IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

1241

Real-Time Data Semantics and
Similarity-Based Concurrency Control

Tei-Wei Kuo, Member, IEEE, and Aloysius K. Mok, Member, IEEE

Abstract—This paper formalizes the concept of similarity which has been used on an ad hoc basis by application engineers to provide
more flexibility in concurrency control. We show how the usual correctness criteria of concurrency control, namely, final-state, view,
and conflict serializability, can be weakened to incorporate similarity. We extend the weakened correctness criteria in [16] for real-time
applications which may run continually, have concurrent transaction executions, or skip unimportant computations. A semantic

approach based on the similarity concept is then taken to propose a sufficient condition for scheduling real-time transactions without

locking of data.

Index Terms—Concurrency control, schedule correctness, real-time database, serializability, similarity.

1 INTRODUCTION

HILE past works in database performance stress
mostly on throughput, there is increasing interest in
the performance of transaction systems that have significant
response time requirements. These requirements are
usually posed as hard or soft deadlines on individual
transactions so that a concurrency control algorithm must
attempt to meet deadlines, as well as preserve database
consistency. A number of analytic and simulation studies
on the performance of scheduling algorithms to meet
deadlines have been reported in the literature, e.g., [1],
[2], [13], [27], [30], [34], [37], [38], [36], [41]. In these studies,
database consistency is preserved by enforcing serial-
izability. However, serializability is often too strict a
correctness criterion for real-time applications, where the
precision of an answer to a query may still be acceptable
even if serializability is not strictly observed in transaction
scheduling. Obviously, violation of serializability must be
justified in the context of the semantics of the application
domain. The subject of this paper is to explore a weaker
correctness criterion for concurrency control in real-time
transactions by investigating the notion of similarity.
Similarity is closely related to the important idea of
imprecise computation in real-time systems [25] and also to
the idea of partial computation for databases [8]. The idea of
similarity is certainly not new in practice. In avionic
systems, the dynamics of a sensor or the environment
may impose an upper bound on the change in the sensor
reading over a short time interval. For certain computations,
engineers often consider the change in sensor reading over
a few consecutive cycles to be insignificant in the execution
of the avionic software. It is sometimes acceptable to use a

o T.-W. Kuo is with the Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan 106, ROC.
E-mail: ktw@csie.ntu.edu.tw.

o A.K. Mok is with the Department of Computer Sciences, University of
Texas at Austin, Austin, TX 78712. E-mail: mok@cs.utexas.edu.

Manuscript received 5 Aug. 1997; revised 11 Aug. 1998; accepted 20 Sept.
2000.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 105465.

sensor value that is not the most recent update in a
transaction. This suggests that serializability can be
weakened in concurrency control of real-time transactions.
However, it is imperative for us to justify and make explicit the
implicit assumptions that are behind the currently ad hoc
engineering practice. They can be the cause of costly errors.

Real-time databases should model the real world with
sufficient precision. Several consistency requirements be-
sides internal consistency [4] have been introduced in [15],
[16], [20], [30], [26], [36], [41]. External consistency require-
ments keep real-time databases up-to-date; temporal consis-
tency requirements ensure that multiple data objects read by
a transaction are compatible in the currency of their data.
External and temporal consistency constraints are design
specifications that are introduced to cope with the dynamic
nature of the operating environment, inasmuch as a real-
time database can capture the values of real-world objects
only up to a certain precision. Hence, the consistency
constraints on real-time databases are inherently concerned
with imprecise values. Intuitively, data values that are
sufficiently close by some metric may be interchanged as
input to a transaction without undue adverse effects. This
motivates the concept of similarity among data values. The
satisfaction of external and temporal consistency constraints
ensures that such interchanges are admissible, but the
adequacy of the consistency constraints must be justified by
the semantics of data similarity.

In this paper, we formalize the concept of similarity,
which has been used on an ad hoc basis by application
engineers to provide more flexibility in concurrency control.
We show how the usual correctness criteria of concurrency
control, namely, final-state, view, and conflict serializabil-
ity, can be weakened to incorporate similarity. We then
generalize the weakened correctness criteria in [16] for
infinite schedules and extend the criteria when true
parallelism, instead of interleaving, is considered. We
propose the idea of physical schedules in which a real-time
database scheduler may skip unimportant computation or
updates to meet time constraints and/or satisfy some safety
requirements on the system. The correctness of physical

0018-9340/00/$10.00 © 2000 |IEEE
Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



1242

schedules is justified by the notion of similarity. We then
take a semantic approach based on the similarity concept to
propose a sufficient condition for scheduling real-time
transactions without locking of data.

The rest of this paper is organized as follows: In Section 2,
we define the system model and formally introduce the
concept of similarity. In Section 3, we show how the
traditional correctness criteria of concurrency control can
be weakened to incorporate similarity. In Section 4, we
extend the proposed weaker consistency requirements [16]
on infinite schedules, parallel executions, and physical
schedules. Section 5 describes a sufficient condition with
which transactions can be scheduled independently. We
then further extend the results. Section 6 is the conclusion.

2 SEMANTICS OF REAL-TIME TRANSACTIONS

2.1 Data Objects, Events, Transactions, and
Schedules

A real-time database is a collection of data objects. Each
data object takes its value from its domain. We define a
database state as an element of the Cartesian product of the
domains [29] of its data objects. A database state may be
represented by a vector of data values such that every data
object is a component of this vector.

Events are primitive database operations (read or write).
A transaction is the template of its instances; a transaction
instance is a partial order of events. An instance of a
transaction is scheduled for every request of the transaction.
To distinguish between a transaction and an instance of it,
we shall use the notation 7;; to denote the jth instance of
transaction 7;. An interpretation of a set of transactions is a
collection of transaction definitions and data domain
definitions [29].

A schedule over a set of transactions is a partial order of
events issued by instances of the transaction set. Each event
in a schedule is issued by one transaction instance. The
ordering of events in a schedule must be consistent with the
event ordering as specified by the transaction set. In this
paper, schedules are represented by sequences of events
that are consistent with the partial order of the schedule. A
serial schedule is a sequence of transaction instances (i.e., a
schedule in which the transaction instances are totally
ordered).

2.2 Timed Events and Timed Schedules

A real-time computation may be represented as a collection
of events with time-stamps. The time-stamp of each event in
the computation indicates its occurrence time. Events with
such time-stamps are called timed events. In other words, a
real-time computation is a collection of timed events.

Let a timed schedule over a set of transactions be a
collection of timed events issued by instances of the
transaction set. Each event in a timed schedule is issued
by one transaction instance. The time ordering of events in a
timed schedule must be consistent with the partial order of
the corresponding events as specified by each transaction. It
is clear that corresponding to each timed schedule is a
unique (untimed) schedule which preserves the time-stamp
order of events in the timed schedule.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

A real-time computation, such as an engine warming-up
procedure, is a timed schedule. It should be not only
logically correct, but also in timely fashion. The timeliness
of events can be properly checked regarding their occur-
rence times, whereas the logical correctness of the computa-
tion must be justified through a careful examination of its
corresponding (untimed) schedule, which preserves the
time-stamp order of events in the computation. In this
paper, we shall devote our efforts in justifying the logical
correctness of real-time computations.

2.3 Similarity

A real-time database models an external environment that
changes continuously. The value of a data object that
models an entity in the real world cannot in general be
updated continually to perfectly track the dynamics of the
real-world entity. The time needed to perform an update
alone necessarily introduces a time delay which means that
the value of a data object cannot be instantaneously the
same as the corresponding real-world entity. Fortunately, it
is often unnecessary for data values to be perfectly up-to-
date or precise to be useful. In particular, data values of a
data object that are slightly different in age or in precision
are often interchangeable as read data for transactions. This
observation underlies the concept of similarity among data
values. The concept of similarity can be described in terms of
regions in the state space of a database.

As an example, let us consider the similarity of data read
by two transactions in a railroad-crossing monitor system.
Suppose there are two data objects, distance and velocity,
which provide information about the nearest approaching
train. In Fig. 1, s is a database state (a point) in the database
state space of the system. Let 7, be a transaction that
displays the distance and velocity of the approaching train
on the monitor. The other transaction, 7», controls the
crossing gate, which depends only on the distance of the
train. With different precision requirements, 7, and =
regard data values falling inside, respectively, 7;’s box and
7y's box to be similar to their counterparts in the state s.
Notice that, because 7 does not read velocity, all values in
the domain of wvelocity are similar to one another and,
therefore, similar to that at s. In our model, two values of a
data object are similar if and only if all transactions that
may read them consider them as similar.

2.3.1 Definition of Similarity

Similarity is a binary relation on the domain of a data object.
Every similarity relation is reflexive and symmetric, but not
necessarily transitive. Different transactions can have
different similarity relations on the same data object
domain. Two views of a transaction are similar iff every read
event in both views uses similar values with respect to the
transaction. We say that two values of a data object are similar
if all transactions which may read them consider them as
similar.

