Optimal Reward-Based Scheduling of Periodic Real-Time Tasks

Hakan Aydin, Rami Melhem, and Daniel M@ss’ Pedro Mag-Alvarez'
Computer Science Department CINVESTAV-IPN. Seccile Computaoin
University of Pittsburgh Av. I.P.N. 2508, Zacatenco.
Pittsburgh, PA 15260 keXico, DF. 07300
{aydin,mosse,melhem }@cs.pitt.edu pmejia@cs.pitt.edu
Abstract improved approach to provide hard real-time guaranteds to

out of n consecutive instances of a task.

Reward-based scheduling refers to the problem in which The techniques mentioned above tacitly assume that a task’s
there is a reward associated with the execution of a taskoutput is of no value if it is not executed completely. How-
In our framework, each real-time task comprises a mandaever, in many application areas such as multimedia appli-
tory and an optional part, with which a nondecreasing reward cations [17], image and speech processing [4, 6, 19], time-
function is associated. Imprecise Computation and Increaseddependent planning [3], robot control/navigation systems [21],
Reward-with-Increased-Service models fall within the scope afmedical decision making [9], information gathering [7], real-
this framework. In this paper, we address the reward-basedime heuristic search [12] and database query processing [20]
scheduling problem for periodic tasks. For linear and con-a partial or approximate but timely result is usually acceptable.
cave reward functions we show: (a) the existence of an optimal Thelmprecise Computatidi®, 15] andIRIS (Increased Re-
schedule where the optional service time of a task is constantard with Increased Servicg)0, 13] models were proposed
at every instance and (b) how to efficiently compute this servicéo enhance the resource utilization and provideegful degra-
time. We also prove that RMS-h (RMS with harmonic periods)dation in real-time systems. In these models, every real-time
EDF and LLF policies are optimal when used with the opti-task is composed of a mandatory part and an optional part. The
mal service times we computed, and that the problem becomésrmer should be completed by the task’s deadline to provide
NP-Hard, when the reward functions are convex. Further, ouroutput of minimal quality. The optional part is to be executed
solution eliminates run-time overhead, and makes possible thafter the mandatory part while still before the deadline, if there
use of existing scheduling disciplines. are enough resources in the system that are not committed to

running mandatory parts for any task. The longer the optional
part executes, the better the quality of the result (the higher the
1 Introduction reward).
The algorithms proposed for imprecise computation appli-

In a real-time system each task must complete andyme  cations concentrate on a model that has an upper bound on
correct output by the specified deadline. However, if the Sysine execution time that could be assigned to the optional part
tem is overloaded it is not possible to meet each deadline. I5, 15, 18]. The aim is usually to minimize the (weighted) sum
the past, several techniques have been introduced by the rgf errors. Several efficient algorithms are proposed to solve
search community regarding the appropriate strategy to use #ptimally aperiodic scheduling problem of imprecise compu-
overloaded systems of periodic real-time tasks. tation tasks [15, 18]. A common assumption in these studies

One class of approaches focuses on providing somewhg that the quality of the results produced itireear function
less stringent guarantees for temporal constraints. In [11lsf the precision error; consequently, the possibility of having
some instances of a task are allowed to be skipped entirelynore general error functions is usually not addressed.
Theskip factordetermines how often instances of a given task  an alternative model allows tasks to get increasing reward
may be left unexecuted. A best effort strategy is introducegyith increasing service (IRIS model) [10, 13] without an upper
in [8], aiming at meeting: deadlines out of: instances of a  pound on the execution times of the tasks (though the deadline
given task. This framework is also known @sk)-firm dead-  f the task is an implicit upper bound) and without the sepa-
lines scheme. Bernat and Burns present in [2] a hybrid angation between mandatory and optional parts [10]. A task ex-

