its /3 values are 00

status(N) = loose if exactly 1 of its /3 values is 00

status(N) = locked if 2 or more of its /3 values are 00

Note that the status of a net can be easily updated each time one of its binding
values changes.

Proposition2: (3'A (N) can be computed in constant time from the a, A, and /3 values
k

for N, independent of s.

Proof: If status(N) is free, then there are no locked cells on N. Hence cN is equal to the
sum of all free cells of N on each of the segments. From this it follows that

11

fJ'Ak(N)= 'LfJ A,(N)=; '2 ep At(N)=;CN-epAk(N).
i""k i""k

If status(N) is not free, then N has a locked cell on at least one of the segments,
with a corresponding fJ value of 00 on this segment. If fJ A

k
(N):l:-OO, then fJ A

,
(N)=;OO

for some i:l:-k, implying that

fJ' Ak(N)=; 'L fJ Ai(N)=; 00.
i""k

The other case to be considered is that in which status(N) is not free and
fJ A

k
(N)= 00. There are two possibilities. If status(N) is loose, then there are no locked

cells on any of the other segments. So fJ Ai(N)=; ep At(N) for i:l:- k, and

CN= 'L ep At(N}+cp Ak(N}+ AA,JN).
i""k

Hence

fJ'Ak(N)=; 'LfJ At(N)=; 'L ep A,(N)=;CN-CP AJN)-AAk(N)
i""k i""k

If status(N) is locked, then there is at least one locked cell on some segment Ai other
than Ak • For this segment fJ A,(N)=oo, which implies that

fJ'Ak(N)=; 'LfJA,(N)=oo.
i""k

We have therefore shown that the following algorithm computes fJ' Ak(N):

if status(N)= free then

fJ' Ak(N) = CN - ep A/lv')

else if fJAk(N):l:-oo then {fJAJ(N) must be 00 for some j:l:-k}

fJ'A/N) = 00

else if status(N) = loose then {fJAk(N) = 00, all other fJ"s for N are not oo]

fJ'Ak(N) = CN - epAk(N) - AAk(N)

else {status(N) = locked}

fJ'A/N) = 00

endif

o

3.5.	 Updating Gains
In this section we will investigate the effect a cell move has on the values of the gain

vectors of free cells connected to the moved cell. Let I be the highest level gain
computed for the cells. Note that since the cell which is being moved becomes locked, its
gain values do not need to be maintained after the move.

12

Suppose cell C is being moved from segment Aj to segment Ak • Consider a single
net N connected to C. The move implies that PAiN) will decrease by one, and pAt(N)
will become 00. This means that 13' Ah(N) becomes 00 for all h:;:.k, and p'A/N) is
decreased by one.

Let D be any free cell distinct from C and connected to N. We will first consider
the changes in the gains associated with D caused by the changes in 13'A

h
(N) and 13 A

h
(N)

for each h e k, Suppose D is not in Ah . If the old value of p'Ah(N), call it i, was less
than or equal to I, and if the old value of 13 A

h
(N) was greater than zero, then these terms

were contributing to the ith level gain of cell D for moving to segment Ah. This
contribution is no longer in effect since 13'Ah(N) is now 00. Hence 1 must be substracted
from the ith level gain of cell 0 for moving to Ah . In a similar way it may be seen that if
D belongs to Ah , and if the old value of p'Ah(N) was i-I, with i<I, and if the old value
of pA/N) was greater than zero, that these terms were contributing (in a negative way)
to the ith level gain of cell D for moving to each of the other segments: so the ith level
gain of D must be incremented.

Similarly, if D is not in Ak, and if the old value of p'At(N), call it i, was <I. and if
the old value of pAt(N) was greater than 0, then the ith level gain of moving cell D to
Ak must be decremented, Also in this case, however, if the new value of 13' At(N) is
greater than 0, its contribution must be added to the 13' At(N) level gain of moving D to
Ak . Similar updates may take place in the gains for moving cell D to each of the other
segments, if D is in Ak and if p'At(N)<I.