In a schedule, we say that two event instances are similar if
they are of the same type and access similar values of the
same data object. We say that two database states are similar if
the corresponding values of every data object in the two
states are similar.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



KUO AND MOK: REAL-TIME DATA SEMANTICS AND SIMILARITY-BASED CONCURRENCY CONTROL

1243

Database State Space

X 4

(distance)

2
e
e

¢
-
i
i
i

Domain

‘
]

]

]

]

]

]

]

]

]

]

]

2

2

2

2

2

o
2
T
2
i
<

]

]

]

]

]

]

5

]

]

i

o
43

o e

T2 :read

i
S

T1: screen display

T2: crossing control

Domain
Fig. 1. Similarity among data/database states.

As one might expect, there is no general criterion for
determining whether two values are similar. More often
than not, proximity in data value alone may not be a good
criterion. For example, a temperature of 99°C' is equidistant
from 98°C and 100°C. Whereas one might consider 99°C to
be similar to 98°C' as far as hotness of water is concerned,
there is a qualitative difference between 99°C' and 100°C
because water turns into steam at 100°C. In general,
similarity need not be transitive if the proximity of values
is defined in terms of “magnitude difference.” However,
some mappings such as “rounding” or “=" that may be
used in establishing similarity do yield transitive similarity
relations.

Similarity is an inherently application-dependent con-
cept and we expect the application engineer to define it for
specific applications. Similarity can be defined by explicit
declaration or other syntatic conventions. For example, a
transaction might have associated with it a set of para-
meters to specify read-data similarity. A related approach is
found in [31].

A minimal restriction on the similarity relation that
makes it interesting for concurrency control is the require-
ment that it is preserved by every transaction, i.e., if a
transaction 7 maps database state s to state ¢ and state s’ to
', then t and ¢’ are similar if s and s’ are similar. We say that
a similarity relation is regular if it is preserved by all
transactions. From now on, we shall be concerned with
regular similarity relations only. Further restrictions on the
similarity predicate will yield a correctness criterion for
transaction scheduling that can be checked efficiently.

3 CORRECTNESS CRITERIA

3.1 Related Work

Previous work on real-time databases can be roughly
classified into three types: semantics and requirements of
real-time databases, design of real-time transaction sche-
duling algorithms, analytic and experimental studies of
concurrency control protocols with deadlines. A compen-
dium of recent approaches can be found in [3], [35].

In conventional databases, the notion of correctness of
a schedule has mainly been based on the concept of

Y (velocity)

serializability [29]. Three increasingly restrictive criteria for
correctness are commonly accepted and have been studied
in depth. They are: final-state serializability, view serial-
izability, and conflict serializability [29]. Other different
correctness criteria have been proposed for different
purposes and application areas [7], [10], [11], [14], [21],
[30], [31], [33]. We list some of them below.

Several new consistency requirements besides internal
consistency [29] have been discussed [20], [22], [26], [30], [36]
in relation to real-time systems. Song and Liu [36] also
evaluate the effectiveness of multiversion lock-based con-
currency control algorithms in maintaining the temporal
homogeneity of shared data. New real-time transaction
scheduling algorithms are proposed in [2], [20], [27], [30],
[34], [39], [41]. In particular, Xiong et al. [41] exploited
temporal data similarity and evaluated the performance
improvement of transactions when combinations of simi-
larity and forced wait policies were considered. A force wait
policy may force a transaction to delay further execution
until a new version of sensor data becomes available.

Garcia-Molina and Wiederhold in [11] discarded con-
sistency considerations for read-only transactions, with the
stipulation that, after read-only transactions have been
removed, the resulting schedule should be serializable.
Garcia-Molina and Salem [10] also proposed “SAGAS” so as
to solve consistency problems brought on by long-lived
transactions. SAGAS are long-lived transactions that can be
broken up into a collection of subtransactions that can be
interleaved in any way with other transactions. Thus, SAGA
is not atomic, but should be executed as a unit. It means that
correct schedules can be nonserializable.

Peng and Lin proposed the idea of compatibility matrix
to allow transactions to acquire different degrees of
consistency requirements [30]. Their work was motivated
by avionic systems and automated factories that have a
limited number of high-speed sensors with frequent user-
initiated command processing. The rationale behind their
work was that the consistency between the device readings
and the current values used by transactions could be more
important than the serializability of transactions.

Korth and Speegle [21] proposed a formal model
which allows transactions to specify preconditions and

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



1244

postconditions. These conditions can be specified in
conjunctive normal form. They enforced serializability
with respect to every conjunct in the conjunctive normal
form by a criterion called predicatewise serializability. Their
model also includes consideration of nested transactions
and multiple versions.

Epsilon-serializability (ESR) [31], [33] formalizes the query
behavior by deriving the formulae that express the
inconsistency in the data values read by a query. Transac-
tions are associated with limits of importing inconsistency
and exporting inconsistency. Query transactions are al-
lowed to view inconsistent data in a controlled fashion.
Kamath and Ramamritham [14] then introduced the idea of
hierarchical inconsistency bounds that allows inconsistency
to be specified at different granularities such as transactions
and objects. They provided mechanisms to control the
inconsistency and reported the evaluation of the perfor-
mance improvement due to ESR.

Our proposed criteria can be viewed as extensions of the
standard correctness criteria to exploit the concept of
similarity. As a result of our extension, it is possible to
permit much more concurrency for updates that are close in
time.

3.2 View Similarity and A-Serializability

Our proposed criteria can be viewed as extensions of the
standard serializability-based correctness criteria [29] to
exploit the concept of similarity. Three correctness criteria
defined in [16] are final-state, view, and conflict A-serial-
izability. The definition of final-state A-serializability can be
found in [16].!

The transaction view of a transaction instance is a
vector of data object values such that the ith component
is the value read by the ith read event of the transaction
instance [29].

Definition: View Similar. A schedule is view-similar to
another schedule iff

1. They are over the same set of transactions (transaction
instances).

2. For any initial state and under any interpretation,*
they transform similar initial database states into
similar database states with respect to their transaction
sets, respectively.

3. Every transaction instance has similar views in both
schedules for any initial state and under any
interpretation.

It is clear that, if a schedule is view-equivalent to another
schedule, then it is view-similar to that schedule, but the
converse may not hold. Note that the view-similarity
relation between schedules is reflexive and symmetric, but
not necessarily transitive. A schedule is view A-serializable
iff it is view-similar to a serial schedule.

Example 1: view similarity and view A-serializability. The
schedule

1. A schedule is final-state similar to another schedule if the first two
conditions of the following view similarity definition are satisfied.

2. An interpretation of a set of transactions is a collection of transaction
definitions and data domain definitions [29].

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

™ = W(T3,17 X)7 R(Tl,lv X)7 W(TLla X)a R(TQ.la X)7 -
R(m91,Y), W(m2,1,Y), W(Tl,la Y)

is view similar to the schedule

g = T3,1,721,T1,1
=W(m1,X), R(121, X), R(172,1,Y), W(721,Y), —
R(Tl,lv X)7 W(Tlly X)7 W(Tl,ly Y)

if W(rs,1,X) and W(r 1, X) are similar. Since  is a serial
schedule, 7 is view A-serializable.

In general, we can show the following theorem:

Theorem 1. Given a polynomial-time procedure for determining
if any two states are similar, the problem of deciding whether a
schedule is view A-serializable is NP-Hard.

Proof. Follows directly from the view serializability
problem [29]. |

3.3 Conflict Similarity and A-Serializability

The NP-hardness of determining view A-serializability
motivates us to find a stronger correctness criterion. In this
section, we shall extend the notion of conflict serializability
to include the similarity concept. Unlike view serializability,
the extension to conflict A-serializability must deal with a
new problem, namely, the intransitivity of some similarity
relations in order to define equivalent relations (i.e., relation
free(m) in Section 3.3.2) of “similar” events. The definition
of such equivalent relations is essential in defining the
equivalent relations of “similar” conflict A-serializable
schedules.

3.3.1 Strong Similarity

Our definition of regular similarity only requires a
similarity relation to be preserved by every transaction so
that the input value of a transaction can be swapped with
another in a schedule if the two values are related by a
regular similarity relation. Unless a similarity relation is
also transitive, in which case it is an equivalence relation, it
is in general incorrect to swap events an arbitrary number
of times in a schedule. For example, let v;, v, vs be three
values of a data object such that v; and v, are similar, as are
vy and vs. A transaction instance reading v; as input will
produce similar output as one that reads v; as input.
Likewise, the same transaction reading v, as input will
produce similar output as one that reads v; as input.
However, there is no guarantee that the output of the
transaction reading v; as input will be similar to one
reading v as input since v; and v3 may not be related under
the regular similarity relation. Swapping events two or
more times may result in a transaction reading a value that
is not similar to the input value before event swapping and
is hence unacceptable. In this section, we add another
restriction to the similarity relation such that swapping
similar events in a schedule will always preserve similarity
in the output.

