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Abstract

Reward-based scheduling refers to the problem in which
there is a reward associated with the execution of a task.
In our framework, each real-time task comprises a manda-
tory and an optional part, with which a nondecreasing reward
function is associated. Imprecise Computation and Increased-
Reward-with-Increased-Service models fall within the scope of
this framework. In this paper, we address the reward-based
scheduling problem for periodic tasks. For linear and con-
cave reward functions we show: (a) the existence of an optimal
schedule where the optional service time of a task is constant
at every instance and (b) how to efficiently compute this service
time. We also prove that RMS-h (RMS with harmonic periods),
EDF and LLF policies are optimal when used with the opti-
mal service times we computed, and that the problem becomes
NP-Hard, when the reward functions are convex. Further, our
solution eliminates run-time overhead, and makes possible the
use of existing scheduling disciplines.

1 Introduction

In a real-time system each task must complete and produce
correct output by the specified deadline. However, if the sys-
tem is overloaded it is not possible to meet each deadline. In
the past, several techniques have been introduced by the re-
search community regarding the appropriate strategy to use in
overloaded systems of periodic real-time tasks.

One class of approaches focuses on providing somewhat
less stringent guarantees for temporal constraints. In [11],
some instances of a task are allowed to be skipped entirely.
Theskip factordetermines how often instances of a given task
may be left unexecuted. A best effort strategy is introduced
in [8], aiming at meetingk deadlines out ofn instances of a
given task. This framework is also known as(n,k)-firm dead-
lines scheme. Bernat and Burns present in [2] a hybrid and
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improved approach to provide hard real-time guarantees tok
out ofn consecutive instances of a task.

The techniques mentioned above tacitly assume that a task’s
output is of no value if it is not executed completely. How-
ever, in many application areas such as multimedia appli-
cations [17], image and speech processing [4, 6, 19], time-
dependent planning [3], robot control/navigation systems [21],
medical decision making [9], information gathering [7], real-
time heuristic search [12] and database query processing [20]
a partial or approximate but timely result is usually acceptable.

TheImprecise Computation[5, 15] andIRIS (Increased Re-
ward with Increased Service)[10, 13] models were proposed
to enhance the resource utilization and provide graceful degra-
dation in real-time systems. In these models, every real-time
task is composed of a mandatory part and an optional part. The
former should be completed by the task’s deadline to provide
output of minimal quality. The optional part is to be executed
after the mandatory part while still before the deadline, if there
are enough resources in the system that are not committed to
running mandatory parts for any task. The longer the optional
part executes, the better the quality of the result (the higher the
reward).

The algorithms proposed for imprecise computation appli-
cations concentrate on a model that has an upper bound on
the execution time that could be assigned to the optional part
[5, 15, 18]. The aim is usually to minimize the (weighted) sum
of errors. Several efficient algorithms are proposed to solve
optimally aperiodic scheduling problem of imprecise compu-
tation tasks [15, 18]. A common assumption in these studies
is that the quality of the results produced is alinear function
of the precision error; consequently, the possibility of having
more general error functions is usually not addressed.

An alternative model allows tasks to get increasing reward
with increasing service (IRIS model) [10, 13] without an upper
bound on the execution times of the tasks (though the deadline
of the task is an implicit upper bound) and without the sepa-
ration between mandatory and optional parts [10]. A task ex-
ecutes for as long as the scheduler allows before its deadline.
Typically, a nondecreasingconcavereward function is associ-
ated with each task’s execution time. In [10] the problem of



maximizing the total reward in a system of aperiodic indepen-
dent tasks is addressed. The optimal solution with static task
sets is presented, as well as two extensions that include manda-
tory parts and policies for dynamic task arrivals.

Note that imprecise computation and IRIS models are
closely related, since the performance metrics can be defined as
duals (maximizing the total reward is a dual of minimizing the
total error). Similarly, a concave reward function corresponds
to a convex error function, and vice versa.

We use the term “Reward-based scheduling” to encompass
scheduling frameworks such as Imprecise Computation and
IRIS models, where each task can be decomposed into manda-
tory and optional subtasks. A nondecreasing reward function
is associated with the execution of each optional part.

An interesting question concerns types of reward functions
which represent realistic application areas. Alinear reward
function [15] models the case where the benefit to the overall
system increasesuniformlyduring the optional execution. Sim-
ilarly, a concavereward function [10, 13] addresses the case
where the greatest increase/refinement in the output quality is
obtained during the first portions of optional executions. The
first derivative of a nondecreasing concave function is nonin-
creasing. Linear and general concave functions are considered
the most realistic and typical in the literature since they ade-
quately capture the behavior of many application areas such as
those mentioned above [4, 6, 19, 3, 21, 12, 7, 17, 20]. In this
paper, we show that the case ofconvexreward functions is an
NP-Hard problem and thus focus on linear and concave reward
functions. Reward functions with 0/1 constraints, where no re-
ward is accrued unless theentireoptional part is executed, or
step reward functions have also received some interest in the
literature. Unfortunately, this problem has been shown to be
NP-Complete in [18].

Periodic reward-based scheduling remains relatively unex-
plored, since the important work of Chung, Liu and Lin [5].
In that paper, the authors classified the possible application ar-
eas as “error non-cumulative” and “error cumulative”. In the
former, errors (or optional parts left unexecuted) have no effect
on the future instances of the same task. Well-known examples
of this category are tasks that periodically receive, process and
transmit audio, video or compressed images [4, 6, 19] as well
as information retrieval tasks [7, 20]. In “error cumulative” ap-
plications, such as radar tracking, an optional instance must be
executed completely at every (predetermined)k invocations.
The authors further proved that the case of error-cumulative
jobs is an NP-Complete problem. In this paper, we restrict
ourselves to error non-cumulative applications.