*This work has been supported by the Defense Advanced Research Projecefgu,teS for as long as th.e scheduler allows be.fore. Its dea(.jlme'
Agency through the FORTS project (Contract DABT63-96-C-0044). Typically, a nondecreasingpncavereward function is associ-
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maximizing the total reward in a system of aperiodic indepeniem to multiple resources and quality dimensions. Further, de-
dent tasks is addressed. The optimal solution with static tasgendent and independent quality dimensions are separately ad-
sets is presented, as well as two extensions that include manddressed for the first time in this work. However, a fundamen-
tory parts and policies for dynamic task arrivals. tal assumption of that model is that the reward functions and
Note that imprecise computation and IRIS models argesource allocations are in terms wilization of resources
closely related, since the performance metrics can be defined &ur work falls rather along the lines of Imprecise Computa-
duals (maximizing the total reward is a dual of minimizing thetion model, where the reward accrued has to be computed sep-
total error). Similarly, a concave reward function correspondsirately over all task instances and the problem is to find the
to a convex error function, and vice versa. optimal service times fagachinstance and the optimal sched-
We use the term “Reward-based scheduling” to encompaggle with these assignments.
scheduling frameworks such as Imprecise Computation and .. .
IRIS modgls, where each task can bgdecomposeg into mang@sPects of Periodic Reward-Based Scheduling

tory and optional subtasks. A nondecreasing reward functiof roblem

is associated with the execution of each optional part. The difficulty of finding an optimal schedule for a periodic
An interesting question concerns types of reward functiongeward-based task set has its origin on two objectives that must
which represent realistic application areas. liear reward  pe simultaneously achieved, namely: (i) Meeting deadlines
function [15] models the case where the benefit to the overalbf mandatory parts atveryperiodic task invocation, and (ii)
system increasemiformlyduring the optional execution. Sim- Scheduling optional parts to maximize the total (or average)
ilarly, a concavereward function [10, 13] addresses the casereward.
where the greatest increase/refinement in the output quality is These two objectives are both important, yet often incom-
obtained during the first portions of optional executions. Thepatible. In other words, hard deadlines of mandatory parts may
first derivative of a nondecreasing concave function is noninrequire sacrificing optional parts with greatest value to the sys-
creasing. Linear and general concave functions are considergsim. The analytical treatment of the problem is complicated by
the most realistic and typical in the literature since they adethe fact that, in an optimal schedule, optional service times of
quately capture the behavior of many application areas such asgiven task mayary from instance to instance which makes
those mentioned above [4, 6, 19, 3, 21, 12, 7, 17, 20]. In thishe framework of classical periodic scheduling theory inappli-
paper, we show that the caseaavexreward functions is an  cable. Furthermore, this fact introduces a large number of vari-
NP-Hard problem and thus focus on linear and concave rewargbles in any analytical approach. Finally, by allowing nonlin-
functions. Reward functions with 0/1 constraints, where no reear reward functions to better characterize the optional tasks’
ward is accrued unless tlegtire optional part is executed, or contribution to the overall system, the optimization problem
step reward functions have also received some interest in thgecomes computationally harder.
literature. Unfortunately, this problem has been shown to be |n [5], Chung, Liu and Lin proposed the strategy of assign-
NP-Complete in [18]. ing statically higher priorities to mandatory parts. This de-
Periodic reward-based scheduling remains relatively unexeision, as proven in that paper, effectively achieves the first
plored, since the important work of Chung, Liu and Lin [5]. objective mentioned above by securing mandatory parts from
In that paper, the authors classified the possible application athe potential interference of optional parts. Optional parts are
eas as “error non-cumulative” and “error cumulative”. In thescheduled whenever no mandatory part is ready in the sys-
former, errors (or optional parts left unexecuted) have no effectem. In [5], the simulation results regarding the performance
on the future instances of the same task. Well-known examplesf several policies which assign static or dynamic priorities
of this category are tasks that periodically receive, process argimong optional parts are reported. We call the class of algo-
transmit audio, video or compressed images [4, 6, 19] as welithms that statically assign higher priorities to mandatory parts
as information retrieval tasks [7, 20]. In “error cumulative” ap- Mandatory-First Algorithms
plications, such as radar tracking, an optional instance must be In our solution, we dmot decouple the objectives of meet-
executed completely at every (predetermingdjvocations. ing the deadlines of mandatory parts and maximizing the total
The authors further proved that the case of error-cumulativgor average) reward. We formulate the periodic reward-based
jobs is an NP-Complete problem. In this paper, we restrickcheduling problem as an optimization problem and derive an
ourselves to error non-cumulative applications. important and surprising property of the solution for the most
Recently, a QoS-based resource allocation model (QRAMfommon (i.e., linear and concave) reward functions. Namely,
has been proposed for periodic applications [17]. In that studywe prove that there is always an optimal schedule where op-
the problem is to optimally allocate several resources to théional service times of a given task do not vary from instance
various applications such that they simultaneously meet theiio instance. This important result immediately implies that
minimum requirements along multiple QoS dimensions andhe optimality (in terms of achievable utilization) of any policy
the total system utility is maximized. In one aspect, this carwhich can fully use the processor in case of hard-real time peri-
be viewed as a generalization of optimal CPU allocation probedic tasks also holds in the context of reward-based scheduling



