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Generation of Digit Reversed Address 
Sequences for Fast Fourier Transforms 

T.C. Choinski and T.T. Tylaska 

Abstract-Digit reversed sequences for fast Fourier transforms (Fm) 
can be generated using firmware resident look-up tables, software algo- 
rithms, or application specific hardware. The integrated circuit described 
herein uses a digital circuit design approach to selectively generate digit 
reversed sequences for either radix-2, radix-4, or radix-2/4 fast Fourier 
transforms. 

Index Tenns-Bit reversal, digit reversal, digital signal processor, fast 
Fourier transform (FFT), FlT prescramble, integrated circuit. 

I. INTRODUCTION 
An important part of any fast Fourier transform (FFT) algorithm 

is unscrambling data sequences using a digit reversal procedure. The 
reversal procedure rearranges the address sequence used to access 
data by reordering the bits of a binary representation of the address 
according to the radix of the FFT. The bit reordering procedure can 
be realized in firmware, software, or hardware. In any case, the object 
is to perform the digit reversal procedure in the shortest time with 
minimal hardware. 
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Firmware implementations consist of determining the digit reversed 
address sequence a priori and storing the sequence in a table in read 
only memory (ROM). During execution of the FFT, the digit reversed 
address sequence is accessed from memory. However, each FFT 
processed in the computing machine, which differs in size or radix, 
requires a unique table. The size of the memory required to store the 
table is directly related to the number of data points transformed by 
the FFT. A significant increase in memory size can be encountered 
with the firmware approach. 

The digit reversal procedure can also be accomplished using 
software methods. One software method requires modification of the 
order of the program code so that the FFT is performed “out of place.” 
This method requires an increase in the size of random access memory 
in the computer. Another software method reorders the bits of an 
address pointer by shifting the bits out and into a pointer register. 
This latter method requires software shifting operations which are 
very time consuming. 

A hardware realization of the digit reversal process reorders the 
address sequence generated by a binary counter. The rearrangement 
of the digits is accomplished by selectively routing the bits from the 
output of the binary counter to an address register. Bit reversal, as 
opposed to digit reversal, methods have been developed for radix- 
2 FFT applications [l], [2]. A digit reversal technique for FFT’s 
with different radices can be realized by utilizing several routing 
networks with the single binary counter. Thus, the digit reversal 
procedure can be performed for various types of FFT algorithms 
quickly with minimal hardware. This approach is described in this 
paper. Specifically, the design of a digit reversed counter for radix-2, 
radix-4, and radix-2/4 fast Fourier transform algorithms is discussed 
and presented in detail. The design can also be extended to radix- 
8 and radix-16 FFT’s when appropriate sample sizes are available. 
Higher radix FFT’s offer greater efficiency at reduced versatility. 

The digit reversed counter is capable of generating address se- 
quences for fast Fourier transforms varying in size from 4 to 64 K 
data points. The circuit design can also be adapted for higher sampling 
sizes. The counter can be used in conjunction with the interstage 
address sequencer developed by Advance Micro Devices to perform 
all the address sequencing required by an FFT algorithm in hardware 
[31. 

11. DIGIT REVERSAL CONCEPTS FOR THE F m  
Data have to be accessed in a digit reversed order at the input 

or output stage of an FFT algorithm. The stage depends on whether 
a decimation-in-time or a decimation-in-frequency FFT algorithm is 
used [4]. The digit reversal procedure will require that any data found 
in memory stored in address j be accessed as though it were located 
in address j ’ ,  the digit reversed address. Singleton gives a generic 
definition for j and j‘ which explains the digit reversal procedure 
PI: 

where 3- is the number of data points to be transformed, m is the 
number of factors of r, n I are the factors of N, j ,  are the respective 
digits of j and 2 = l:..,m. 