Recently, a QoS-based resource allocation model (QRAM)
has been proposed for periodic applications [17]. In that study,
the problem is to optimally allocate several resources to the
various applications such that they simultaneously meet their
minimum requirements along multiple QoS dimensions and
the total system utility is maximized. In one aspect, this can
be viewed as a generalization of optimal CPU allocation prob-

lem to multiple resources and quality dimensions. Further, de-
pendent and independent quality dimensions are separately ad-
dressed for the first time in this work. However, a fundamen-
tal assumption of that model is that the reward functions and
resource allocations are in terms ofutilization of resources.
Our work falls rather along the lines of Imprecise Computa-
tion model, where the reward accrued has to be computed sep-
arately over all task instances and the problem is to find the
optimal service times foreachinstance and the optimal sched-
ule with these assignments.

Aspects of Periodic Reward-Based Scheduling
Problem

The difficulty of finding an optimal schedule for a periodic
reward-based task set has its origin on two objectives that must
be simultaneously achieved, namely: (i) Meeting deadlines
of mandatory parts ateveryperiodic task invocation, and (ii)
Scheduling optional parts to maximize the total (or average)
reward.

These two objectives are both important, yet often incom-
patible. In other words, hard deadlines of mandatory parts may
require sacrificing optional parts with greatest value to the sys-
tem. The analytical treatment of the problem is complicated by
the fact that, in an optimal schedule, optional service times of
a given task mayvary from instance to instance which makes
the framework of classical periodic scheduling theory inappli-
cable. Furthermore, this fact introduces a large number of vari-
ables in any analytical approach. Finally, by allowing nonlin-
ear reward functions to better characterize the optional tasks’
contribution to the overall system, the optimization problem
becomes computationally harder.

In [5], Chung, Liu and Lin proposed the strategy of assign-
ing statically higher priorities to mandatory parts. This de-
cision, as proven in that paper, effectively achieves the first
objective mentioned above by securing mandatory parts from
the potential interference of optional parts. Optional parts are
scheduled whenever no mandatory part is ready in the sys-
tem. In [5], the simulation results regarding the performance
of several policies which assign static or dynamic priorities
among optional parts are reported. We call the class of algo-
rithms that statically assign higher priorities to mandatory parts
Mandatory-First Algorithms.

In our solution, we donot decouple the objectives of meet-
ing the deadlines of mandatory parts and maximizing the total
(or average) reward. We formulate the periodic reward-based
scheduling problem as an optimization problem and derive an
important and surprising property of the solution for the most
common (i.e., linear and concave) reward functions. Namely,
we prove that there is always an optimal schedule where op-
tional service times of a given task do not vary from instance
to instance. This important result immediately implies that
the optimality (in terms of achievable utilization) of any policy
which can fully use the processor in case of hard-real time peri-
odic tasks also holds in the context of reward-based scheduling



(in terms of total reward)when used with these optimal ser-
vice times. Examples of such policies are RMS-h (RMS with
harmonic periods) [14], EDF [14] and LLF [16] scheduling
disciplines.

Following these existence proofs, we address the problem
of efficiently computing optimal service times and provide
polynomial-time algorithms for linear and/or general concave
reward functions. Note that using these optimal and con-
stant optimal service times has also important practical advan-
tages: (a) The runtime overhead due to the existence of manda-
tory/optional dichotomy and reward functions is removed, and
(b) existing RMS-h, EDF and LLF schedulers may be used
without any modification with these optimal assignments.

The remainder of this paper is organized as follows: In
Section 2, the system model and basic definitions are given.
The main result about the optimality of any periodic policy
which can fully utilize the processor(s) is obtained in Section
3. In Section 4, we first analyze the worst-case performance of
Mandatory-First approaches. We also provide the results of ex-
periments on a synthetic task set to compare the performance
of policies proposed in [5] against our optimal algorithm. In
Section 5, we show that the concavity assumption is also nec-
essary for computational efficiency by proving that allowing
convex reward functions results in an NP-Hard problem. We
present details about the specific optimization problem that we
use in Section 6. We conclude by summarizing our contribu-
tion and discussing future work.

2 System Model

We consider a setT of n periodic real-time tasks
T1; T2; : : : ; Tn on a uniprocessor system. The period ofTi is
denoted byPi, which is also equal to the deadline of the cur-
rent invocation. We refer to thejth invocation of taskTi asTij.
All tasks are assumed to be independent and ready att = 0.

Each taskTi consists of a mandatory partMi and an op-
tional partOi. The length of the mandatory part is denoted by
mi; each task must receive at leastmi units of service time be-
fore its deadline in order to provide output of acceptable qual-
ity. The optional partOi becomes ready for execution only
when the mandatory partMi completes.

Associated with each optional part of a task is a reward
functionRi(tij) which indicates the reward accrued by task
Tij when it receivestij units of servicebeyond its mandatory
portion. Ri(tij) is of the form:

Ri(tij) =

�
fi(tij) if 0 � tij � oi
fi(oi) if tij > oi

(1)

wherefi is a nondecreasing, concave and differentiable func-
tion over nonnegative real numbers andoi is the length ofen-
tire optional partOi. We underline thatfi(tij) is nondecreas-
ing: the reward accrued by taskTij can not decrease by al-
lowing it to run longer. Notice that the reward functionRi(t)
is not necessarily differentiable att = oi. Note also that in
this formulation, by the time the task’s optional execution time

t reaches the threshold valueoi, the reward accrued ceases to
increase.

A schedule of periodic tasks isfeasibleif mandatory parts
meet their deadlines at every invocation. Given a feasible
schedule of the task setT, theaverage rewardof taskTi is:

REWi =
Pi
P

P=PiX
j=1

Ri(tij) (2)

whereP is thehyperperiod, that is, the least common multiple
ofP1; P2; : : : ; Pn andtij is the service time assigned to thejth

instance of optional part of taskTi. That is, the average reward
of Ti is computed over the number of its invocations during the
hyperperiod P, in an analogous way to the definition of average
error in [5].