This restriction is motivated by the observation that the
state information of many real-time systems is “volatile,”
i.e., they are designed in such a way that system state is
determined completely by the history of the recent past,
e.g., the velocity and acceleration of a vehicle are computed

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



KUO AND MOK: REAL-TIME DATA SEMANTICS AND SIMILARITY-BASED CONCURRENCY CONTROL

from the last several values of the vehicle’s position from
the position sensor. Unless events in a schedule may be
swapped in such a way that a transaction reads a value that
is derived from the composition of a long chain of
transactions that extends way into the past, a suitable
similarity relation may be chosen such that output
similarity is preserved by limiting the “distance” between
inputs that may be read by a transaction before and after
swapping similar events in a schedule.

For example, suppose we want to compute the bearing of
a vehicle to a reference point and this distance data can be
computed with acceptable precision only if the position
data is accurate to within 10 meters, where the position data
is updated from a sensor every second. Assumptions are
often made in practice that the time derivative of the
position data is bounded. Thus, if we need a precision of
10 meters and every sample of the position data differs from
the previous one by no more than 1 meter, then it is
acceptable to use any one of the last 10 samples, assuming
that sensor updates are perfectly accurate. This idea can be
captured in terms of the data dependency of an event in a
schedule as follows:

Recall that a schedule over a transaction set is a partial
order of events issued by the transaction instances in the
set. Given a schedule 7, we define its data dependency graph
G(m) as follows: Corresponding to every read/write event
in 7 is a read/write node in G(w). There is a directed
edge(arc) from a read node to a write node in G(r) if they
are issued by the same transaction instance and the read
event precedes the write event in 7. There is a directed edge
from a write node to a read node in G(w) if the
corresponding read event reads the output value of the
corresponding write event in m. We note that data
dependency graphs are acyclic since the time-stamp of the
node at the head of an edge is always greater than that of
the node at the tail.

We define the w-length of a path in a data dependency
graph to be k if there are exactly k write nodes in the path,
k> 1. A path with infinitely many write nodes in a data
dependency graph has w-length co. We say that a data
dependency graph has depth k if the maximum w-length of
its paths is k. A schedule has ddg depth k if its data
dependency graph has depth k.

Suppose A is a similarity relation and A’ is the ith power
of A, i > 1. (Since A is reflexive, A’ C AJif i < j.) We define
a similarity relation A7 with respect to a schedule 7 as
follows:

1. If the ddg depth of 7 is 0o, then A¥ is defined to be
A*, the transitive closure of A.
2. Iftheddgdepthofrisk, k> 1, then Af is defined to
be AFFL
We say that a schedule 7 strongly preserves a similarity
relation A (or A is a strong similarity relation for a
schedule 7) if every transaction that has an instance in =
preserves A7 (ie., for every transaction 7 that has an
instance in 7, if 7 maps database state s to ¢ and state s’ to ¢/,
then ¢ and ¢’ are related by A¥ if s and s’ are related by A¥).
In this paper, we shall assume that every similarity
relation A is strongly preserved by all serial schedules of
the transaction set in a system. In practical real-time

1245

systems, this assumption can often be weakened since the
schedules that are produced by a system are often reducible
to only a subset of the set of all serial schedules of the
transaction set of the system (e.g., as a result of the time
constraints imposed by the application). The results
reported herein can be strengthened by requiring a
similarity relation to be strongly preserved by only those
serial schedules that are reduced from the set of schedules
produced by the system (e.g., the time constraints may be
such that each update on an object is an instance of a
transaction that modifies the value of an object in small
increments). Without making use of application-specific
information, the above assumption is the weakest we can
make. From now on, we shall refer to a strong similarity
relation with the assumption that it is strongly preserved by
all serial schedules.

We say that two data values vy, vy are weakly similar
under a similarity relation A with respect to a schedule = if
7 strongly preserves A and vy, v, are related by A%. When
there is no ambiguity, we shall say that v;, v, are weakly
similar and omit the reference to A and 7. Notice that two
values that are similar must be weakly similar, but the
converse is not necessarily true.

Let RE(m) be the set of all read events in a schedule 7
and WE(r) be the set of all write events in 7. Suppose init is
a distinct write event which creates the initial state of
schedule 7. Let DB be the set of data objects in the database
under discussion. DSPACE is the space of all possible
database states. Suppose domain(obj) denotes the domain
of data object obj and access(e) is the data object accessed by
event e. We define three functions on the events in
schedule 7 as follows:

o Wr.: RE(r) — WE(rm) U {init}: Wry(e,) returns the
write event from which a read event e, reads in 7. If
e, reads from the initial state, Wr,(e,) returns init.

e Upd,: DB — WE(m) U {init}: Upd,(obj) returns the
last write event which updates the data object obj in
7. If no write event accesses obj, Upd.(obj) returns
mnit.

[ ]

Out, : (DSPACE,WE(w)) — domain(access(ey)) :

Suppose istate is an initial database state of schedule
7. Outr, (istate, e,,) returns the write-value of e, (the
value of the accessed data object access(e,)) in
schedule = if 7 starts with initial state istate.

When there is no ambiguity, we shall use Out,(e,) and
omit the reference to the initial state. Given any similarity
relation A, we write x =5 y iff two data values = and y of
the same data object are defined and are similar under A.
For convenience, let Out,(init) = Outy(init) for any two
schedules m and 7’ (although the special event init is not in
any schedule).

With the introduction of strong similarity relation, the
definitions of final-state and view A-serializability ought to
be modified. Two schedules are final-state similar if they
transform strongly similar states (under A) into similar
states (under A#). Corresponding transaction views in two
view-similar (under A#) schedules remain similar (under

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



1246

A7). These modifications enlarge the collection of schedules
which are final-state or view similar to a given schedule.
Notice that requiring final-state similar schedules to trans-
form similar states (under A#) into similar states (under
A#) unnecessarily restricts a class of final-state or view
similar schedules and reduces its applicability in practice.

Suppose the schedules 7 and 7’ have the same event set
E and A is a strong similarity relation for 7 and «'. We say
that 7’ is a derived schedule of 7 if

Ve, € E, Out,(init, Wrz(e;)) =a Out,(init, Wr(e,))
and
Yobj € DB, Out,(init, Upd:(0bj)) ~a Out,(init, Upd(0bj)),

where initial state init can be omitted for convenience. (DB
is the set of data objects in the database.)

Suppose k is the maximum of the ddg depths of = and 7’
and let A* = A¥1, We shall show that 7 and «’ are view-
similar under the relation A#. That is, given two strongly
similar initial states init and init/,

Ve, € E, Out,(init, Wry(e,)) =as Outy(init’, Wry (e,))

and

Yobj € DB, Out.(init, Upd,(obj))
~as Outy(init', Updy (0bj)).

In other words, suppose we swap the events in a schedule =
and obtain another schedule #’. If every one of the read
events in 7’ reads from write events that are similar under A
in , then the swapped schedule 7’ will be view-similar to 7
under the similarity relation A#. Thus, all we need to do to
maintain consistency is to ensure that the rules for
swapping events preserve A, as we shall do in the next
section.

Theorem 2. Suppose a schedule ' is a derived schedule of another
schedule m and A" = A*Y, where k is the maximum ddg
depths of T and 7, then T and ' are view-similar under A%,

Proof. Given a real-time database system, suppose DB is a
collection of data objects in the database and A is a
strong similarity relation for schedule 7 and its derived
schedule 7’. Let E be their event set and let £ be the
maximum ddg depth of 7 and 7 so that A#* = AM1. We
shall prove that 7 and 7’ are view-similar under A#. The
proof is by induction on the “depth” of “changed” write
events, as defined below.

Let G(7) be the data dependency graph of a schedule
7. G¢(m) is a subgraph of G(7) which consists of an event
e and all ancestors of e¢ in G(7). An event ¢ in the event
set E is unchanged (with respect to 7 and 7’) if it satisfies
any one of the following conditions: (See Fig. 2).
Otherwise, it is changed.

1. eis aread event. e reads from initial state in both
mand 7.

2. e is a write event. No preceding read event is
issued by the same transaction instance.

3. e is a read event. e reads from the same write
event e, in 7 and 7’ and e, is unchanged.

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 49, NO. 11, NOVEMBER 2000

. .’

m m m U
1 1

0.0 0.0

aread event a write event
(a) (b)

. i w

v m
unchanged \ unchanged 1
e e 1
w 1 w unchanged 1 unchanged

! |

1
a read event

©) (d)

a write event

Fig. 2. Unchanged events.

4. eis a write event and all preceding read events of
the same transaction instance are unchanged.

Suppose init and init’ are two strongly similar initial
states, where init and init’ are initial states for schedules
m and 7, respectively. It is trivial to show that an
unchanged read event receives strongly similar inputs in
m and 7'. An unchanged write event produces strongly
similar outputs in = and «. (It is because every
unchanged event has the same data dependence graph
in 7 and 7' and transactions preserve the strong
similarity relation.)