It is important to note that none of these updates need take place unless the old
value of p'Ah(N) was <I for h e k , or unless the old or new 13' AJN) is <I. This fact
will be used in the section dealing with complexity of the algorithm.

4.	 I>ata Structures

This section describes the main data structures used by the algorithm.

4.1.	 Cell I>ata Structure

The following information needs to be kept and updated for each cell.

1 A list of the nets incident on the cell.

2 The segment to which the cell currently belongs.

3 An indication of whether the cell is free or locked.

4 If the cell is free, the gain values associated with moving the cell to each of the other
s-I segments.

5 If the cell is free, s-I pointers to the s-I gain nodes included in the gain structures
described in a later section. (These pointers make it easy to update the structures
when the gain value of the cell changes).

13

4.2.	 Net Data Structure
A table may be maintained with entries for each net. Each entry should contain the

following:

1 A list of the cells on the net.

2 The net's current status: free, loose, or locked.

3 cp, A, and f3 values for the net corresponding to each of the s segments of the
partition.

4.2.1.	 Segment Data Structure
The number of cells currently in each segment must be maintained.

4.3.	 Gain Structures
Recall that in [3] a data structure was introduced which allows fast retrieval of the

cell with the biggest gain in each segment. This structure consists of a bucket array
indexed by the possible gain values for a cell: [-p:p]. Each entry in the array consists of
a pointer to a doubly-linked list of cells whose gains are equal to the index of the entry.
We will call each of the entries in these lists a gain node for the cell; a gain node consists
of a cell number, a forward pointer, and a backward pointer. A special maxgain pointer
points to the highest index in the array whose list of gain nodes is not empty.

With the introduction of different level gains in [4], each cell has associated with it a
gain vector instead of a single gain value. In [4], the following adaptation of the bucket
array described above is proposed. If I is the number of levels used, the gain structure
may consist of an I-dimensional array, each dimension being indexed from - p to p; thus
there is an entry in this array for each of the (2p+1)' possible gain vector values. Each
entry would as before point to a list of cells having that gain vector value.

We will return to the issues involved in the implementation of this structure below,
but first we will examine the complications introduced in increasing the number of
segments.

For 2-way partitioning, one of these structures must be maintained for each of the 2
segments. In s-way partitioning, s(s-l) structures must be maintained, corresponding to
the s(s-l) possible directions for a cell move.

At first glance it may seem that 0(s2) steps will now be required to locate the cell
that may be legally moved (i.e. moved while preserving balance) with the biggest gain.
Since each cell move causes the legal move directions to change (affecting potentially
2(s-l) of these directions) it is not sufficient to keep track of the biggestmaxgain pointer,
since this pointer may correspond at anyone time to an illegal move direction. Hence
0(52) comparisons may have to be made in order to determine the next cell move. What
is needed in order to decrease this complexity is to keep a sorted list of the maxgain
pointers corresponding to legal move directions.

14

This may be done by using a binary heap (see [11]) whose entries are maxgain
pointers for the currently legal move directions. The pointer with the highest value will
be found at the root of the tree. An array indexed by move directions must be
maintained holding pointers to the elements in the heap.

Figure 3a shows a network of 21 cells partitioned into 3 segments of sizes 6, 8. and
7. The arrows between the segments show the currently legal move directions. Each of
these directions corresponds to an entry in the heap, which is also shown. If a cell move
is then made from segment 2 to segment 1, the legal cell move directions and the heap
will change as shown in Figure 3b.