The average weighted rewardof a feasible schedule is
then given by:

REWW =
nX
i=1

wi REWi (3)

wherewi is a constant in the interval (0,1] indicating the rela-
tive importance of optional partOi. Although this is the most
general formulation, it is easy to see that the weightwi can al-
ways be incorporated into the reward functionfi(), by replac-
ing it bywi fi(). Thus, we will assume that all weight (impor-
tance) information are already expressed in the reward function
formulation and thatREWW is simply equal to

Pn
i=1REWi.

Finally, a schedule isoptimal if it is feasible and maximizes
the average weighted reward.

A Motivating Example:
Before describing our solution to the problem, we present

a simple example which shows the performance limitations
of anyMandatory-First algorithm. Consider two tasks where
P1 = 4;m1 = 1; o1 = 1; P2 = 8;m2 = 3; o2 = 5. Assume
that the reward functions associated with optional parts are lin-
ear andf1(t1) = k1t1 ; f2(t2) = k2t2, wherek1 � k2. In
this case, the “best” algorithm among “Mandatory-First” ap-
proaches should produce the schedule shown in Figure 1.
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Figure 1. A schedule produced by Mandatory-First Algorithm

In Figure 1, the Rate MonotonicPriority Assignment is used
whenever more than one mandatory task are simultaneously
ready, as in [5]. Yet, following other (dynamic or static) prior-
ity schemes would not change the fact that the processor will
be busy executing solely mandatory parts untilt = 5 under
any Mandatory-First approach. During the remaining idle in-
terval [5,8], the best algorithm would have chosen to schedule



O1 completely (which brings most benefit to the system) for 1
time unit andO2 for 2 time units. However, an optimal algo-
rithm would produce the schedule depicted in Figure 2.
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Figure 2. The optimal schedule

As it can be seen, the optimal strategy in this case consisted
of delaying the execution ofM2 in order to be able to exe-
cute ’valuable’O1 and we would still meet the deadlines of
all mandatory parts. By doing so, we would succeed in exe-
cuting two instances ofO1, in contrast to any Mandatory-First
scheme which can execute only one instance ofO1. Remem-
bering thatk1 � k2, one can conclude that the reward accrued
by the ’best’ Mandatory-First scheme may only be around half
of that accrued by the optimal one, for this example. Also, ob-
serve that in the optimal schedule, the optional execution times
of a given task did not vary from instance to instance. In the
next section, we prove that this pattern is not a mere coinci-
dence. We further perform an analytical worst-case analysis of
Mandatory-First algorithms in Section 4.

3 Optimality of Full-Utilization Policies for Pe-
riodic Reward-Based Scheduling

The objective of the Periodic Reward-Based Scheduling
problem is clearly finding optimalftijg values to maximize
the average reward. By substituting the average reward expres-
sion given by (2) in (3), we obtain our objective function:

maximize
nX
i=1

Pi
P

P=PiX
j=1

Ri(tij)

The first constraint we must enforce is that the total proces-
sor demand of mandatory and optional parts during the hyper-
period P may not exceed the available computing capacity:

nX
i=1

P=PiX
j=1

(mi + tij) � P

Note that this constraint is necessary, but not sufficient for
feasibility of the task set withfmig andftijg values. Next, we
observe that optimaltij values may not be less than zero, since
negative service times do not have any physical interpretation.
In addition, the service time of an optional instance ofTi does
not need to exceed theupperboundoi of reward functionRi(t),
since the reward accrued byTi ceases to increase aftertij = oi.
Hence, we obtain our second constraint set:

0 � tij � oi i = 1; : : : ; n j = 1; : : : ;
P

Pi

The above constraint allows us also to readily substitutefi()
for Ri() in the objective function. Finally, we need to express
the “full” feasibility constraint, requiring that mandatory parts
complete in a timely manner at every invocation. Note that it
is sufficient to have one feasible schedule for taskTi with mi

and the involved optimalftijg values.
To re-capture all the constraints, the periodic reward-based

scheduling problem, which we denote by REW-PER, is to find
ftijg values so as to:

maximize
nP
i=1

Pi
P

P=PiP
j=1

fi(tij) (4)

subject to
nP
i=1

P
Pi
mi +

nP
i=1

P=PiP
j=1

tij � P (5)

0 � tij � oi i = 1; : : : ; n j = 1; : : : ; PPi (6)

A feasible schedule exists with fmig and ftijg values (7)

We express this last constraint in English and not through
formulas since the algorithm producing this schedule including
optimaltij assignments need not be specified at this point.

Before stating our main result, we underline that ifPn
i=1

P
Pi
mi > P , it is not possible to schedule mandatory

parts in a timely manner and the optimization problem has no
solution. Note that this condition is equivalent to

Pn
i=1

mi

Pi
>

1, which indicates that the task set would be unschedulable,
even if it consisted of only mandatory parts. Hence, hereafter,
we assume that

Pn
i=1

mi

Pi
� 1 and therefore there exists at least

one feasible schedule.

Theorem 1 Given an instance of Problem REW-PER, there
exists an optimal solution where the optional parts of a task
Ti receive thesameservice time at every instance, i.e.tij =
tik 1 � j < k � P

Pi
. Furthermore, any periodic hard-real

time scheduling policy which can fully utilize the processor
(EDF, LLF, RMS-h) can be used to obtain a feasible schedule
with these assignments.

Proof: Our strategy to prove the theorem will be as fol-
lows. We will drop the feasibility condition (7) and obtain a
new optimization problem whose feasible region strictly con-
tains that of REW-PER. Specifically, we consider a new op-
timization problem, denoted by MAX-REW, where the ob-
jective function is again given by (4), but only the constraint
sets (5) and (6) have to be satisfied. Note that the new prob-
lem MAX-REW doesnot a priori correspond to any schedul-
ing problem, since the feasibility issue is not addressed. We
then show that there exists an optimal solution of MAX-REW
wheretij = tik 1 � j < k � P

Pi
. Then, we will return to

REW-PER and demonstrate the existence of a feasible sched-
ule (i.e. satisfiability of (7)) under these assignments. The re-
ward associated with MAX-REW’s optimal solution is always
greater than or equal to that of REW-PER’s optimal solution,



for MAX-REW doesnotconsider one of the REW-PER’s con-
straints. This will imply that this specific optimal solution of
the new problem MAX-REW is also an optimal solution of
REW-PER.