Let ¢, be a write event in E. e,lw is the changed write
event which has the maximum w-length between itself
and e, in G, (7). (If there is more than one candidate for
el, select one arbitrarily and apply the same argument
below.) Let m be the w-length of the path from e to e,
minus one. If e}, = e,, m = 0.If e} does not exist, e, is an
unchanged write event and produces strongly similar
outputs in 7 and 7’.

We argue that m < (k — 2) (if €}, exists). Suppose L =
ey, e, -, e, is a maximum w-length path in G(7') where
there is an arc from e; to e;1 for ¢ < n. We shall first
show that the first write event closest to e; (it is e; if e is
a write event) on L is unchanged. Notice that read events
and write events alternate on any path in G(7).

If e; is a write event and there exists an arc from a
read event e to e; in G(7’), e must be unchanged and, thus,
e; is unchanged because L is a path with the maximum
w-length. If e is a write event and no preceding read
event is issued by the same transaction instance, e; is
unchanged according to the “unchanged” definition.
Suppose ¢; is a read event and e, is a write event. e; is
unchanged because L is a path with the maximum
w-length. Suppose there is another read event e, having
an arc from e, to ey. e, is also unchanged with the same
argument for the read event e;. Since all preceding read
events issued by the same transaction instance are
unchanged, e; must be unchanged.

The above arguments ensure that the first write event
closest to e; on L is unchanged. Given a write event e,, and
its e} on L, m, which is the w-length of the path from ¢,
to e, minus one, is no larger than (k —2) because el

w’

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



KUO AND MOK: REAL-TIME DATA SEMANTICS AND SIMILARITY-BASED CONCURRENCY CONTROL

‘

n n

a read event

1
1
\
1 el
W
1
. 1 .
. 1 .
. \ .
&3 e?
W 1 W
\
e e
r ! r
1
1
e e
W 1 W

; 1 2
Fig. 3. e,, — €, — €w.

which must be changed, cannot be the first write event
closest to e; on L. Since L has the maximum w-length in
G(n'), given any write event e,, and its ¢! on any path,
m < (k—2).

If e}U exists, we shall show that, when m < (k — 2) for
m >0, Outr(init, e,) Rame Outy(init’, e,). The proof is
by induction on m.

Induction basis: m =0 and e,,ll, = e,. Because ¢, is
changed, some e, of the preceding read events of the
same transaction instance is changed. Because m =0,
Wry(er) is unchanged, i.e.,

Out (init', Wru(e,)) ma Out,(init, Wry(e,)).
Because of the assumption

Ve, € E, Out,(init, Wrr(e,)) =a Out,(init, Wrx(e,)),
Outy (init', Wru(e,)) ma2 Out,(init, Wry(e,)).

That is, Outr (init’, e,) ~a2 Outr(init, ey).

Induction step: The induction hypothesis assumes
that, when m<i for some 0<i<(k—3),
Outr(init, e,) ~ame Outy(init',e,). Let m =i+ 1. Sup-
pose € is the write event closest to e,, on the path from
el to e, as shown in Fig. 3. Let a read event e, be
between e, and ¢?. By the induction hypothesis,

2.
Out(init, €2 ) ~pai2 Outy(init',e2). Let a write event
e3 =Wr(e;), as shown in Fig. 3. If e} =e?, then

Y w ? M w
w’

Out, (init, Wrz(e;)) mpi2 Outy (init’,Wru(e,)) because
Outr(init, e2) ~paiz Outy(init',e2). 1f €3 #¢2, then
Out(init, €2 ) ~a Out,(init, > ) because of theassumption

Ve, € E, Out,(init, Wrr(e,)) =a Out,(init, Wrx(e,)).

Since

Out,(init, €2) mpive Outp(init’,e?),

1€ 1 Cu
Out,(init, €2) i Outy (init',e?),

ie., Out,(init, Wry(e;)) airs Outy (init’, Wry(e,)). Since

el is the changed write event which has the maximum w-

length between itself and e, in G (7'), for every

preceding read event e, of the same transaction instance,

Out, (init, Wrz(e,;)) mpiss Outy (init’, Wru(e,)). Because

1247

transactions preserve these similarity relations,
Out(init, e,) ~ais Outy (init’, ey).
Since, when m < (k — 2) for m >0,

Out,(init, e,) ~ame Outy (init', e,)
and m < (k — 2),
Out(init, e,) ~ar Outy (init', e,)

for any write event e, in E. Furthermore, because Ve, €
E, Out,(init, Wra(e,)) =a Out(init, Wry(e,)) and

Yobj € DB, Out.(init, Upd,(obj)) ~a Out,(init, Upd.(0bj)),
Ve, € E, Out,(init, Wrr(e,)) =arm Outp(init', Wry(e,))

and

Yobj € DB, Out,(init, Upd,(obj))
~eprn Outy (init’, Updy (obg)).

Therefore, from strongly similar initial states (under A),
the transaction view of any transaction instance and the
final states of m and ’ are similar (under A#). O

3.3.2 Conflict A-Serializability

Suppose a schedule 7 consists of a set £ of events and a set
T of transaction instances. Let A be a given strong similarity
relation. A relation free(r) over E is a set {(e;, e;)} of event
pairs in which e; and e; satisfy any of the following
conditions, where i # j:

1. ¢ and e; do not conflict with each other.

2. ¢ and e; are conflicting write events, but they are
similar under A.

3. e and e; are conflicting events and one of them is a
read event. Suppose e, and e, are the read and write
events, respectively, and e, precedes e,. Suppose €,
(€], # ey) is the write event which writes the value
read by e, in w and e, and €, are similar under A.

Notice that the free(w) relation is a collection of
swappable events in schedule 7, which can be falsified
if a read event and some preceding conflicting write
event also satisfy the relation. For example, let events in a
schedule m=e¢! e’ e e, conflict with each another,
where eiﬂ and e, are a write event and a read event,
respectively. Suppose €2 is strongly similar to both el
and €3 and free(m) = {(el,e2), (e2,e3)}. If (e,,e3) satisfy
the free(m) relation, then = can be transformed into
3 by swapping event pairs (el,e?) and (e, €}).

!, which is not strongly similar to

2 1
eu! ? ew ?

As aresult, e, reads from e
3 in schedule 7.

Suppose 7 is a schedule and R is a reflexive and
symmetric binary relation over the events in 7. Let 7’ be a
schedule which has the same events as 7. We say that
m —p @ if 7 can be obtained from 7 by changing the order
of two consecutive events, e; and e; in 7 and (e, e2) € R.
Let —% be the transitive closure of the relation —p. A

schedule m; is conflict similar to another schedule =, iff

€, e

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



1248 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

m H}Zm(m) 7. Notice that the relation free(m) is computed
with respect to ;.

A schedule is conflict A-serializable iff it is conflict similar
to a serial schedule. Obviously, if a schedule is conflict
equivalent to another schedule, it is conflict similar to that
schedule, but the converse may not hold. The conflict
similarity relation is reflexive, but not necessarily sym-
metric or transitive.

Example 2: Conflict A-serializability. The schedule

™ = R(Tl,lv Y)ﬂ R(TQ.h Y)7 W(Tl,b Y)7 W(Tl‘la X)7 -
W(TQJ, X)

conflict similar to the schedule

T =T21,T1,1 = R(Tm,Y),R(T2,1,Y),W(Tl,1vy)7 -
W(TQ,l,X), W(Tl,hX)

if W(r1,X) and W(m 1, X) are strongly similar. Since m,
is a serial schedule, 7; is conflict A-serializable.

Example 3: View A-serializable but not conflict A-serial-
izable schedules. The schedule

™= R(Tl,l’ Y)7 R(Tzlv Y)y W(Tl,h Y)7 W(Tl,lv X)a -
W(T2,17 X)7 W(Tii,l7 X)

is view-similar but not conflict-similar to 71,711,731
unless W(r1, X) and W(m 1, X) are strongly similar.

In general, we can show the following.

Lemma 1. A schedule 7 is conflict similar to another schedule 7’
iff every two conflicting events e and €' occur in the same order
in w and 7 unless e and €' satisfy condition 2 or 3 in the
definition of the free relation.

Proof. The only-if part is based on the fact that 7’ can be
obtained from 7 by swapping every two consecutive
events which satisfy the free relation (according to the
definition of conflict similarity). Therefore, every two
conflicting events e and ¢ must occur in the same order
in 7 and 7’ unless e and €’ satisfy condition 2 or 3 in the
definition of the free relation.