Figure 3a

,~

Figure 3b

15

We will now look at the operations necessary to maintain the heap, and in panicular
at what happens when a cell is moved from one segment to another. This movement will
cause changes in the legal move directions which will in tum cause changes to the heap.
Whenever a cell is moved from segment Ai to segment Aj' it is possible that segment Aj

becomes full, so that no more cells may be added to it, and that segment Ai becomes too
small to remove any more cells from it. This may result in at most 2(s-I}-1 possible cell
move directions which before were legal becoming illegal (namely those involving Aj as
target or Ai as source). In the same way it may be seen that the move from Ai to Aj may
result in at most 2(s-1}-1 move directions becoming legal which before were illegal. So
at each cell move 0 (s) insertions and/or deletions will have to be made to the heap to
keep it consistent with the legal move directions.

The number of elements in the heap will be 8(s2) (see Proposition 1), hence each
insertion and deletion should take O(log s2)=O(log s) time. So the total complexity
involved is O(slog s) for each cell move.

Deletions and insertions to the heap will also need to be made because of changes in
cell gains resulting in corresponding changes to the maxgain pointers stored in the heap.
As shown later in section 6, there will be 0 (lms) of these gain updates, hence the
complexity involved here in heap maintenance will be 0 (lrns log s) during an entire pass.

Turning now to the implementation of each single gain structure, we note that the
I-dimensional array proposed in [4] will if implemented naively add a factor of 2lp l to
the complexity of the algorithm. The reasons for this are as follows.

Whenever a gain node with highest gain is removed from a gain structure, and it
happens that there was only one gain node associated with this highest gain, then the
maxgain pointer must be reset. In order to do this it is necessary to search down the
bucket array looking for the next non-empty gain node list. The time spent doing this
must be included in the complexity' of the algorithm.

In [3], where the use of the bucket array was introduced for the single-level
algorithm, it is pointed out that the total time spent searching down the bucket array is
Oip-« R), where R is the sum of all the amounts by which the maxgain pointer is reset
upwards during the pass. R=O(g), where g is the total number of gain adjustments
performed. Since g=O(rn), the total time spent searching down the bucket array is
O(m).

For the multilevel algorithm, assuming for the moment 2-way partitioning, this
complexity is O(2'p'+R). This is because the size of the bucket array is now O(2lp').
Moreover in this case R=O(g2'-lp ' - I), because incrementing a 1st level gain actually
adds «2p+ 1)'-1) to the gain vector in the lexicographic ordering. Hence, since g=O(lm)
for the multilevel algorithm, the total complexity is 0 (2'p '+ 1m 2'-1p [-1). This is higher
than the desired O(/m) complexity for the entire algorithm.

However, by adding more pointers to the I-dimensional bucket array, the complexity
of searching down the bucket array may be reduced to O(ml(p+l)). This is done as

16

follows.
For each level i, O<i <I, define the ith level hyperplane induced by the constants

Ql,••. ,Qj. where each Qj is between - p and p, to be the set of entries of the array whose
first i indices are Ql,...•Qj. For example, if /=2 then the bucket array is a matrix, the Oth
level hyperplane is the whole array or matrix, the 1st level hyperplanes are the rows of
the matrix, and the 2nd level hyperplanes are the entries of the matrix. For 0<;<1. the
tth level hyperplane is composed of (2p+1) (;+ l)st level hyperplanes, which will be
referred to as its component hyperplanes.

For each ith order hyperplane, where O<i<l, we define a minpointer and a
maxpointer which will point respectively to the first and last of its component
hyperplanes (in lexicographic order) which are not empty. Because there is lOth level
hyperplane, 2p+ I Ist level hyperplanes, (2p+ 1)2 2nd level hyperplanes, etc., this entails
0(21-1pi-l) pointers.

Each time a gain node is inserted or removed from the structure, some of these
pointers may have to be adjusted. Suppose an entry of the array pointed to by an (I-l)sl
maxgain pointer becomes empty. If the corresponding mingain pointer does not point to
the same entry, then it will only be necessary to traverse at most 2p+1 entries to reset the
maxgain pointer and no lower order pointers need be adjusted. If on the other hand the
two pointers were equal, then they are both set to null and the pointers belonging to the
enclosing (1- 2)51 hyperplane must be examined and possibly updated Following this
line of reasoning it is not difficult to see that a traversal of (at most) 2p+ 1 entries or
pointers need only take place at one of the levels, so the time required is O(p+ I). Hence
the time required to delete a gain node is Otp-rl). The time required for insertion of a
gain node is 0(1) since at most 2 pointers will have to be adjusted at each of 1 levels and
no sequential search is necessary.