(in terms of total rewardjvhen used with these optimal ser- ¢ reaches the threshold valug the reward accrued ceases to
vice times Examples of such policies are RMS-h (RMS with increase.
harmonic periods) [14], EDF [14] and LLF [16] scheduling A schedule of periodic tasks feasibleif mandatory parts

disciplines. meet their deadlines at every invocation. Given a feasible
Following these existence proofs, we address the problerachedule of the task s&t theaverage rewardof task”; is:

of efficiently computing optimal service times and provide P P/P;

polynomial-time algorithms for linear and/or general concave REW, = = Z Ri(tij) (2)

reward functions. Note that using these optimal and con- P =1

stant optimal service times has also important practical advan-h is theh iodthat is. the | itiol
tages: (a) The runtime overhead due to the existence of mandy"€re” is thehyperperiodthat is, the least common multiple

tory/optional dichotomy and reward functions is removed, and £t £z - - -, P @ndt; is the service time assigned to e
(b) existing RMS-h, EDF and LLF schedulers may be usednstance of optional part of tagk. That is, the average reward

without any modification with these optimal assignments. ~ ©f Zi iS computed over the number of its invocations during the
The remainder of this paper is organized as follows: inhyperperiod P, in an analogous way to the definition of average

Section 2, the system model and basic definitions are giverf'™r in [5]: , _ _
The main result about the optimality of any periodic policy 1€ @verage weighted rewardof a feasible schedule is
which can fully utilize the processor(s) is obtained in Sectiont"€n given by
3. In Section 4, we first analyze the worst-case performance of REWw = Z w; REW; 3)
Mandatory-First approaches. We also provide the results of ex- i=1

periments on a synthetic task set to compare the performan%hereiu'

of pqlicies proposed in [5] against our optimal glgqrithm_ In tive importance of optional pa®;. Although this is the most
Section 5, we show that the concavity assumption is also ne(ﬁeneral formulation, it is easy to see that the weightan al-

essary for computational efficiency by proving that aIIowingwayS be incorporated into the reward functipi), by replac-

convex reward functions results in an NP-Hard problem. ang it by w; f; (). Thus, we will assume that all weight (impor-

presgnt detfauls about the specific optlmlzat|9n problem thgt W?ance) information are already expressed in the reward function
use in Se(?tlon 6'. We conclude by summarizing our Cont”buTormulation and thal EWyy is simply equal t&-"_, REW;.

tion and discussing future work. Finally, a schedule igptimal if it is feasible and maximizes
the average weighted reward.

A Motivating Example:

We consider a setfT of n periodic real-time tasks Before describing our solution to the problem, we present
Ty, T5,...,T, on a uniprocessor system. The periodipfis  a simple example which shows the performance limitations
denoted byP;, which is also equal to the deadline of the cur- of any Mandatory-First algorithm. Consider two tasks where
rent invocation. We refer to thé” invocation of taskr;} as’d;;. Pr=4,m =1,00 = 1, P, = 8, my = 3,09 = 5. Assume
All tasks are assumed to be independent and reaty-4i. that the reward functions associated with optional parts are lin-

Each taskT; consists of a mandatory pas; and an op- ear andfi(t1) = kit1, fa(t2) = kate, wherek; > ko, In
tional partO;. The length of the mandatory part is denoted bythis case, the “best” algorithm among “Mandatory-First” ap-
m;; each task must receive at least units of service time be- proaches should produce the schedule shown in Figure 1.
fore its deadline in order to provide output of acceptable qual-
ity. The optional partD; becomes ready for execution only M1
when the mandatory pait; completes.