Now, we show that there exists an optimal solution of
MAX-REW wheretij = tik 1 � j < k � P

Pi
.

Claim 1 Let ftijg be an optimal solution to MAX-REW,1 �
i � n 1 � j � P

Pi
= qi. Thenft0ijg wheret0i1 = t0i2 = : : : =

t0iqi = t0i =
ti1+ti2+:::+tiqi

qi
1 � i � n 1 � j � qi, is also

an optimal solution to MAX-REW.

� We first show thatft0ijg values satisfy the constraints (5)
and (6), ifftijg already satisfy them. Since

Pqi
j=1 tij =Pqi

j=1 t
0

ij = qit
0

i the constraint (5) is not violated by the
transformation. Also, by assumption,tij � oi 8j, which
impliesmax

j
ftijg � oi. Sincet0i, which is arithmetic

mean ofti1; ti2; : : : ; tiqi is necessarily less than or equal
to max

j
ftijg, the constraint set (6) is not violated either

by the transformation.

� Furthermore, the total reward does not decrease by this
transformation, since

Pqi
j=1 fi(tij) � qi fi(t0i). The

proof of this statement is presented in the Appendix.

Using Claim 1, we can commit to findingan optimal so-
lution of MAX-REW by settingti1 = ti2 = : : : = tiqi =

ti i = 1; : : : ; n. In this case,
PP=Pi

j=1 fi(tij) =
P
Pi
fi(ti) andPP=Pi

j=1 tij =
P
Pi
ti. Hence, this version of MAX-REW can be

re-written as:

maximize
nP
i=1

fi(ti) (8)

subject to
nP
i=1

P
Pi
ti � P �

nP
i=1

P
Pi
mi (9)

0 � ti � oi i = 1; : : : ; n (10)

Finally, we prove that the optimal solutiont1; t2; : : : ; tn of
MAX-REW above, automatically satisfies the feasibility con-
straint (7) of our original problem REW-PER. Having equal
optional service times for a given task greatly simplifies the
verification of this constraint. Sincet1; t2; : : : ; tn (by assump-
tion) satisfy (9), we can write

Pn
i=1P � mi+ti

Pi
� P , or equiv-

alently,
Pn

i=1
mi+ti
Pi

� 1.
This implies that any policy which can achieve 100% pro-

cessor utilization in classical periodic scheduling theory (EDF,
LLF, RMS-h) can be used to obtain a feasible schedule for
tasks, which have now identical execution timesmi + ti at
every instance. Hence, the “full feasibility” constraint (7) of
REW-PER is satisfied. Furthermore, this schedule clearly max-
imizes the average reward sinceftig values maximize MAX-
REW whose feasible region encompasses that of REW-PER.

2

Corollary 1 Optimalti values for the Problem REW-PER can
be found by solving the optimization problem given by (8), (9)
and (10).

We discuss the solution of this concave optimization prob-
lem in Section 6.

4 Evaluation and comparison with other ap-
proaches

We showed through the example in Section 2 that the re-
ward accrued byanyMandatory-First scheme [5] may only be
approximately half of that of the optimal algorithm. We now
prove that, under the worst-case scenario, the ratio of the re-
ward accrued by a Mandatory-First approach to the reward of
the optimal algorithm approaches zero.

Theorem 2 There is an instance of the periodic reward-based
scheduling problem where, for any integerr � 2, the ratio
Reward of the best mandatory��rst scheme

Reward of the optimal scheme = 2
r

Proof: Consider two tasksT1 andT2 such thatP2=P1 = r;
f1(t1) = k1 t1; f2(t2) = k2 t2 andk1=k2 = r(r� 1). Further-
more, letm2 =

1
2(r o2) and

P1 = m1 + o1 +
m2

r
= m1 +

m2

r � 1

which implies thato1 = m2
r (r�1) .

This setting suggests that during any period ofT1, a sched-
uler has the choice of executing (parts of)O1 and/orM2, in
addition toM1.

Note that under any Mandatory-First policy, the proces-
sor will be continuously busy executing mandatory parts until
t = P2 � P1 + m1. Furthermore, the best algorithm among
Mandatory-First policies should use the remaining idle times
by schedulingO1 entirely (sincek1 > k2) andt2 = m2

r = o2
2

units ofO2. The resulting schedule is shown in Figure 3.
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Figure 3. A schedule produced by Mandatory-First Algorithm

The average reward that the best mandatory-first algorithm
(MFA) can accrue is therefore:

RMFA =
f1(o1)

r
+ f2(t2)

However, an optimal algorithm (shown in Figure 4) would
choose delaying the execution ofM2 for o1 units of time, at



1m 1m 1m 1m

���������������������������������������������������������������������������������������������
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��������������������������������������������������������������������������������������������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

. . . . . .

. . . . . . . .

0 P
1

2.P1 3.P
1

(r-2).P (r-1).P 1 r P
1

P
2

0

1

o1 1o 1o 1o 1o1m

m 2
r

m 2
r

m 2
r

m 2
r

m 2
r

Figure 4. An optimal schedule

everyperiod ofT1. By doing so, it would have the opportunity
of accruing the reward ofO1 at every instance.

The total reward of the optimal schedule is:

ROPT =
r f1(o1)

r
= f1(o1)

The ratio of rewards for the two policies turns out to be (for
anyr � 2)

RMFA

ROPT
=

1

r
+

f2(t2)

f1(o1)
=

1

r
+

1

r(r � 1)

m2

r

r(r � 1)

m2
=

2

r

which can be made as close as possible to 0 by appropriately
choosingr (i.e., choosing a large value forr).