The only problem arises in the initialization of the 0(21-1pl-l) pointers. However,
this iaitialization may be performed on line, as it were, as gain nodes are inserted into the
structure. For a hyperplane whose entries are all empty, it is not necessary to maintain
values for pointers of its component hyperplanes. At the beginning of the pass all entries
of the array are empty and hence only two pointers need to be initialized, corresponding
to the single Oth level hyperplane (which is actually the whole array). As gain nodes are
inserted into the structure, more pointers are initialized. Each insertion will require at
most the initialization of 2(1-1) pointers. So the time required to insert a gain node is
still 0(1).

Returning to the case of varying number of segments, we can now prove the
following:

Proposition s: Insertion of a gain node requires O(log s+1) time; deletion of a gain
node requires O(log s+1+p) time.

P'DO!: The log s term comes from the possible update to the maxgain heap caused by a
change in the maxgain pointer for the structure. The other terms were discussed in the

17

preceding discussion. 0
Note that the above analysis indicates that for large values of 21pi, only a small

fraction of the array is actually used. In our implementation we ran into memory
allocation problems for this array, so we devised another data structure which requires
less space. Although as shown below the time complexity is higher, in practical situations
it may be a more expedient implementation in terms of memory requirements.

The more space efficient data structure involves I levels of one-dimensional bucket
arrays, each bucket array consisting of 2p+1 entries. At level 1 there will be one bucket
array indexed from - p to p. Each of the entries in this array will either be null or will
point to a bucket array at level 2. The non-null entries in the bucket arrays at level 2 will
point to bucket arrays at level 3, etc.. A bucket array at the last level will consist of
pointers to gain nodes. Thus in order to find the gain node corresponding to a given
gain vector, it is necessary to traverse I pointers.

Each bucket array wil) have a rnaxgain pointer and a mingain pointer indicating the
highest and lowest indices whose entries are non-empty. Thus because of the
lexicographic ordering of the gain vectors, in order to find the gain nodes corresponding
to the maximum gain, it is only necessary to follow I maxgain pointers.

Bucket arrays are allocated and deallocated as needed. Since there are no more than
c different gain nodes per structure, there will be no more than c bucket arrays at each
level at anyone time, for a total of at most cl bucket arrays. (In fact there will be less at
the lower levels, since there is only one bucket array at level I, at most 2p + 1 at level 2,
etc.). So the space required is O(clp).

Now accessing a gain node with highest gain will take 0 (I) time. Removing a node
may cause a downward search to look for the next nonempty bucket at at most 1 of the
levels, so the complexity of removing a gain node will be 0(1+p). However inserting a
gain node may take O(p/) if all I buckets have to be newly allocated.

5. Description of the Algorithm
Following is a description of the algorithm for s-way network partitioning.

After the network is initialized and a starting partition is obtained, passes are
performed until no more improvement in cutset size results. Network initialization
consists of reading in a description of the network and initializing the lists of cells
associated with each net and the lists of nets associated with each cell. The network
description may for instance be in the form of a list of net numbers, each followed by the
numbers of the cells in the net. A partition P is assumed to be an array indexed by cell
number specifying which segment each cell should be in. The starting partition is
assumed to be read in from a file.

Partition_Network

1) do network initialization

2) obtain a starting partition P

18

3) repeat

call Init Partition to initialize partition P

call Do_Pass to perform a pass and return new partition P

until there is no improvement in cutset size

Initializing the partition consists of assigning each cell to its corresponding segment
and then initializing the gain values and gain structures for the partition.