Associated with each optional part of a task is a reward
function R; (¢;;) which indicates the reward accrued by task

n

is a constant in the interval (0,1] indicating the rela-

2 System Model

0 1 4

T;; when it receives;; units of servicebeyond its mandatory M 2
portion. R;(t;;) is of the form: 0 1 .
fi(tij) it 0< tij < O;
Rilli)) =Y 2 (o) o > e 1) . 4 _
Ji (Oz) if tij > 0 Figure 1. A schedule produced by Mandatory-First Algorithm

wheref; is a nondecreasing, concave and differentiable func- In Figure 1, the Rate Monotonic Priority Assignment is used
tion over nonnegative real numbers ands the length oen-  whenever more than one mandatory task are simultaneously
tire optional partD;. We underline thaf; (¢;;) is nondecreas- ready, as in [5]. Yet, following other (dynamic or static) prior-
ing: the reward accrued by tagk; can not decrease by al- ity schemes would not change the fact that the processor will
lowing it to run longer. Notice that the reward functidi(?) be busy executing solely mandatory parts unhtit 5 under

is not necessarily differentiable at= o,. Note also that in any Mandatory-First approach. During the remaining idle in-
this formulation, by the time the task’s optional execution timeterval [5,8], the best algorithm would have chosen to schedule



0, completely (which brings most benefit to the system) for1  The above constraint allows us also to readily substifi{je
time unit andO, for 2 time units. However, an optimal algo- for R;() in the objective function. Finally, we need to express
rithm would produce the schedule depicted in Figure 2. the “full” feasibility constraint, requiring that mandatory parts
complete in a timely manner at every invocation. Note that it
is sufficient to have one feasible schedule for taskvith m;

M1 and the involved optima]t;; } values.
0 8 To re-capture all the constraints, the periodic reward-based
scheduling problem, which we denote by REW-PER, is to find
M2 {t;;} values so as to:
0 2 4 maximize Z L é fitis) (4)
Figure 2. The optimal schedule subject to Z
As it can be seen, the optimal strategy in this case consisted n n P/P;

of delaying the execution oM in order to be able to exe- > % +> > ti; <P (5)
cute ‘valuable’Q; and we would still meet the deadlines of =1 i=1j=1
all mandatory parts. By doing so, we would succeed in exe- 0<t; <0 i=1,...,m jg=1,..., % (6)

cuting two instances ay, in contrast to any Mandatory-First

scheme which can execute only one instanc®of Remem- A feasible schedule exists with {m;} and {t;;} values (7)

bering thatt; > &, one can conclude that the reward accrued

by the 'best’ Mandatory-First scheme may only be around half We express this last constraint in English and not through

of that accrued by the optimal one, for this example. Also, obformulas since the algorithm producing this schedule including

serve that in the optimal schedule, the optional execution timesptimalt;; assignments need not be specified at this point.

of a given task did not vary from instance to instance. In the Before stating our main result, we underline that if

next section, we prove that this pattern is not a mere coinci>__, %mi > P, it is not possible to schedule mandatory

dence. We further perform an analytical worst-case analysis gfarts in a timely manner and the optimization problem has no

Mandatory-First algorithms in Section 4. solution. Note that this condition is equivalentYo,._,
1, which indicates that the task set would be unschedulable

3 Optimality of Full-Utilization Policies for Pe-  even if it consisted of only mandatory parts. Hence, hereafter,

riodic Reward-Based Scheduling we assume thar;_, 5+ < 1 and therefore there exists at least

L o _ one feasible schedule.
The objective of the Periodic Reward-Based Scheduling

problem is clearly finding optimaft;;} values to maximize Theorem 1 Given an instance of Problem REW-PER, there
the average reward. By substituting the average reward expresxists an optimal solution where the optional parts of a task

sion given by (2) in (3), we obtain our objective function: T; receive thesameservice time at every instance, i.g; =
P/P; tiw 1 < j < k < L. Furthermore, any periodic hard-real
maximize Z Z Ri(tij) time scheduling policy which can fully utilize the processor