2

Theorem 2 gives the worst-case performance ratio of
Mandatory-First schemes. We also performed experiments
with a synthetic task set to investigate the relative perfor-
mance of Mandatory-First schemes proposed in [5] with differ-
ent types of reward functions and different mandatory/optional
workload ratios.

The Mandatory-First schemes differ by the policy accord-
ing to which optional parts are scheduled when there is no
mandatory part ready to execute.Rate-Monotonic (RMSO)and
Least-Utilization (LU)schemes assign statically higher priori-
ties tooptional partswith smaller periods and least utilizations
respectively. Among dynamic priority schemes areEarliest-
Deadline-First (EDFO)andLeast-Laxity-First (LLFO)which
consider the deadline and laxity of optional parts when assign-
ing priorities. Least Attained Time (LAT)aims at balancing
execution times of optional parts that are ready, by dispatching
the one that executedleastso far. Finally,Best Incremental Re-
turn (BIR) is an on-line policy which chooses the optional task
contributing most to the total reward, at a givenslot. In other
words,at every slotBIR selects the optional partOij such that
the differencefi(tij + �) � fi(tij) is the largest (heretij is
the optional service timeOij has already received and� is the
minimum time slot that the scheduler assigns to any optional
task). However, it is still a sub-optimal policy since it does
not consider the laxity information. The authors indicate in [5]
that BIR is too computationally complex to be actually imple-
mented. However, since the total reward accrued by BIR is

usually much higher than the other five policies, BIR is used as
a yardstick for measuring the performance of other algorithms.

We have used a synthetic task set comprising 11 tasks whose
total (mandatory + optional) utilization is 2.3. Individual task
utilizations vary from 0.03 to 0.6. Considering exponential,
logarithmic and linear reward functions as separate cases, we
compared the reward of six Mandatory-First schemes with our
optimal algorithm (OPT). The tasks’ characteristics (including
reward functions) are given in the Table below. In our exper-
iments, we first set mandatory utilization to 0 (which corre-
sponds to the case of all-optional workload), then increased it
to 0.25, 0.4, 0.6, 0.8 and 0.91 subsequently.

Task Pi mi + oi f1i (t) f2i (t) f3i (t)

T1 20 10 15 (1� e�t) 7 ln(20 t + 1) 5 t
T2 30 18 20 (1� e�3t) 10 ln(50 t+ 1) 7 t
T3 40 5 4 (1� e�t) 2 ln(10 t + 1) 2 t
T4 60 2 10 (1� e�0:5t) 5 ln(5 t+ 1) 4 t
T5 60 2 10 (1� e�0:2t) 5 ln(25 t + 1) 4 t
T6 80 12 5 (1� e�t) 3 ln(30 t + 1) 2 t
T7 90 18 17 (1� e�t) 8 ln(8 t+ 1) 6 t
T8 120 15 8 (1� e�t) 4 ln(6 t+ 1) 3 t
T9 240 28 8 (1� e�t) 4 ln(9 t+ 1) 3 t
T10 270 60 12 (1� e�0:5t) 6 ln(12 t + 1) 5 t
T11 2160 300 5 (1� e�t) 3 ln(15 t + 1) 2 t

In our experiments, a common pattern appears: the opti-
mal algorithm improves more dramatically with the increase
in mandatory utilization. The other schemes miss the opportu-
nities of executing “valuable” optional parts while constantly
favoring mandatory parts. The reward loss becomes striking
as the mandatory workload increases. Figures 5 and 6 show
the reward ratio for the case of exponential and logarithmic
reward functions, respectively. The curves for these strictly
concave reward functions are fairly similar: BIR performs
best among Mandatory-First schemes, and its performance de-
grades as the mandatory utilization increases; for instance the
ratio falls to 0.73 when mandatory utilization is 0.6. Other
algorithms which are more amenable to practical implemen-
tations (in terms of runtime overhead) than BIR perform even
worse. However, it is worth noting that the performance of
LAT is close to that of BIR. This is to be expected, since task
sets with strictly concave reward functions usually benefit from
“balanced” optional service times.

Figure 7 shows the reward ratio for linear reward functions.
Although the reward ratio of Mandatory-First schemes again
decreases with the mandatory utilization, the decrease is less
dramatic than in the case of concave functions. However,
note that the ratio is typically less than 0.5 for the five prac-
tical schemes. It is interesting to observe that the (impractical)
BIR’s reward now remains comparable to that of optimal, even
in the higher mandatory utilizations: the difference is less than
15%. The main reason for this behavior change lies on the fact
that, for a given task, the reward of optional execution slots
in different instances does not make a difference in the lin-
ear case. In contrast, not executing the “valuable”first slot(s)
of a given instance creates a tremendous effect for nonlinear
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Figure 6. The Reward Ratio of Mandatory-First schemes:
logarithmic reward functions

concave functions. The improvement of the optimal algorithm
would be larger for a larger range ofki values (whereki is
the coefficient of the linear reward function). We recall that
the worst-case performance of BIR may be arbitrarily bad with
respect to the optimal one for linear functions, as Theorem 2
suggests.

5 Periodic Reward-Based Scheduling Problem
with Convex Reward Functions is NP-Hard

As we mentioned before, maximizing the total (or average)
reward with 0/1 constraints case had already been proven to
be NP-Complete in [15]. In this section, we show that convex
reward functions also result in an NP-Hard problem.

We now show how to transform the SUBSET-SUM prob-
lem, which is known to be NP-Complete, to REW-PER with
convex reward functions.
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SUBSET-SUM: Given a setS = fs1; s2; : : : ; sng of posi-
tive integers and the integer M, is there a setSA � S such thatX
si2SA

si = M ?

We construct the corresponding REW-PER instance as fol-
lows. LetW =

Pn
i=1 si. Now consider a set ofn periodic

tasks with the same periodM and mandatory partsmi = 0 8i.
The reward function associated withTi is given by:

Ri(ti) =

�
fi(ti) if 0 � t � oi = si
fi(oi) if t > oi = si

wherefi(ti) = t2i + (W � si)ti is a strictly convex and in-
creasing function on nonnegative real numbers.