InitPartitiontP)
1) for each cell C

let Ak be the segment specified by P for C

put C in Ak

for each net N incident on C

increment ep Ak(N)

increment {3 Ak(N)

end for

end for

2) for each net N

for each segment Ak

if {3' A(N)<1 and {3 A.)()

for each cell C on net N

call Update_Gain(C ,AkIN)

end for

end if

end for

end for

3) for each cell C

let Ak be the segment to which C belongs

for each segment Ai:;t:A k

create gain node for C's gain in moving to Ai

insert gain node in appropriate gain structure

end for

end for

4) initialize maxgain pointer heap

An explanation for the code in Update_Gain and Reverse_Update_Gain was provided in
a preceding section.

Update_Gain(C .At,N)

let Aj be the segment to which C belongs

if Aj:;f: At

19

set i to f3' A/r.(N)

increment ith level gain for moving cell C to Ak

else if f3' A/r.(N)<1

set i to f3 I AIr.(N}+ 1

for each segment Ah ~ Aj

decrement ith level gain for moving cell C to Ah

end for

end if

Reverse_Update_Gain(C ,Ak,N)

let Aj be the segment to which C belongs

if Aj~Ak

set i to f3'A/N)

decrement ith level gain for

moving cell C to Ak

else if f3 ' Al:(N)<1

set i to f3' A/r.(N}t 1

for each segment Ai~Aj

increment ith level gain for

moving cell C to Ai

end for

end if

Each pass consists of repeatedly moving a free cell with highest gain until no more
moves are possible. Once moved a cell becomes locked. The partition with the lowest
cutset which was found during the pass is returned as the new partition.

In order to keep track of the best panition a list is maintained of the moves which
are performed during the pass. Together with each move a record is kept of the gain in
cutset size which has been obtained from the beginning of the pass up to that move. A
pointer is kept to the move with the largest such gain; this pointer is updated as
necessary. At the end of the pass, all moves up to the pointer are applied to the partition
in effect at the beginning of the pass. This new partition is returned as the result of the
pass.

Do_Pass(P) {P is the current partition}
1) set Move_array to be empty

set Gain_array to be empty

set Bestgain pointer to 0

2) While (a move is possible)

a) get Nextmove from gain structures

b) call Make_Move to perform Nextmove

20

c) add Nextmove to Move_array

add new gain to Gain_array

if new value in Gain_array is better than the one pointed

to by Bestgain pointer

update Bestgain pointer

end While

3) use moves in Move_array up to Bestgainjiointer to update P

return(P)

Following are the instructions for Make_Move. The criteria for updating gain values
for the affected cells were given in a previous section.

Make_Move(~ extmove)
1) C = Nextmove.cell

Aj = Nextmove.source

Ak = Nextmove.target

lock cell C and remove from gain structures

2) for each net N connected to C

a) for each segment Ah

if f3'A.(N)<1 and f3A
h
(N »)()

for each free cell D on net N, D:#. C

call Reverse_Update_Gain(D ,Ah,N)

update D's gain nodes

end for

end if

endfor

b) update cp A;(N), AA/c(N), 13 A/(N), and 13 A/N)

c) if 13'A/N)<L and 13 A/c(N) >0

for each free cell D on net N, D:#.C

call UpdateGaintf) ,Ak.N)

update D's gain nodes

end for

end if

end for

6. Complexity Analysis

We will now show that the algorithm described in the preceding section has time
complexity O(/ms(log s+l+p».

Proposition 4: During each execution of Do_Pass, the inner loops of Make_Move
where Update_Gain and Reverse_Update_Gain are called are executed at most 1+ 1

21

times for each net N in the network.

Proof: Note that these loops are performed only when a cell on net N is moved and one
of the old or new values of /3' for N are less than or equal to f.

If the first f cell moves when the conditions for executing the loops are met include
two moves to two different segments, then the net N will become locked after these two
moves. Its /3' values will all equal 00 and will no longer change during the pass; hence
the conditions for the inner loops to be performed will no longer be met during the pass.