The generic description of the digit reversal procedure given by (1) 
and ( 2 )  can be easily applied to any number of data points, Ai, and 
any FFT radix. These equations will be specifically applied to radix- 
2, radix-4, and mixed radix-2/4 FFT algorithms. The results from 
these three applications will then be used to design a digit reversed 

US. Government work not protected by U.S. Copyright 



IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 6 ,  JUNE 1991 

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 All A12 A13 A14 LSB 

MSB 

A15 

A15 A14 A13 A12 All A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 

STRAIGHT BINARY ADDRESS REPRESENTATION ( j) 

A0 

LSB 

MSB 

DIGIT REVERSED ADDRESS REPRESENTATION ( j ' )  
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counter which can be selected to operate in a radix-2, radix-4, or 
mixed radix-214 mode. 

111. RADIX-2 FFT DIGIT REVERSAL 
The bit reversal procedure indicated by (1) and (2) can be best 

exemplified when N is a power of 2 (Le., iV = 2") and a radix-2 
FFT algorithm is used to perform the transform. For this case j and 
j' are 

j = j m p - c  +. . .+  j 2 2 +  j 1  

j' = j12(m-1)  +j22("-2)  + . . . + j,, . 
(3 )  

(4) 

Thus, the order of each radix-2 digit in the binary address sequence 
is reversed. The most significant bit (MSB) is exchanged with the 
least significant bit (LSB). Likewise, the second most significant bit 
is exchanged with the second least significant bit, and so on. In effect, 
the binary representation of the address is reversed as shown in Fig. 1 
for a 16 bit binary pointer. 

IV. RADIX-4 FFT DIGIT REVERSAL 
Several authors have previously demonstrated the efficiency of 

higher radix FFT algorithms and in particular the radix-4 FFT [4], 
[6], [7]. Singleton's equations for j and j '  can be easily used to 
determine the digit reversal procedure for a radix-4 fast Fourier 
transform algorithm. The radix-4 FFT requires N = 4". So j and 
j '  will be 

j = j m 4(m-') + . . . + j z + j l  

j '  = j1p4 + j24("-2) + . .  ' + j ,  
( 5 )  
(6) 

where j, = 0, 1, 2 or 3 and i = 1 . 2 . .  . . . m. 
If a binary number is used to represent the address j ,  the bit reversal 

procedure switches radix-4 digits (i.e., groups of two binary bits) in 
the address. Therefore, the two most significant binary bits (the most 
significant radix-4 digit) is exchanged with the two least significant 
binary bits (the least significant radix-4 digit), and so on. In each 
exchange of groups of two binary bits the significance of each bit 
within the group must be preserved as shown in Fig. 2 for a 16 bit 
address pointer. 

V. MIXED RADIX-214 DIGIT REVERSAL 

Mixed radix-2/4 FFT algorithms allow users to take advantage of 
the efficiency of the radix-4 algorithm for data sets which are powers 
of two but not powers of four. For these data sets, the power of two 
can be factored out so 4 = (2)4("- ') .  Therefore, the FFT can be 
performed with one radix-2 stage and the remaining stages as radix-4 
stages. The radix-2 stage can be put anywhere in the FFT flow graph. 

If the radix-2 stage is performed first in the FFT flow graph then 
j and j' will be calculated to be 

j = j m 2 a("-') + . . . + j, 2  + j, 
j' = .jl 4(77-1) + j ,  4(,-,) +... j m  

(7) 
(8) 

where j ,  = 0, 1, 2, or 3 for i = 2:. . . m and j, = 0 or 1. Fig. 3 
shows the digit reversal procedure for 16 bit address pointer, given a 
mixed radix-214 case when the radix-2 stage is performed first. Note 
that all the digit exchanges are performed with groups of two binary 
bits except for the LSB of j .  