Notice thatfi(ti) can be re-written asti(ti � si) + W ti.
Also we underline that having the same periods for all tasks
implies that REW-PER can be formulated as:

maximize
nP
i=1

ti (ti � si) +W
nP
i=1

ti (11)

subject to
nP
i=1

ti �M (12)

0 � ti � si (13)

Let us denote byMaxRew the total reward of the optimal
schedule. Observe that for0 < ti < si, the quantityti (ti �
si) < 0. Otherwise, at either of the boundary values 0 orsi,
ti (ti � si) = 0. Hence,MaxRew � WM .

Now, consider the question: ”IsMaxRew equal toWM?”.
Clearly, this question can be answered quickly if there is a
polynomial-time algorithm for REW-PER where reward func-
tions are allowed to be convex. Furthermore, the answer can be

positive only when
nP
i=1

ti = M andeachti is equal to either 0

or si. Therefore,MaxRew equal toWM , if and only if there
is a setSA � S such that

P
si2SA

si = M , which implies that
REW-PER with convex reward functions is NP-Hard.



6 Solution of Periodic Reward-Based Schedul-
ing Problem with Concave Reward Functions

Corollary 1 reveals that the optimization problem whose so-
lution provides optimal service times is of the form:

maximize
nP
i=1

fi(ti)

subject to
nP
i=1

bi ti � d

ti � oi i = 1; 2; :::n

0 � ti i = 1; 2; :::n

where d (the ’slack’ available for optional parts) and
b1; b2; : : : ; bn are positive rational numbers. In this section,
we present polynomial-time solutions for this problem, where
eachfi is a nondecreasing, concave and differentiable1 func-
tion.

First note that, if the available slack is large enough to ac-
commodate every optional part entirely (i.e., if

Pn
i=1 bi oi �

d), then the choiceti = oi 8 i clearly maximizes the objective
function due to the nondecreasing nature of reward functions.

Otherwise, the slackd should be used in its entirety since
the total reward never decreases by doing so (again due to
the nondecreasing nature of the reward functions). In this
case, we obtain a concave optimization problem with lower
and upper bounds, denoted by OPT-LU. An instance of OPT-
LU is specified by the set of nondecreasing concave functions
F = ff1; : : : ; fng, the set of upper boundsO = fo1; : : : ; ong
and the available slackd. The aim is to:

maximize
nP
i=1

fi(ti) (14)

subject to
nP
i=1

bi ti = d (15)

ti � oi i = 1; 2; :::n (16)

0 � ti i = 1; 2; :::n (17)

where0 < d <
Pn

i=1 bi � oi.
Special Case of Linear functions: If F comprises solely

linear functions, the solution can be considerably simplified.
Note that for a functionfi(ti) = ki � ti, if we increaseti by
� then total reward increases byki�. However by doing so,
we make use ofbi� units of slack (d is reduced bybi� due
to (15)). Hence, the “marginal return” of taskTi per slack
unit iswi =

ki
bi

. It is therefore possible to order the functions
according to their marginal return, and distribute the slack in
decreasing order of marginal returns, while taking account the
upper bounds. We note that this solution is analogous to the
one presented in [17]. The dominant factor in the time com-
plexity comes from the initial sorting procedure, hence in the
special case of all-linear functions, OPT-LU can be solved in
timeO(n logn).

1In the auxiliary optimization problems which will be introduced shortly,
the differentiability assumption holds as well.

When F contains nonlinear functions then the procedure
becomes more involved. In the next two subsections, we in-
troduce two auxiliary optimization problems, namely Problem
OPT (which considers only the equality constraint) and Prob-
lem OPT-L (which considers only the equality and lower bound
constraints), which will be used to solve OPT-LU.

6.1 Problem OPT: Equality Constraints
Only

The problem OPT is characterized by:

maximize
nP
i=1

fi(ti)

subject to
nP
i=1

bi ti = d

whereF = ff1; : : : ; fng is the set of nondecreasing concave
functions, possibly including some linear function(s). As it
can be seen, OPT does not consider the lower and upper bound
constraints of Problem OPT-LU. The algorithm which returns
the solution of Problem OPT, is denoted by “Algorithm OPT”.

WhenF is composed solely ofnon-linearreward functions,
the application of Lagrange multipliers technique to the Prob-
lem OPT, yields:

1

bi
f 0i (ti) � � = 0 i = 1; 2; : : : ; n (18)

where� is the common Lagrange multiplier andf 0i(ti) is the
derivative of the reward functionfi. The quantity 1

bi
f 0i(ti)

in (18) actually represents themarginal returncontributed by
Ti to the total reward, which we will denote aswi(ti). Ob-
serve that sincefi(ti) is non-decreasing and concave by as-
sumption, bothwi(ti) andf 0i(ti) is non-increasing and posi-
tive valued. Equation (18) implies that the marginal returns
wi(ti) =

1
bi
f 0i(ti) shouldbe equal for all reward functions in

the optimal solutionft1; : : : ; tng. Considering that the equal-

ity
nP
i=1

bi ti = d should also hold, one can obtain closed for-

mulas in most of the cases which occur in practice. The closed
formulas presented below are obtained by this method.

� For logarithmicreward functions of the form
fi(ti) = ln(ki � ti + ci),

t1 =

d+
nP

j=1

cj
kj
�

c1
k1 b1

nP
j=1

bj

1
b1

nP
j=1

bj

tj = b1 t1 +
c1

k1 b1
�

cj
kj bj

8j 1 < j � n.

� Forexponentialreward functions of the form
fi(ti) = ci(1� e�kiti),

t1 =

d�
nP

j=1

1
kj

[ln (
cj b1kj
c1bjk1

)]

nP
j=1

k1
kj

tj =
1
kj
[k1 t1 + ln ( cjb1kjc1bjk1

)] 8j 1 < j � n.