Suppose on the contrary that there are f moves to a single segment Ak involving
cells on net N where at least some of the /3' values are less than or equal to f. Note that
in fact, after the first such move, all /3' values for N will be 00 except for /3'A (N), which

k:

will decrease by 1 at each move. Hence, since the conditions are not met while
/3' Ale(N»f, the conditions for executing the inner loops will be met at most f times, after
which /3'AJN) will be O. At that time all cells on net N will be in segment Ak and any
further move of a cell on net N will take a cell to another segment, thus locking the net
and setting /3'A. to 00. Thereupon the conditions for executing the loop will no longer be
met. 0

Proposition 5: The algorithm described in the preceding section has time complexity
O(lms(log s+p+l).

Proof: Network initialization, step 1 of the main procedure in the algorithm, is
independent of the number of segments and may be performed in O(m) time, if the
network description read in consists of net lists or cell lists. Step 2 may clearly be
performed in O(c)<O(m) time.

Following [2], [3], and [4], we will assume that the number of times the loop in step
3 is performed (Le. the number of passes performed by the algorithm) is 0(1).

In the procedure Init Partition, step 1 is performed in O(m) time. Each call to
Update_Gain requires either O(s) or constant time, depending on whether the input cell
C is in the input segment Ak • Hence step 2 of InitPartition should take O(ms) time.
From Proposition 3, we know each insertion of a gain node takes O(log s+I) time. So
step 3 of Init Partition requires O(cs(log s+ f» time. Step 4 of Init.Partition will take
0(s2) < O(ms) time. Hence the InitPartition procedure requires at most
O(ms(log s+I) time.

We will now examine the complexity of Do_Pass. Step 1 takes constant time. Since a
cell becomes locked after it is moved, the while loop in step 2 is performed at most c
times. Choosing the next move requires O(slog s) time. Hence all move selections
during execution of the while loop can be performed in O(cslog s)<O(mslog s) time.

Step 2b in Do_Pass consists of calls to Make_Move. Step 1 of Make_Move can be

performed in 0 (s(log s+P+I) time since each free cell has a node in only s-l of the

22

gain structures, corresponding to each of the s-l directions in which it can move. Hence,
during all calls of Make_Move in a pass, the time spent in step 1 will be
O(cs(log s+p+/»<O(ms(1og s+p+I). The outer for loop in step 2a of Make_Move is
executed s times. However, by Proposition 4, the inner loop is executed at most 1+ 1
times for each net in the network during a single pass. Moreover, Reverse_Update_Gain
takes O(s) or constant time depending on whether the input cell C belongs to the input
segments Ak . The updating of a gain node, which takes O(log s+p+1) time, is done only
each time a gain is updated in Reverse_Update_Gain. Hence step 2a will take
O(lms(log s+p+/)) time during the entire pass. Similar arguments may be made to
show that step 2c takes O(lms(1og s+p+ I) time during one execution of Do_Pass. Step
2b requires constant time each time it is performed, and it is performed at most O(m)
times during: a pass. So we have shown that calls to Make_Move take up
O(lms(log s+p+ I)) time during one execution of Do_Pass.

Step 2c in Do_Pass takes constant time each time it is executed. So step 2 of
Do_Pass has time complexity 0 (lms(log s+p+I). Finally it is easy to see that step 3 of
Do_Pass has complexity O(c). Hence Do_Pass can be performed in time
O(lms(log s+p+/».

This completes the proof that the entire algorithm may be performed in time
O(lms(log s+p+l). 0

7.	 Experimental Results

A version of the algorithm has been implemented in C. Experiments were performed
using nets artificially created to have a certain distribution of net sizes. As was done in
[4], we randomized arbitrary choices and performed a number of runs. Figure 4 shows
the results of these runs applied to a net having 300 cells, 300 nets, with q =8 and p =9.
The net sizes come from a uniform distribution between 2 and 8. Runs were made for
s =2,3,4,5 and 1=1,2,3,4. Each line shown in the table corresponds to 40 runs, and gives

the average, minimum, and maximum final cutset sizes obtained from the runs.