The if part can be proven in a similar way as the proof
of conflict equivalence in [29]: Let k be the number of
pairs of events of the two schedules which occur in
different order in = than in 7/. We shall show, by
induction on k, that 7 is conflict similar to . If k=0,
then m and 7 are identical (Induction Base). Let k =m
and m >0 and 7 is conflict-similar to 7' (Induction
Hypothesis). Suppose that k =m + 1. Let ¢; and e; be
two consecutive events which occur in different order in
w than in 7’. Because every two conflicting events e and €’
occur in the same order in 7w and 7/, unless e and ¢’ satisfy
condition 2 or 3 in the definition of the free relation, e;
and ey can be swapped without violating the definition
of conflict similarity. It follows that, after the swapping,
there are only m pairs of events of the two schedules
which occur in different order in « than in 7. We
conclude that = is conflict similar to «’. O

Lemma 2. Suppose two schedules m and =, satisfy the relation
m —>’}me(m m, and A is a strong similarity relation for both
my and m,. Then, m, is a derived schedule of 7y, i.e., either there

is no write event from which a read event e, reads in 7, and =,
or the write events from which e, reads in m and m,,
respectively, are strongly similar in . If e,, and €, are the

last write events of certain data object in m and w,,

/
w

respectively, then e,, and €, are strongly similar in ;.

Proof. Suppose ¢, is a read event in m; and m,. We shall

show that either there is no write event from which e,
reads in m; and 7, or the write events from which e, reads

in 7 and m,, respectively, are strongly similar in ;.

Suppose there is no write event from which e, reads in
m and e, reads from a write event €/, in m,. It implies that
el is after e, in 7. Since there is no write event from
which e, reads in 71, there is no event in m; with which e,
can satisfy any condition in the definition of the free(s;)
relation. According to Lemma 1, the order of e, and €,
must be the same in 7 and 7,,. This is contradictory to
the assumption.

Suppose e, reads from e, in 7, but there is no write
event from which a read event e, reads in ,,. Because e,
and e, can never satisfy any condition in the definition of
the free(s;) relation such that their order can be
changed, according to Lemma 1, the order of ¢, and e,
is the same in 7 and 7,, again a contradiction.

Suppose ¢, is a read event which reads from different
write events e, and €, in m; and m,, respectively. If ¢/ is
after e, in m, then the order of €/, and e, are different in
m and 7, because €, is before e, in m,. According to
Lemma 1, ¢, and e, must satisfy condition 3 in the
definition of the free(s;) relation, ie., e, and € are
strongly similar in ;.

Suppose €, is before e, in ;. It is impossible to have
e!, after e, in m because e, reads from e, in 7. So, €, is
before e, and e, in 7;. Because ¢,, and e, can never satisfy
any condition in the definition of the free(s;) relation
such that their order can be changed, according to
Lemma 1, the order of ¢,, and e, is the same in 7; and 7.
This implies that the order of e, and ¢, is different in m;
and =, because e, reads €/, in m,, and €/, is before e, in 7.
According to Lemma 1, ¢, and ¢/, must satisfy condition 2
in the definition of the free(s;) relation, i.e., e, and ¢/, are
strongly similar in 7.

Therefore, either there is no write event from which e,
reads in m; and 7, or the write events from which e, reads
in 7; and m,, respectively, are strongly similar in ;.

Suppose ¢, and €/, are the last write events of certain
data object in 7 and ,, respectively. We shall show that
ew and €, are strongly similar in 7. If e,, and €, are the
same write event, the proof is complete. Otherwise, the
orders of e,, and €/, are different in m; and =, because e,
is after ¢/, in m and €, is after e, in m,. According to
Lemma 1, e, and ¢, must satisfy condition 2 in the
definition of the free(s;) relation, ie., e, and € are
strongly similar in 7. O

Lemma 3. Any conflict A-serializable schedule is view

A-serializable.

Proof. Follows from Theorem 2 and Lemma 2. O

Lemma 4. There is a view A-serializable schedule that is not

conflict A-serializable.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



KUO AND MOK: REAL-TIME DATA SEMANTICS AND SIMILARITY-BASED CONCURRENCY CONTROL

Proof. From Example 3. O

Given a schedule 7, we define its transaction dependency
graph TG(w) as follows: Corresponding to every transaction
instance in 7 is a node in T'G(r). There is an arc from a node
7 to another node 7 in T'G(7) if there are two events e and ¢’
in 7 and 7/, respectively, which do not satisfy the free(mw)
relation and e precedes €’ in 7. For simplicity, let us call any
two events in m which do not satisfy the free(m) relation
being ordered in .

Theorem 3. The problem of determining whether a schedule is
conflict A-serializable can be solved in O(n?) time, where n is
the number of events in the given schedule.

Proof. Given a schedule w, let TG(w) be its transaction
dependency graph. By Lemma 1, 7 is conflict A-serial-
izable iff TG(m) is acyclic. The cycle detection problem
can be solved in O(n?) time. O

4 EXTENSIONS

4.1 Continual Operation

Since real-time applications usually run continually, data-
base consistency may not be maintained at points when
some transaction instances have not completed their
executions. However, it is sufficient if every transaction
instance sees a consistent view of the database. The purpose
of this section is meant to extend the definitions of
A-serializability to schedules with incomplete transaction
instances (to be defined later). A similar idea can be found
in [29].

Definition: Incomplete Transaction Instance. An instance of
a transaction is incomplete in a schedule if the schedule
contains all events of the transaction instance which occur
before some specified event in the instance.

Note that a transaction instance is complete in a schedule
if the schedule contains all events of the transaction
instance.

Example 4: Incomplete Transaction Instances. Let 7 ; and
72,1 be instances of transactions 71 and 7, respectively,
where 7 reads and writes data object X and 7, reads and
writes data object Y. Consider the following schedule:

7= R(m1,X),R(121,Y), W(r11, X).

71,1 and 71 are a complete transaction instance and an
incomplete transaction instance in 7, respectively. 7 is
incomplete in 7 because m; has not yet issued a write
event on Y in 7.

Intuitively, a schedule is acceptable at some observa-
tion point if it can be extended for the database to reach a
consistent state, where extending a schedule by making
transactions complete does indicate adding more opera-
tions. For convenience, we introduce the following
definitions: A schedule 7' is an extended schedule of
another schedule 7 if 7’ is the schedule = appended with
events which complete all incomplete transaction in-
stances in w. A schedule 7’ is a prefix schedule of another
schedule 7 if @’ consists of all events in © which occur

1249

before or concurrently with some specified event in 7.
Because there may be more than one way to complete
incomplete transactions, a schedule may have more than
one extended schedule.

Example 5: Extended schedules and prefix schedules.
Consider the following three schedules:

m = R(m,1,X), R(121,Y)
Ty = R(T1,17 X)7 R(TQ,17 Y)7 W(Tl,lv X)7 W(T2,17 Y)
3 = R(111,X), R(1721,Y), W(121,Y), W(711,X),

m is a prefix schedule of 7 and 3. 7, and 73 are both
extended schedules of m; where 71 and 7 reads and
updates X and Y, respectively.

A (finite) schedule is potentially final-state/view/conflict
A-serializable if at least one of its extended schedules is
final-state /view /conflict A-serializable. An infinite sche-
dule is final-state/view/conflict A-serializable if every one of
its prefix schedules is potentially final-state/view /conflict
A-serializable.

Example 6: Extension of a prefix schedule to
preserve consistency. Let 7= W(r1,X),R(r1,X)
be a prefix schedule of another schedule

= W(Tl?l,X),R(TQ‘l,X), W(Tlﬁl,Y),R(Tgﬁl,Y). In other
words, 7’ is an extended schedule of 7. Because 7' is
conflict similar to a serial schedule 7’ = 711,71, 7 is
potentially conflict A-serializable. Note that another
schedule

7" =W(m1,X), R(12,1, X), R(12,1,Y), W(m11,Y),

which is not final-state/view/conflict A-serializable, is
also an extended schedule of .

This justifies our treatment of final-state/view/conflict
A-serializability, even though there may not be a time
instant at which a real-time database system has no
incomplete transaction instances. Note that the complexity
of determining whether a parital schedule or a complete
schedule is final-state/view/conflict A-serializable are the
same if missing events of incomplete transaction instances
in a partial schedule are ignored. We shall consider only
those transactions that have been completed unless other-
wise stated.

4.2 Real Parallelism—A-Synchronizability

With the advent of parallel processing, true parallelism
instead of interleaving [23] is likely to become more realistic
in modeling the concurrent execution of real-time transac-
tions. Correctness criteria based on the idea of interleaving
(such as A-serializability described in previous sections)
cannot capture the semantics of true parallelism. For
example, to model the operation of the digital watch in
Fig. 4, the notion of serializability cannot capture the
semantics of the triggering of the time adjustment function
which is invoked by pressing two buttons on the watch
simultaneously. The purpose of this section is to extend the
idea of A-serializability to justify the correctness of real-
time transaction executions with true parallelism.