� For “kth root” reward functions of the form
fi(ti) = ci t

1=k
i (k > 1),

t1 =
d

nP
j=1

(
bj c1
b1cj

)
1

k�1

tj = t1 (
bjc1
b1cj

)
1

k�1 8j 1 < j � n.

When it is not possible to find a closed formula, follow-
ing exactly the approach presented in [10, 13], we solve� in
the equation

Pn
i=1 bi hi(�) = d, wherehi(k) is the inverse

function of 1
bi
f 0i(ti) = wi(ti) (we assume the existence of the

derivative’s inverse function wheneverfi is nonlinear, com-
plying with [10, 13]). Once� is determined,ti = hi(�); i =
1; : : : ; n is the optimal solution.

We now examine the case whereF is a mix of linear and
nonlinear functions. Consider two linear functionsfi(t) = ki�t
andfj(t) = kj � t. The marginal return offi(ti) is wi(ti) =
ki
bi

= wi and that offj iswj(tj) =
kj
bj

= wj . I wj > wi then
the service timeti should be definitely zero, since marginal re-
turn offi is strictly less thanfj everywhere. After this elimina-
tion process, if there arep > 1 linear functions with the same
(largest) marginal returnwmax then we will consider them as a
single linear function in the procedure below and evenly divide
the returned service timetmax amongtj values corresponding
to thesep functions.

Hence, without loss of generality, we assume thatfn(t) =
kn � t is the only linear function inF. Its marginal return is
wn(tn) =

kn
bn

= wmax. We first compute the optimal distri-
bution of slackd among tasks with nonlinear reward functions
f1; : : : ; fn�1. By the Lagrange multipliers technique,wi(ti)�
� = 0 and thusw1(t

�
1) = w2(t

�
2) = : : : = wn�1(t

�
n�1) = � at

the optimal solutiont�1; t
�
2; : : : ; t

�
n�1.

Now we distinguish two cases:

� � � max. In this case,t�1; t
�

2; : : : ; t
�

n�1 and tn = 0 is
the optimal solution to OPT. To see this, first remember
that all the reward functions are concave and nondecreas-
ing, hencewi(t

�

i � �) � wi(t
�

i ) � wn(�) = wmax i =
1; : : : ; n� 1 for all � >= 0. This implies that transferring
some service time from another taskTi toTn would mean
favoring the task which has the smaller marginal reward
rate and would not be optimal.

� � < wmax. In this case, reserving the slackd solely
to tasks with nonlinear reward functions means violating
the best marginal rate principle and hence is not optimal.
Therefore, we should increase service timeti until wi(ti)
drops to the level ofwmax for i = 1; 2; : : :; n� 1, but not
beyond. Solvinghi(wmax) = ti for i = 1; 2; : : : ; n � 1

and assigning any remaining slack
d�
P

n�1

i=1
ti

bn
to tn (the

service time of unique task with linear reward func-
tion) clearly satisfies the best marginal rate principle and
achieves optimality.

6.2 Problem OPT-L: Equality Constraints
with Lower Bounds

Now, we consider the optimization problem with the
equality and lower bound constraints, denoted by OPT-L.
An instance of Problem OPT-L is characterized by the set
F=ff1; f2; ::; fng of nondecreasing concave reward functions,
and the available slackd:

maximize
nP
i=1

fi(ti) (19)

subject to
nP
i=1

bi ti = d (20)

0 � ti i = 1; 2; :::n (21)

To solve OPT-L, we first evaluate the solution setSOPT
to the corresponding problem OPT and check whether all in-
equality constraints are automatically satisfied. If this is the
case, the solution setSOPT�L of Problem OPT-L is clearly
the solutionSOPT . Otherwise, we will constructSOPT�L it-
eratively as described below.

Let � = fxj 1bx f
0
x(0) � 1

bi
f 0i (0) 8ig. Remember that

1
bx
f 0x(tx) is the marginal return associated withfx(tx) and

was denoted bywx(tx). Informally,� contains the functions2

fx 2 F with the smallest marginal returns at lower bound 0,
wx(0).

Lemma 1 If SOPT violates some lower bound constraints of
Problem OPT-L, then, in the optimal solutiontm = 0 8m 2 �.

The proof of Lemma 1 is based on Kuhn-Tucker optimality
conditions for nonlinear optimization problems and is not pre-
sented here for lack of space (the complete proof can be found
in [1]). The time complexityCOPT (n) of Algorithm OPT is
O(n) (If the mentioned closed formulas apply, then the com-
plexity is clearly linear. Otherwise the unique unknown� can
be solved in linear time under concavity assumptions, as indi-
cated in [10, 13]). Lemma 1 immediately implies the existence
of an algorithm which setstm = 0 8m 2 �, and then re-
invokes Algorithm OPT for the remaining tasks and slack (in
case that some inequality constraints are violated bySOPT ).
Since the number of invocations is bounded byn, the com-
plexity of the algorithm which solves OPT-L isO(n2).

Furthermore, it is possible to converge to the solution in
timeO(n logn) by using a binary-search like technique on La-
grange multipliers. Again, full details and correctness proof of
this faster approach can be found in [1].

6.3 Problem OPT-LU: Equality Constraints
with Upper and Lower Bounds

An instance of Problem OPT-LU is characterized by the
setF= ff1; f2; : : : ; fng of nondecreasing, differentiable, and

2We use the expression “functions” instead of “indicesof functions” unless
confusion arises.



concave reward functions, the setO= fo1; o2; ::; ong of upper
bounds on optional parts, and available slackd:

maximize
nP
i=1

fi(ti) (22)

subject to
nP
i=1

bi ti = d (23)

ti � oi i = 1; 2; :::n (24)

0 � ti i = 1; 2; :::n (25)

We first observe the close relationship between the prob-
lems OPT-LU and OPT-L. Indeed, OPT-LU has only an ad-
ditional set of upper bound constraints. It is not difficult to
see that ifSOPT�L satisfies the constraints given by Equation
(24), then the solutionSOPT�LU of problem OPT-LU is the
same asSOPT�L. However, if an upper bound constraint is
violated then we will construct the solution iteratively in a way
analogous to that described in the solution of Problem OPT-L.