(EDF, LLF, RMS-h) can be used to obtain a feasible schedule

The first constraint we must enforce is that the total proces?ith these assignments.

sor demand of mandatory and optional parts during the hyper-

: . ) . Proof:  Our strategy to prove the theorem will be as fol-
period P may not exceed the available computing capacity:

lows. We will drop the feasibility condition (7) and obtain a

n PIE new optimization problem whose feasible region strictly con-
Z Z (mi +1ij) < P tains that of REW-PER. Specifically, we consider a new op-
i=1j=1 timization problem, denoted by MAX-REW, where the ob-

Note that this constraint is necessary, but not sufficient fojective function is again given by (4), but only the constraint
feasibility of the task set witlim; } and{¢;; } values. Next, we sets (5) and (6) have to be satisfied. Note that the new prob-
observe that optima}; values may not be less than zero, sincelem MAX-REW doesnota priori correspond to any schedul-
negative service times do not have any physical interpretatioring problem, since the feasibility issue is not addressed. We
In addition, the service time of an optional instancdptloes  then show that there exists an optimal solution of MAX-REW

not need to exceed theperbound; of reward functionR; (), wheret;; = tix 1 < j < k < % Then, we will return to
since the reward accrued iy ceases to increase aftey = o;. REW-PER and demonstrate the existence of a feasible sched-
Hence, we obtain our second constraint set: ule (i.e. satisfiability of (7)) under these assignments. The re-

ward associated with MAX-REW'’s optimal solution is always

. . P
0<tiy<or i=L..,n j=1,..., P greater than or equal to that of REW-PER'’s optimal solution,



for MAX-REW doesnot consider one of the REW-PER’s con- Corollary 1 Optimal¢; values for the Problem REW-PER can
straints. This will imply that this specific optimal solution of be found by solving the optimization problem given by (8), (9)
the new problem MAX-REW is also an optimal solution of and (10).

REW-PER. We di the solution of thi timizati b
Now, we show that there exists an optimal solution ofI '€ S'Sctl.JSSG € solution oT this concave optimization pro
MAX-REW wheret;; =t 1 < j < k < & emin section .

Claim1 Let {¢;;} be an optimal solution to MAX-REW, <
i<n 1<j<+$ =q. Then{t};} wheret}, =}, =..

tirttiot...+tiq; . . .
th, =t =" 1<i<n 1<j<g,isalso

an optimal solution to MAX-REW. We showed through the example in Section 2 that the re-
ward accrued banyMandatory-First scheme [5] may only be
e We first show that?;, } values satisfy the constraints (5) approximately half of that of the optimal algorithm. We now

4 Evaluation and comparison with other ap-
proaches

and (6), if{t;; } already satisfy them. Sincgj’zltij = prove that, under the worst-case scenario, the ratio of the re-
;1.’:1 ti; = ¢;t; the constraint (5) is not violated by the ward accrued by a Mandatory-First approach to the reward of

transformation. Also, by assumptian; < o; Vj, which  the optimal algorithm approaches zero.

implies t;i} < o;. Sincet}, which is arithmetic . . -
P mjax{ i <o Theorem 2 There is an instance of the periodic reward-based

mean ofti1, tiz, ..., tiq, IS necessarily less than or equal scheduling problem where, for any integer> 2, the ratio
to max{t;; }, the constraint set (6) is not violated either Reward of the best mandatory—first scheme _ 2
7 Reward of the optimal scheme —r

by the transformation. )
Proof: Consider two taskg; and7; such thatP,/ P, = r,
e Furthermore, the total reward does not decrease by thig, (¢,) = ky ¢y, fa(t2) = kot andky /ky = »(r — 1). Further-
transformation, sincé_%_, fi(ti;) < ¢ fi(t}). The  more, letm,; = 1(roz) and
proof of this statement is presented in the Appendix.

P +op+ 2 + 2
=m [o] — =m

Using Claim 1, we can commit to findirgn optimal so- ! trET T
lution of MAX-REW t?y settmg;fj/lpz tis = P = tig, = which implies thab; = T(T—Zn-

t; i=1,...,n Inthiscasey ;1}" fi(t;;) = & fi(t:) and

T

This setting suggests that during any period'gfa sched-
S/ 1y = B t;. Hence, this version of MAX-REW can be uler has the choice of executing (parts 6f and/orMs, in
re-written as: additiontoM.