When the radix-2 stage is performed in the last stage of the FFT 
signal flow graph, the digit reversal procedure will define j and j' 
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STRAIGHT BINARY ADDRESS REPRESENTATION (1) 

to be 

w h e r e j , = 0 , 1 , 2 o r 3 f o r i = 1 , 2 , 3 , . . . , ( m - 1 ) a n d j m = 0 o r 1 .  
Fig. 4 shows the digit reversal procedure for the binary representation 
of a 16 bit address when the radix-2 stage is performed last (radix- 
4/2). All the exchanges are performed with groups of two binary 
bits except for the MSB of j .  

VI. DIGIT REVERSED COUNTER DESIGN DESCRIFTION 
The design of the logic hardware for the digit reversed counter 

is very simple and straightforward once the proper digit reversal 
procedures have been determined. The design centers around a 
straight binary counter. The counter will cycle its count from zero to 
N - 1. The binary bits which are output from the counter are used 
to generate the digit reversed address. Basically, the binary bits are 
physically routed to an address pointer using the mapping procedures 
depicted in Figs. 1-4. 

A block diagram for a digit reversed counter which is capable 
of providing any one of the three radix selections via two external 
select pins is presented in Fig. 5. The selectable radix digit reversed 
counter is realized by inserting a multiplexing or switching network 
between the binary counter and buffers which feed the address data. 
A photograph of this circuit is presented in Fig. 6. 

The multiplexing circuit consists of sets of NAND gates. Either the 
radix-2, radix-4, or radix-214 routing network can be fed to the output 
address buffers by selecting the appropriate values on the select lines 
SO and S1 (Table I). The multiplexing circuit is illustrated in Fig. 7. 

MSB 
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Fig. 3. Radix-2/4 digit reversal map. 
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Fig. 4 Radix-4/2 digit reversal map. 
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TABLE I 
RADIX SELECTION LOGIC 

RADIX-4 

RADIX-2  

X 

The multiplexer circuit can be modified to include higher radix 
FFT's (e.g., radix-8 or radix-16). Typically, these FFT sizes offer 
greater efficiency at reduced versatility. These radices can be included 
in the design by changing the three input NAND gate function in the 
multiplexer to a five input NAND gate function. Two dual input NAND 
gates must also be added for each output bit of the counter. The two 
dual input NAND gates will feed the additional inputs of the five input 
NAND gate function. The routing to the dual input gates is determined 
from (1) and (2). The radix selection logic must also be modified to 
account for the two new radix selections. 

The selectable radix digit reversed counter shown in Fig. 6 uses 
approximately 200 gates to implement all the logic. The gate count 
can be significantly reduced by using toggle flip flops instead of JK 
flip flops, and pass transistor switches in place of the NAND gate 
multiplexing circuit. The selectable digit reversed counter circuit can 
also accommodate smaller or larger FFT sizes if the size for the 
particular application is known a priori. The circuit shown in Fig. 6 
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Fig. 6. Prescrambler IC photograph. 
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Fig. 8. FFT prescrambled address generation with memory offset. 

works for any FFT size between 4 and 64 K merely by tapping the 
higher order bits at the output according to the FFT size. 

If the FFT data are offset in memory, which is the usual case, the 
digit reversed address must be adjusted external to the digit reversed 
counter circuitry. Basically, an adder is used to offset the digit 
reversed address sequence to the appropriate location in memory. 
A shift register or multiplexing network must be included to align 
the output bits from the prescrambled address with the adder. The 
alignment is a function of FFT size. This concept is illustrated in 
Fig. 8. Note the shift register (or multiplexing network) which creates 
the programmable F F I  size option. 

VII. CONCLUSION 
The hardware design of a circuit capable of producing digit 

reversed sequences for radix-2, radix-4, and mixed radix-214 fast 
Fourier transform algorithms was presented in detail. The design 
requires selectively routing the output of a binary counter to the output 
address pointer used during the execution of the FFT. 

The selectable radix digit reversed counter offers a highly efficient 
alternative to firmware and software methods. In addition, its physical 
size and gate count is small. If this design is used in conjunction with 
commercially available FFT address sequencing chips all the address 
generation required during FFT execution can be implemented with 
hardware techniques. 
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