For real-time transaction execution, although simultane-
ity can be explicitly defined by proximity in time, the

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



1250
’7 date/ycar
12/24 e = 11:07:58 -
adjust
e
mode ——» <—‘_
light

Fig. 4. A digital watch.

consistency of a schedule is usually checked by the relative
ordering of events and not their time of occurrence.
Simultaneous actions have to be grouped to form parallel
transitions when we strip off time in consistency checks.
Otherwise, there is no way to distinguish two simultaneous
closely timed events from two unrelated events. A parallel
action is defined as a partial order of events which denotes a
parallel execution of a set of transaction instances. Semanti-
cally, transaction instances in a parallel action see the same
database state and update the same database state. We
require that no w/w-conflict events exist in a parallel action
and every read event should take effect before all its
conflicting write event in a parallel action.

A parallel action is consistent if it preserves all consis-
tency predicates. In fact, a serial action is a special case of a
parallel action with a single transaction instance. A
synchronous schedule is a sequence of consistent parallel
actions. A timed schedule is synchronous if its corresponding
schedule is synchronous.

We say that a schedule is final-state/view/conflict
A-synchronizable if it is final-state/view/conflict similar to
some synchronous schedule.

Theorem 4. The problem of deciding whether a schedule is
conflict A-synchronizable can be solved in polynomial time if
there exists a polynomial time algorithm for determining
whether a parallel action is consistent.

Proof. Given a schedule w, let TG(w) be its transaction
dependency graph, as defined in Section 3. By Lemma 1,
all transaction instances in 7 involved in a cycle should
be in a consistent parallel action and merged into a single
node in TG(m) if 7 is conflict A-synchronizable. Since
there exists a polynomial time algorithm for determining
whether a parallel action is consistent or not, the problem
of deciding whether a schedule is conflict A-synchroniz-
able can be solved by executing a sequence of cycle
detections and deletions until an inconsistent parallel
action is found or no more cycles exist. 7 is conflict
A-synchronizable if no inconsistent parallel action can be
found.

Since there are no more than n cycles in 7'G(r), where
n is the number of transaction instances in m, and there
exists a polynomial time algorithm for determining
whether a parallel action is consistent, the problem of
deciding whether a schedule is conflict A-synchronizable
can be solved in polynomial time. O

The problem of deciding whether a schedule is final-
state/view A-synchronizable follows from the NP-hardness
of the final-state/view serializability problem.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

4.3 Logical Schedules vs. Physical Schedules

The concept of physical schedules is motivated by the
observation that requests for the same database operation
from several transactions that occur close in time can be and
are often satisfied by the execution of a single database
operation. To make a distinction between the actual
physical execution of database operations and the logical
events in individual transactions, we shall refer to the
schedules that we have discussed so far as logical schedules.
In this section, we define the correctness of the physical
schedules that result from the actual execution of database
operations. With the concept of physical schedules, it is
possible to have more flexibility in implementing logical
schedules and to justify the correctness of “actual execu-
tion.” Furthermore, under the concept of physical sche-
dules, a real-time database scheduler may skip unimportant
computation or updates to meet time constraints and/or
satisfy some safety requirements on the system.

An occurrence is a pair (op, obj) which represents an event
op involving a data object obj. A timed occurrence is an
occurrence with a time tag which indicates its occurrence
time. A timed physical schedule is a collection of timed
occurrences. A physical schedule is a partial order of
occurrences.

Definitions: A physical schedule m, is a realization of a logical
schedule m if there exists a surjective (onto) mapping which:

1. Maps each read event in m to a read occurrence in ,,
2. Maps each write event in m; either to a unique write
occurrence in m, or to the event null,

such that:

1. For any interpretation, m and m, transform the same
initial state into the same final state.

2. Each transaction instance has the same view in m
and .

Note that each read event in a logical schedule must be
mapped to a physical occurrence, but some write events in a
logical schedule may be mapped to null, in which case they
are not performed physically. Each write occurrence in a
physical schedule is the image of exactly one write event in
the logical schedule, but a read occurrence may be the
image of several read events in a logical schedule.
Example 7: Logical schedules vs. physical schedules. The

physical schedule: (W, X), (R, X) is the realization of the

logical schedule

W(ri1, X), W(rea, X), R(731, X)
through the mapping
W(r 1, X) — null

W(TQJ,X) — (VV,AX')7
R(Tg_’],X) — (R,X)

Lemma 5. Every physical schedule m, of a logical schedule m,
preserves the final-state/view/conflict A-serializability/
A-synchronizability property of m.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



KUO AND MOK: REAL-TIME DATA SEMANTICS AND SIMILARITY-BASED CONCURRENCY CONTROL

Proof. Follows directly from the fact that the realization
definition preserves transaction views in logical sche-
dules and state transformations of logical schedules. O

Our notion of physical vs. logical schedules is different
from the Thomas Write Rule (TWR) [40]. TWR ignores
obsolete write events instead of rejecting them to prevent
obsolete information from entering a database. Together
with the basic r/w synchronization rules of a timestamp
ordering protocol, serializability of schedules is enforced in
TWR. Our concept of physical schedule is different. The
unused write events in a schedule can be ignored and
several read events from the same write event can be
merged to maintain transaction views. Of course, the TWR
can be used as to implement physical schedules; however,
they were proposed for different applications.

5 A SUFFICIENT CONDITION FOR ACHIEVING
SYNCHRONIZATION FOR FREE

Similarity is an inherently application-dependent concept
and we expect the application engineer to define it for
specific applications. In many real-time applications, it is
often acceptable to use an older value of a sensor as input to
a calculation, instead of waiting for a more up-to-date
value. This is possible because the physics of the application
may be such that changes in sensor reading over a short
interval of time are so small as to be insignificant to the
calculation. This observation provides us with the needed
connection between similarity and time constraints govern-
ing data access.

Specifically, we assume that the application semantics
allows us to derive a similarity bound for each data object
such that two write events on the data object must be
strongly similar if their time-stamps differ by an amount no
greater than the similarity bound, i.e., all instances of write
events on the same object that occur in any interval shorter
than the similarity bound can be swapped in the (untimed)
schedule without violating consistency requirements. No-
tice that the existence of a similarity bound does not imply
that the similarity relation is transitive since event swap-
ping is based on (wall-clock) time values and not on the
relative positions of events in a schedule.

5.1 Basic Idea

The basic idea is that transactions should not block one
another as long as meeting time constraints guarantees the
strong similarity of their conflicting events. The event
conflicts are resolved by appealing to the similarity bound
in the following discussion, which refers to Fig. 5.
Suppose two events e; and e, conflict with each other.
Let e; and ey be the write events wy and w;, respectively. If
their write values are similar under the similarity bound, as
shown in Fig. 5, these two write events are strongly similar
and it does not matter which write value is read by
subsequent read events. Suppose e; and e are, respectively,
the write event w; and the read event r in Fig. 5. For their
relative ordering to be unimportant, there must exist an
earlier write event whose write value is similar to the write
value of w; under the similarity bound. If this is the case, as
is shown in Fig. 5, then it does not matter which write value

1251

no larger than similarity bound
-

W1 R w2 w3
4 ] ]

T T T
‘ B —————————_— Time
Done no larger than similarity bound

Fig. 5. Similarity of conflicting events.

the read event r reads. The same argument applies to the
case where ¢; and ey are a read event and a write event,
respectively.

5.2 A Sufficient Condition: Time Constraints vs.
Data Similarity

Suppose sb; is a similarity bound for a data object z;. Any
two writes on z; within an interval shorter than sb; are
interchangeable because they are strongly similar. Let p***,
p?”, and pf””” be the maximum, the second largest, and the
minimum periods of transactions updating x;, respectively.
If there is only one transaction updating z;, then p/*** is
equal to p™" and p?*'. Suppose p! is the maximum period of
transactions reading ;. In the following, we shall derive a
sufficient condition which guarantees the “strong similar-
ity” of any concurrently executing transaction instances.

For simplicity of discussion, we assume in this paper that
the deadline of a transaction instance is equal to the end of
its period. Extension of our results to relax this restriction
will be discussed later.

Write vs. Write Condition: (p"** + pi*') < sb;,. By our
definition of strong similarity, two conflicting write events
are interchangeable if they are strongly similar. In other
words, conflicting write events of any overlapping transac-
tion instances are interchangeable if these write events are
strongly similar. (We say that two transaction instances
overlap if their execution overlap in time.) If no transaction
misses its deadline, the maximum temporal distance
between any two conflicting write events of overlapping
transaction instances on data object z; is (p"®® + pI*).
Obviously, if (pI"™ + p**) < sb;, conflicting write events of
any overlapping transaction instances are strongly similar
and interchangeable (please see Fig. 6).

Notice that if the deadline of a transaction instance is
before the end of its period, then the Write vs. Write
condition can be modified as follows: Let d!** be the
maximum (relative) deadline of transactions updating x;
(excluding transaction 7;"**). The Write vs. Write condition
becomes (p/"* + d**) < sb;. Furthermore, the Write vs.

bt ot

p max pma Time
IS
p nxt p nxt Time
- i i
max nxt
P + P <= sb

Fig. 6. Write vs. write condition.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



1252

pr Time
htd o
g .
min Time
2P.

max Time

max min

r
P + 2P, +P; <=sb,

i i
Fig. 7. Read vs. write condition.