Note that under any Mandatory-First policy, the proces-
sor will be continuously busy executing mandatory parts until

maximize > f;(t;) (8) t = P, — P, +m;. Furthermore, the best algorithm among
izl . Mandatory-First policies should use the remaining idle times
subjectto > L4, <P - Lmy (9) by scheduling); entirely (sincek: > k2) andt? = '% =%
i=1"" i=1"" units of 0. The resulting schedule is shown in Figure 3.
OStigoi i:l,...,n (10)
Finally, we prove that the optimal solutiep, ¢, . .., ¢, of m, ﬂ ﬂ P m m, § :
MAX-REW above, automatically satisfies the feasibility con- 3 Py S @r  om e

straint (7) of our original problem REW-PER. Having equal
optional service times for a given task greatly simplifies the

mp mp \\\§

verification of this constraint. Sinae, t2, ..., t, (by assump- -z 2 :”12 """ :”TZ :\\\\&\
tion) satisfy (9), we can writd;_, P - ™5+ < P, or equiv- o T,

alently, >, ™t < 1.
This implies that any policy which can achieve 100% pro-  Figure 3. Aschedule produced by Mandatory-First Algorithm

cessor utilization in classical periodic scheduling theory (EDF,

LLF, RMS-h) can be used to obtain a feasible schedule for . .

tasks, which have now identical execution times -+ #; at The average reward that the best mandatory-first algorithm

every instance. Hence, the “full feasibility” constraint (7) of (MFA) can accrue is therefore:

REW-PER is satisfied. Furthermore, this schedule clearly max- fi(01)

imizes the average reward sinfg} values maximize MAX- Ryra = ——— + fata)

"
REW whose feasible region encompasses that of REW-PER. . . -
g P However, an optimal algorithm (shown in Figure 4) would

O choose delaying the execution #&f; for o1 units of time, at



usually much higher than the other five policies, BIR is used as
a yardstick for measuring the performance of other algorithms.
° " e *F We have used a synthetic task set comprising 11 tasks whose
: total (mandatory + optional) utilization is 2.3. Individual task

m m e . el utilizations vary from 0.03 to 0.6. Considering exponential,

T T T T | logarithmic and linear reward functions as separate cases, we
° 2 compared the reward of six Mandatory-First schemes with our
optimal algorithm (OPT). The tasks’ characteristics (including
reward functions) are given in the Table below. In our exper-
iments, we first set mandatory utilization to O (which corre-
sponds to the case of all-optional workload), then increased it
to 0.25, 0.4, 0.6, 0.8 and 0.91 subsequently.

ml ml ™

Figure 4. An optimal schedule

everyperiod of7;. By doing so, it would have the opportunity
of accruing the reward a, at every instance.
The total reward of the optimal schedule is:

Task [ P; m; + 0; i) THO) THO)
T, 20 10 15(1—e” %) 71n(20t 4+ 1) 5t
R _ 7 fi1(01) _ T, 30 18 20 (1 — e~ 10 In(50 ¢ 4+ 1) Tt
OPT = — — = fi(o1) Ty | 40 5 4(1-e"t 21n(10t + 1) 2t
T, 60 2 10 (1 — e™ 95t 51n(5t + 1) 4t
The ratio of rewards for the two policies turns out to be (for| 75 | 60 2 10(1—e™™2) | 5In(25¢4+1) | 4¢
anyr > 2) Te 80 12 5(1—e~) 31In(30¢ + 1) 2t
= T, 90 18 17(1—e™%) 8In(8t+1) 6t
T 120 15 8(1—e7%) 41n(6t+1) 3t
To 240 28 8(1—e%) 41In(9t+1) 3t
BRyrra 1 f2(t2) 1 1 ms r(r— 1) 2 Tio 270 60 12(1— e~ %% | 61In(12¢t+ 1) 5¢
= - = - — = - T | 2160 300 5(1—e” 31In(15¢t + 1) 2t
Ropr v filer) v r(r=1)r my r