23

No Segments Level Average Cutset Minimum Cutset Maximum Cutset
2 1 161.44 154 170
2 2 156.45 150 164
2 3 157.87 154 167
2 4 156.60 153 166

3 1 188.92 179 197
3 2 181.45 174 189
3 3 180.12 173 186
3 4 178.12 171 184

4 1 216.22 207 225
4 2 193.85 187 204
4 3 188.07 183 194
4 4 189.27 183 195

5 1 224.22 217 232
5 2 196.90 191 204
5 3 191.80 187 200
5 4 193.17 188 199

Figure 4

The following observations can be made. For each s there seems to be a level after
which no more or negligible improvement is obtained. This level appears to be 2 for s = 2
and 3. and 3 for s =4 and 5. Moreover, the improvement obtained, up to this level, is
greater for greater number of segments. This is shown more clearly in Figure 5, where
the average normalized cutset size is plotted against level for each s. Normalized cutset

ct-ct .
size is defined to be mm , where ct min and ctmax are the smallest and largest

ctmax- ct min
cutset sizes obtained for all of the runs involving the given number of segments s, and ct
is the average cutset for each different I and s. Note that the slopes of the curves get
steeper as the number of segments increases, indicating the greater effect of higher levels
for greater number of segments.

24

segments =2

n
0 1.0
r
m 0.8

III0.6

0.4c
u ~*---*--*
t 0.2
s
e 0.0
t

segments =3

n
0 1.0
r
m 0.8

~
0.6

c 0.4 --*u
t 0.2
s

~* --*
e 0.0
t

1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

level

segments =4

n
0 1.0
r
m 0.8

-,
0.6 -,

-,c 0.4 u
-,
",*

t 0.2

level

segments =5

n
0 1.0
r
m 0.8

\
0.6

c 0.4 u \.
t 0.2
s ----* * s -----*-*

0.0 e 0.0e

t t

1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

level level

Figure 5

In [4] a method is presented for choosing the optimal number of levels, I, to use for
a particular network. Briefly, it is assumed that the (2p+ Ii possible gain vector values
are uniformly distributed over the c cells, and 1 is chosen such that exactly one cell will
tend to have a gain equal to the maximum at any time; this is done by setting
- (2p+ 1)/ h' h i li 1- log c
- c ' W lC lffip les - log (2p+1) . 1

25

Generalizing the formula to an arbitrary number of segments, we obtain

1= logl~: f~;~~) 1) since each cell will have s-1 gain vectors corresponding to moves to

each of the other 5-1 segments. This indicates a slight increase in the optimal level with
increasing number of segments. We computed this formula for our network for
5 =2,3,4,5, and obtained the values 1.94, 2.17, 2.31, and 2.41, respectively. These are fairly
consistent with the experimental results for 5 = 2 and 3 but the slight increase in the
numbers does not seem to reflect the increased usefulness of level 3 for s =4 and 5.

Looking at the situation from another point of view, we may consider the following
probabilistic analysis. Consider a net of size r . Assume that each cell on the net has

equal probability ; of being in anyone of the 5 segments, thus inducing a multinomial

distribution for the cell locations. Let K be the minimum number of cells that would
have to be moved in order to put all cells in a single segment and thus remove the net
from the cutset. K is thus the minimum positive level gain that this net could induce on
any of its cells. For O<k<r, the probability that K>k, i.e. the probability that at least k
cells will have to be moved, equals the probability that no segment contains more than
r- k of the cells. This is because the way to move the least number of cells is to put all
cells in the segment which contains initially the largest number of cells.