Write condition for data object ; can be ignored if there is
only one transaction updating x;. This is because no two
instances of the same transaction will overlap if the
transaction never misses its deadline.

Read vs. Write Condition: (p/"®* + 2p!"" + pr') < sb;.
Suppose T is a transaction with period p; and reads data
object z;. To ensure correctness, conflicting write events
which might be read by an instance of 7 must be strongly
similar (thus interchangeable) so that any instance of 7 will
not block or be blocked by transaction instances which may
update x;.

If no transaction updating x; misses its deadline, then no
read event e, can read from a conflicting write event which
occurs more than 2p!"" ago. Let this oldest write event be
called write™ of e,. For ease of argument, we assume
without loss of generality that the initial database state is
determined by a fictitious set of write events so that an
oldest write event always exists. On the other hand, a
transaction instance which overlaps with the transaction
instance issuing e, may issue a conflicting write event
almost p"** later than the end of the period of the
transaction instance issuing e,. Let this write event be
write" of e,. Obviously, this transaction instance of 7
(which issues e,) should not block or be blocked by any
transaction instance because of read-write access conflict on
x;, assuming that the maximum temporal distance of
write®™ and write’"™ of e, is no more than the similarity
bound sb; of z;. In order words, read-write access conflict of
x; can be resolved if (p"* + 2p"" + pl') < sb; (please see
Fig. 7).

Notice that if the deadline of a transaction instance is
before the end of its period, then the Read vs. Write
condition can be modified as follows: Let d"** be the
maximum (relative) deadline of transactions updating x;
and d] the maximum (relative) deadline of transactions
reading from ;. The Read vs. Write condition becomes
(dmaer 4 2pmin 4 d7) < sb;. When there is only one transac-
tion updating z;, then p/"®® = p". (In the last case, further
optimization is possible.)

We claim that if a transaction set satisfies the Read vs.
Write and Write vs. Write conditions, then these transactions
can be scheduled independently as if they do not share data
(with the usual assumption that individual read and write

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

events are atomic). Formal justification of this claim is
stated in Theorem 5 below.

Theorem 5. If a transaction set satisfies both the Read vs. Write
and Write vs. Write conditions, then any schedule that
satisfies all transaction deadlines is view A-serializable.

Proof. The proof follows directly from Theorem 2 if there
exists a serial schedule @’ which is a derived schedule of
any schedule 7 that satisfies all transaction deadlines.
According to the definition of “derived schedule,” 7 and
' must satisfy the following two requirements: 1) All
write events read by the same read event in 7 and 7’
must be strongly similar in 7 and 2) the last write events
on every data object in 7 and 7’ must be strongly similar
in 7. In the following, we shall prove that there exists a
sequence of event swaps from 7 to some serial schedule
m' such that the requirements of a derived schedule are
preserved at every step in the sequence.

Since any conflicting write events of overlapping
transaction instances in 7 are strongly similar (according
to the Write vs. Write condition), they can be swapped in
any way without violating the second requirement of a
derived schedule. Likewise, a conflicting read event and
a conflicting write event of two overlapped executing
transaction instances in 7 can be swapped in any way
without violating the first requirement of a derived
schedule because they are “strongly similar” according
to the Read vs. Write condition. In particular, instances of
all write events on the same data object that occur in any
interval shorter than the similarity bound can be
swapped in a (untimed) schedule without violating
consistency requirements. Thus, swapping such write
events will not violate the first requirement of a derived
schedule. Therefore, conflicting events of overlapping
transaction instances can be swapped in any order. Since
nonconflicting events can also be swapped in any order,
events of overlapping transaction instances can be
swapped in any order. In other words, overlapping
transaction instances can be serialized in any order. Also,
transaction instances which are not overlapped in 7 are
already serialized. Therefore, m can be serialized by
swapping events of overlapping transaction instances in
any order. O

5.3 Extensions

Since different transactions may have different precision
requirements for a data object, the Read vs. Write and Write
vs. Write conditions can be weakened. Suppose sb] is the
similarity bound of a data object z; with respect to a
transaction 7’. The Read vs. Write condition can be weakened
to: (p"™* + 2p™™ + p') < sb, if the period of 7 is p'. The Write
vs. Write condition can be weakened to: (p/"® + pi*') < sb].

Finally, we consider the situation where some transac-
tions satisfy the Read vs. Write and Write vs. Write
conditions, but others do not. In this case, the transaction
system cannot be scheduled “fully” independently. A
simple variation of Similarity Stack Protocol (SSP) [17] can
be made to take care of this situation, as follows:

As in SSP, transactions are partitioned into interactive
sets such that no two transactions in different interactive
sets may share any data object. If all transactions in an

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



KUO AND MOK: REAL-TIME DATA SEMANTICS AND SIMILARITY-BASED CONCURRENCY CONTROL

interactive set satisfy the Read vs. Write and Write vs. Write
conditions, the recency bound of the interactive set can be
set to oo such that transactions in the interactive set can be
scheduled independently of one another. Here, the recency
bound of an interactive set limits the length of any interval
spanned by overlapping transaction instances in the set. If
any transaction in an interactive set fails any one of the
conditions, the recency bound of the interactive set is
calculated as defined in [17]. The correctness of this
approach can be justified by an argument similar to the
last section.

6 CONCLUSION AND FUTURE RESEARCH

In this paper, we discuss the semantics of real-time database
applications and propose new correctness criteria for
concurrency control which exploits the interchangeability
of input data values of sufficient precision. The concept of
similarity is used to extend the usual correctness criteria for
transaction scheduling: final-state, view, conflict serial-
izability to their counterparts of final-state A-serializability,
view A-serializability, and conflict A-serializability. We
then generalize the criteria for infinite schedules and extend
the criteria when true parallelism, instead of interleaving, is
considered. We propose the idea of physical schedules in
which a real-time database scheduler may skip unimportant
computation or updates to meet time constraints and/or
satisfy some safety requirements on the system. The
correctness of physical schedules is justified by the notion
of similarity. We also take a semantic approach and propose
a sufficient condition for achieving data synchronization for
free, which is based on the concept of similarity. Real-time
transactions satisfying this condition can be scheduled
correctly by any process scheduling discipline that is
designed for the independent processes model [24] (e.g.,
RMS, EDF), where no locking of data is assumed. With our
approach, the usually high utilization factor that can be
achieved by these scheduling disciplines is also attainable
for transactions satisfying our condition. The idea of
similarity-based read and write operations was later
implemented under a distributed Real-Time Object Man-
agement Interface (RTOMI) on an Intel Multiprocessor
computer [19] and found effective in reducing a significant
portion of remote data access in a typical industrial control
application [5].

The integrity management of real-time database systems
involves two issues: 1) External consistency and temporal
consistency constraints must be specified and justified to be
adequate for the similarity relations specific to the applica-
tion. 2) Real-time transaction scheduling algorithms are
needed to enforce these constraints. These issues give rise to
many interesting real-time scheduling problems.

For future research, we shall investigate quantitatively
how the concept of similarity may be used to improve the
schedulability of real-time transaction workloads, e.g.,
how it can be used to exploit parallel processing
hardware and to improve the achievable utilization of
multiprocessor systems. We believe that there are many
interesting research issues concerning the concept of
similarity. To gain experience, it is important to investi-
gate how to construct similarity relations systematically

1253

from application specifications, such as a stock market
system [23]. A toolset which facilitates reasoning about
similarity relations for typical real-time applications should
be very useful.

ACKNOWLEDGMENTS

This research was supported in part by research grants from
the Republic of China National Science Council under
Grant NSC85-2213-E-194-008 and from the US Office of
Naval Research under ONR contract number N00014-89-]-
1472. This paper is an extended version of papers that
appeared in the Proceedings of the IEEE 13th Real-Time
Systems Symposium and the Proceedings of the IEEE 11th
Workshop on Real-Time Operating Systems and Software.

REFERENCES

[1] R. Abbott and H. Garcia-Molina, “Scheduling Real-Time Transac-
tions: A Performance Evaluation,” Proc. 14th VLDB Conf., pp. 1-12,
1988.

[2] A. Bestavros, “Timeliness via Speculation for Real-Time Data-
bases,” Proc. IEEE 15th Real-Time Systems Symp., 1994.

[3] A. Bestavros, “Advances in Real-Time Database Systems Re-
search,” Special Section on RTDB of ACM SIGMOD Record, vol. 25,
no. 1, Mar. 1996.

[4] P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Reading, Mass.: Addison-
Wesley, 1987.

[5] D.Chen and A K. Mok, “SRDE—Application of Data Similarity to
Process Control,” Proc. IEEE 20th Real-Time Systems Symp., pp. 136-
145, Dec. 1999.