Let � = fxj 1
bx
f 0x(ox) �

1
bi
f 0i (oi) 8ig. Informally,� con-

tains the functionsfx 2 F with the largest marginal returns at
the upper bounds,wx(ox).

Lemma 2 If SOPT�L violates some lower bound constraints
of Problem OPT-LU, then, in the optimal solutiontm =
om 8m 2 �.

The proof of Lemma 2 is again based on Kuhn-Tucker op-
timality conditions and can be found in [1].

The algorithm ALG-OPT-LU (see Figure 8) which finds so-
lution to the problem OPT-LU is based on successively solving
instances of OPT-L. First, we find the solutionSOPT�L of the
corresponding problem OPT-L. We know that this solution is
optimal for the simpler problem which does not take into ac-
count upper bounds. If the upper bound constraints are auto-
matically satisfied, then we are done. However, if this is not the
case, we settq = oq 8q 2 �. Finally, we update the setsF, O
and the slackd to reflect the fact that the values oftm 8m 2 �
have been fixed.

Algorithm OPT-LU(F,O,d)
1 SetSOPT�LU = ;

2 if F = ; then exit
3 EvaluateSOPT�L /* consider only lower bounds */
4 if all upper bound constraints are satisfied then

SOPT�LU = (SOPT�LU [ SOPT�L); exit
5 compute�
6 settq = oq 8q 2 � in SOPT�LU

7 setd = d�
P

x2�
bx ox

8 setF=F��
9 setO=O�foxjx 2 �g

10 Goto Step 2

Figure 8. Algorithm to solve Problem OPT-LU

Complexity: Notice that the worst case time complexity of
each iteration is equal to that of Algorithm OPT-L, which is

O(n � logn). Furthermore, the cardinality ofF decreases by
at least 1 after each iteration. Hence, the number of iterations
is bounded byn. It follows that the total time complexity of
Algorithm OPT-LU isO(n2 � logn). However, in case of all-
linear functions, OPT-LU can be solved in timeO(n � logn) as
shown before.

7 Conclusion

In this paper, we have addressed the periodic reward-based
scheduling problem in the context of uniprocessor systems. We
proved that when the reward functions are convex, the prob-
lem is NP-Hard. Thus, our focus was on linear and concave
reward functions, which adequately represent realistic appli-
cations such as image and speech processing, time-dependent
planning and multimedia presentations. We have shown that
there exists always a schedule where the optional execution
times of a given task do not change from instance to instance.
This result, in turn, implied the optimality of any periodic real-
time policy which can achieve 100% utilization of the proces-
sor. The existence of such policies is well-known in real-time
systems community: RMS-h, EDF and LLF. We have also pre-
sented polynomial-time algorithms for computing the optimal
service times.

We underline that besides clear and observable reward im-
provement over previously proposed sub-optimal policies, our
approach has the advantage of not requiring any runtime over-
head for maximizing the reward of the system and for con-
stantly monitoring the timeliness of mandatory parts. Once
optimal optional service times are determined statically by our
algorithm, an existing (e.g., EDF) scheduler does not need to
be modified or to be aware of mandatory/optionalsemantic dis-
tinction at all. This appears as another major benefit of hav-
ing pre-computed and optimalequalservice times for a given
task’s invocations in reward-based scheduling.

In addition, Theorem 1 implies that as long as we are con-
cerned with linear and concave reward functions, the resource
allocation can be also made in terms ofutilization of tasks
without sacrificing optimality. In our opinion, this fact points
to an interesting convergence ofinstance-based[5, 15] and
utilization-based[17] models for the most common reward
functions.

About the tractability issues regarding the nature of reward
functions, the case of step functions was already proven to be
NP-Complete ([15]). By solving efficiently the case of con-
cave and linear reward functions and proving that the case of
convex reward functions is NP-Hard, we believe that efficient
solvability boundaries in (periodic or aperiodic) reward-based
scheduling problem have been reached by our work in this as-
pect (assuming P6= NP).

We believe that considering dynamic aperiodic task arrivals,
fault tolerance issues and investigating good approximation al-
gorithms for intractable cases such as step functions and er-
ror cumulative jobs can be major avenues for reward-based
scheduling.
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APPENDIX
We will show that:

qiX
j=1

fi(tij) � qi fi(t
0

i) (26)

where t0i =
ti1+ti2+:::+tiqi

qi
and the functionfi is concave.

If fi is a linear function of the formfi(t) = ki � t, thenPqi
j=1 fi(tij) = ki (ti1 + ti2 + : : : + tiqi) = ki qi t

0

i and the
inequality (26) is immediately established.

If fi is general concave, we recall that:

�fi(x) + (1� �)fi(y) � fi(�x+ [1� �]y) (27)

8x; y and for every� such that0 � � � 1. In this case, we
prove the validity of (26) by induction. Ifqi = 1, (26) holds
trivially. So assume that it holds forqi = 1; 2; : : : ;m � 1.
Induction assumption implies that:

m�1X
j=1

fi(tij) � (m � 1) fi(
ti1 + : : :+ ti(m�1)

m� 1
) (28)

Choosing� = m�1
m ; x =

ti1+ti2+:::+ti(m�1)
m�1 ; y = tim in

(27), we can write:

m � 1

m
fi(

ti1 + : : :+ ti(m�1)

m � 1
) +

1

m
fi(tim) �

fi(
ti1 + : : :+ tim

m
) (29)

Combining (28) and (29), we get:

1

m

mX
j=1

fi(tij) � fi(
ti1 + : : :+ tim

m
) 8m

establishing the validity of (26).