Now the probability that no segment contains more than j cells is

Pl(.) ~ r ! (l)r
r.s.j = L.. "

05,ri5,j r1 rs · 5
rl+r2+ ... +rs=r

~
05, ri5,j

r2+rrt ... +rs=r-rl

= ~ r!

05,r 15,j r1!(r- r1)!

for 5 >1, while for 5 =I,

P1(r,l,j) =0 if j<r

Pl(r,l,j) = 1 if j>r

Then the probability that at least k cells will have to be moved is

P2(r,5,k)=P l(r,s ,r-k)

Using the above formulas values were computed for P2(r,s,k) for 2<r<8, 2<5<5,
O<k<r. It was found that for all cases P2(r,s+l,k»P2(r,s,k). Moreover the expected
numberof cells that would have to be moved also increases with increasing s. This also
indicat.es that for each levell, increasing the number of segments increases the

26

probability that gains of level I will be required. Of course the above analysis does not
hold unless the uniform cell distribution assumption is a good approximation to the cell
distribution in a particular network partition.

Finally, we computed the expected number of cells that would have to be moved to
remove a net from the cutset, assuming a uniform distribution of net sizes between 2 and
8. The numbers we obtained are 1.63, 2.23, 2.56, and 2.77 for s =2,3,4,5, respectively.
These numbers seem to give a slightly better approximation to the best level to use for
our panicular network.

8. Conclusions
We have presented an adaptation of the network partitioning algorithm in [4] to

multiple-way' partitioning, whose time complexity is O(lms(log s+p+ I)). As the original
algorithm has complexity O(lm(p+l) this represents only a linear increase in s in the
majority of cases. Through both theoretical and experimental results we have indicated
the increasing usefulness of higher levels for increasing number of segments.

One area for further investigation involves finding an effective way of choosing the
level to be used based on both the network parameters and the number of segments in
the partition. Further work along the lines of the probabilistic analysis in a previous
section may prove useful in this regard.

9.	 Acknowledgments

The author would like to thank Mandayam Srinivas for his support and very helpful
suggestions and comments on various drafts of this paper. Thanks are also due to
Balakrishnan Krishnamurthy for useful ideas and discussions on which some of the
modifications to the gain data structures are based.

[1] M.R. Garey and D.S. Johnson, Computers and Intractability, Freeman, San Francisco,
CA.. 1979.
[2] B.W. Kernighan and S. Lin, " An Efficient Heuristic Procedure for Partitioning
Graphs", Bell Systems Technical Journal 49, (February 1970), 291-307.

[3] CM. Fiduccia and R.M. Mattheyses, " A Linear-time Heuristic for Improving
Network Partitions", Proc. 19th Design Automation Conference, , 1982, 175-18l.

[4] B. Krishnarnurthy, " An Improved Min-Cut Algorithm for Partitioning VLSI
Networks", IEEE Transactions on Computers 33, (May 1984), 438-446.

[5] D.G. Schweikert and B.W. Kernighan, " A Proper Model for the Partitioning of
Electrical Circuits", Proc. 9th Design Automation Workshop, , June 1979, 57-62.

[6] E.R. Barnes, " An Algorithm for Partitioning the Nodes of a Graph", IBAl UQlSOn

Research Center Department ofComputer Science, , February 1981.

[7] 1. Bui, S. Chaudhuri, T. Leighton, and M. Sipser, " Graph Bisection Algorithms With
Good Average Case Behavior", Proceedings of the 25th annual Annual Symp. on
Foundations ofComputer Science. , October 1984, 181-191.

[8] Vl.K. Goldberg, M. Burstein, " Heuristic Improvement Technique for Bisection of
Vl.Sl xetworks". IBt...l Watson Research Center, ,July 1983.

[9] \1. Burstein. " Partitioning of VLSI Networks", IBJ4J Watson Research Center, .
:\ovcmber 1981.

[10] \i1.A. Breuer, " A Class of Min-Cut Placement Algorithms", Proc. 14th Design
Automation Conference, , 1977,284-290.

[11] Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974.