[6] L.B.C.Dipippo and V.F. Wolfe, “Object-Based Semantic Real-Time
Concurrency Control,” Proc. IEEE Real-Time Systems Symp., Dec.
1993.

[717 W. Du and A K. Elmagarmid, “Quasi Serializability: A Correct-
ness Criterion for Global Concurrency Control in InterBase,” Proc.
15th Int’l Conf. Very Large Data Base, pp. 347-355, 1989.

[8] S.B. Davidson and A. Watters, “Partial Computation in Real-Time
Database Systems,” Proc. Fifth Workshop Real-Time Software and
Operating Systems, pp. 117-121, May 1988.

[9] M.H. Graham, “How to Get Serializability for Real-Time Transac-
tions without Having to Pay for It,” Proc. IEEE 14th Real-Time
Systems Symp., 1993.

[10] H. Garcia-Molina and K. Salem, “SAGAS,” Proc. 1987 ACM
SIGMOD Conf. Management of Data, pp. 249-259, 1987.

[11] H. Garcia-Molina and G. Wiederhold, “Read-Only Transactions in
a Distributed Database,” ACM Trans. Database Systems, vol. 7, no. 2,
pp- 209-234, June 1982.

[12] M. Gouda, Beauty Is Our Business: A Birthday Salute to Edsger W.
Dijkstra, W.H.]. Feijen, A.].M. van Gasteren, D. Gries, and J. Misra,
eds., pp. 135-140, Springer-Verlag, 1990.

[13] J.R. Haritsa, M.]. Carey, and M. Livny, “On Being Optimistic
about Real-Time Constraints,” Proc. Ninth ACM SIGACT-
SIGMOD-SIGART Symp. Principles of Database Systems, pp. 331-
343, Apr. 1990.

[14] M.U. Kamath and K. Ramamritham, “Performance Characteristics
of Epsilon Serializability with Hierarchical Inconsistency Bounds”
Proc. Int’l Conf. Data Eng., pp. 587-594, Apr. 1993.

[15] T.-W. Kuo, “Real-Time Database—Semantics and Resource
Scheduling,” PhD dissertation, Univ. of Texas at Austin, 1994.

[16] T.-W. Kuo and A.K. Mok, “Application Semantics and Con-
currency Control of Real-Time Data-Intensive Applications,” Proc.
IEEE 13th Real-Time Systems Symp., 1992.

[17] T.-W. Kuo and A K. Mok, “SSP: A Semantics-Based Protocol for
Real-Time Data Access,” Proc. IEEE 14th Real-Time Systems Symp.,
Dec. 1993.

[18] T-W. Kuo and AK. Mok, “Using Data Similarity to Achieve
Synchronization for Free,” Proc. IEEE 11th Workshop Real-Time
Operating Systems and Software, pp. 112-116, 1994.

[19] T.-W. Kuo and A K. Mok, “The Design and Implementation of
Real-Time Object Management Interface,” Proc. IEEE 1995 Real-
Time Technology and Applications Symp., 1995.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



1254

(20]

[21]

(22]

(23]

(24]

(23]

[20]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(33]

[36]

(371

(38]

(39]

(40]

[41]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Y.-K. Kim and S.H. Son, “Supporting Predictability in Real-Time
Database Systems,” Proc. IEEE 1996 Real-Time Technology and
Applications Symp., 1996.

H.F. Korth and G.D. Speegle, “Formal Model of Correctness
without Serializability,” Proc. 1988 ACM SIGMOD Conf. Manage-
ment of Data, pp. 379-386, 1988.

H.F. Korth, N. Soparkar, and A. Silberschatz, “Triggered Real
Time Databases with Consistency Constraints,” Proc. 16th VLDB
Conf., Aug. 1990.

K.-Y. Lam, T.-W. Kuo, and L. Shu, “On Using Similarity to Process
Transactions in Stock Trading Systems,” Proc. IEEE 1998 Workshop
Dependable and Real-Time E-Commerce Systems, June 1998.

C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” ]. ACM, vol. 20,
no. 1, pp. 46-61, Jan. 1973.

K.-J. Lin, S. Natarajan, and J.W.-S. Liu, “Imprecise Results:
Utilizing Partial Computations in Real-Time Systems,” Proc. IEEE
Eighth Real-Time Systems Symp., pp. 210-217, Dec. 1987.

K.-J. Lin and M.-J. Lin, “Enchancing Availability in Distributed
Real-Time Databases,” ACM SIGMOD Record, vol. 17, no. 1, pp. 34-
43, Mar. 1988.

Y. Lin and S.H. Son, “Concurrency Control in Real-Time
Databases by Dynamic Adjustment of Serialization Order,” Proc.
IEEE 11th Real-Time Systems Symp., Dec. 1990.

AK. Mok, “Fundamental Design Problems for the Hard Real-
Time Environment,” PhD dissertation, Massachusetts Inst. of
Technology, Cambridge, Mass., 1983.

C. Papadimitriou, The Theory of Database Concurrency Control.
Computer Science Press, 1986.

C.-S. Peng and K.-J. Lin, “A Semantic-Based Concurrency Control
Protocol for Real-Time Transactions,” Proc. IEEE 1996 Real-Time
Technology and Applications Symp., 1996.

C. Pu and A. Leff, “Epsilon-Serializability,” Technical Report
CUCS-054-90, Dept. of Computer Science, Columbia Univ., Jan.
1991.

C.-S. Peng, K-J. Lin, and T. Ng, “A Performance Study of the
Semantics-Based Concurrency Control Protocol for Air Traffic
Control System,” Proc. Int’l Workshop Real-Time Databases, Sept.
1997.

K. Ramamritham and C. Pu, “A Formal Characterization of
Epsilon Serializability,” IEEE Trans. Knowledge and Data Eng.,
vol. 7, no. 6, pp. 997-1,007, Dec. 1995.

L. Sha, R. Rajkumar, and J.P. Lehoczky, “Concurrency Control for
Distributed Real-Time Databases,” ACM SIGMOD Record, vol. 17,
no. 1, pp. 82-98, Mar. 1988.

ACM SIGMOD Record: Special Issue on Real-Time Databases, S.H.
Son, ed., Mar. 1988.

X. Song and J.W.-S. Liu, “Maintaining Temporal Consistency:
Pessimistic vs. Optimistic Concurrency Control,” IEEE Trans.
Knowledge and Data Eng., pp. 787-796, Oct. 1995.

L. Shu and M. Young, “A Mixed Locking/Abort Protocol for Hard
Real-Time Systems,” Proc. IEEE 11th Workshop Real-Time Operating
Systems and Software, pp. 102-106, May 1994.

L. Shu, M. Young, and R. Rajkumar, “An Abort Ceiling Protocol
for Controling Priority Inversion,” Proc. First Int’l Workshop Real-
Time Computing Systems and Applications, pp. 202-206, Dec. 1994.
J.A. Stankovic and W. Zhao, “On Real-Time Transactions,” ACM
SIGMOD Record, vol. 17, no. 1, pp. 4-18, June 1989.

R.H. Thomas, “A Solution to the Concurrency Control Problem for
Multiple Copy Data Bases,” Proc. 1978 COMPCON Conf., pp. 56-
62, 1978.

M. Xiong, K. Ramamritham, R. Sivasankaran, J.A. Stankovic, and
D. Towsley, “Scheduling Transactions with Temporal Constraints:
Exploiting Data Semantics,” Proc. IEEE Real-Time Systems Symp.,
pp- 240-251, Dec. 1996.

Tei-Wei Kuo received the BSE degree in
computer science and information engineering
from National Taiwan University in Taipei,
Taiwan, in 1986. He received the MS and PhD
degrees in computer sciences from the Univer-
sity of Texas at Austin in 1990 and 1994,
respectively. He is currently an associate pro-
fessor in the Department of Computer Science
and Information Engineering of the National
Taiwan University, Taiwan, Republic of China
(ROC). He was an associate professor in the Department of Computer
Science and Information Engineering of the National Chung Cheng
University, Taiwan, ROC, from August 1994 to July 2000. His research
interests include real-time databases, real-time process scheduling,
real-time operating systems, and control systems. He is the program
chair of IEEE Seventh Real-Time Technology and Applications
Symposium, 2000 and has consulted for government and industry on
problems in various real-time systems design. Dr. Kuo is a member of
the IEEE and the IEEE Computer Society.

Aloysius K. Mok received the BS and MS
degrees in electrical engineering and computer
science, and the PhD degree in computer
science in 1983, all from the Massachusetts
Institute of Technology. He is currently a
professor of computer sciences at the University
of Texas at Austin. His current interests include
design problems of robust, distributed real-time
systems, real-time database, and performance
issues of real-time rule-based programs. He has
consulted for government and industry on problems in real-time system
design and was the chair of the IEEE Technical Committee on Real-
Time Systems (1995-1996). He is a member of the IEEE.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 00:53 from IEEE Xplore. Restrictions apply.