which can be made as close as possible to O by appropriately In our experiments, a common pattern appears: the opti-
choosingr (i.e., choosing a large value foy. mal algorithm improves more dramatically with the increase
in mandatory utilization. The other schemes miss the opportu-
o nities of executing “valuable” optional parts while constantly
Theorem 2 gives the worst-case performance ratio ofavoring mandatory parts. The reward loss becomes striking
Mandatory-First schemes. We also performed experimentas the mandatory workload increases. Figures 5 and 6 show
with a synthetic task set to investigate the relative perforthe reward ratio for the case of exponential and logarithmic
mance of Mandatory-First schemes proposed in [5] with differ+eward functions, respectively. The curves for these strictly
ent types of reward functions and different mandatory/optionatoncave reward functions are fairly similar: BIR performs
workload ratios. best among Mandatory-First schemes, and its performance de-
The Mandatory-First schemes differ by the policy accord-grades as the mandatory utilization increases; for instance the
ing to which optional parts are scheduled when there is n#atio falls to 0.73 when mandatory utilization is 0.6. Other
mandatory part ready to executgate-Monotonic (RMSQ@nd  algorithms which are more amenable to practical implemen-
Least-Utilization (LU)schemes assign statically higher priori- tations (in terms of runtime overhead) than BIR perform even
ties tooptional partswith smaller periods and least utilizations worse. However, it is worth noting that the performance of
respectively. Among dynamic priority schemes &aliest-  LAT is close to that of BIR. This is to be expected, since task
Deadline-First (EDFO)andLeast-Laxity-First (LLFOwhich  sets with strictly concave reward functions usually benefit from
consider the deadline and laxity of optional parts when assignbalanced” optional service times.
ing priorities. Least Attained Time (LATaims at balancing Figure 7 shows the reward ratio for linear reward functions.
execution times of optional parts that are ready, by dispatchinglthough the reward ratio of Mandatory-First schemes again
the one that executddastso far. FinallyBest Incremental Re- decreases with the mandatory utilization, the decrease is less
turn (BIR)is an on-line policy which chooses the optional taskdramatic than in the case of concave functions. However,
contributing most to the total reward, at a giv@ot In other  note that the ratio is typically less than 0.5 for the five prac-
words,at every sloBIR selects the optional paft;; such that  tical schemes. It is interesting to observe that the (impractical)
the differencef; (t;; + A) — f;(ti;) is the largest (herg; is  BIR’s reward now remains comparable to that of optimal, even
the optional service tim@;; has already received adilis the  in the higher mandatory utilizations: the difference is less than
minimum time slot that the scheduler assigns to any optional5%. The main reason for this behavior change lies on the fact
task). However, it is still a sub-optimal policy since it does that, for a given task, the reward of optional execution slots
not consider the laxity information. The authors indicate in [5]in different instances does not make a difference in the lin-
that BIR is too computationally complex to be actually imple- ear case. In contrast, not executing the “valualfikst slot(s)
mented. However, since the total reward accrued by BIR i®f a given instance creates a tremendous effect for nonlinear
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@ Figure 7. The Reward Ratio of Mandatory-First schemes:
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Figure 5. The Reward Ratio of Mandatory-First schemes: inear reward functions

exponential reward functions SUBSET-SUM: Given a se§ = {s, s3,...,5,} of posi-
1 Reward Ratio with tive integers and the integer M, is there aSgtC S such that
100 Respect to Optimal opT Z 5i = M?
0.90 | 5;€54
- We construct the corresponding REW-PER instance as fol-
080 lows. LetW = 7" | s;. Now consider a set of periodic
070, e T tasks with the same period and mandatory parts; = 0 Vi.
e — The reward function associated withis given by:
0.50 |
0.40 | Ri(t:) = {fi(ti) i‘f 0<t <o =35
0.30| 3 fz(oz) if t>o0,=s;
020, N wheref;(t;) = t? + (W — s;)t; is a strictly convex and in-
010 | B creasing function on nonnegative real numbers.
0.1 02 03 04 05 06 07 08 09 Mandatory Notice that, i.(ti) can be r e-written as (¢; y si) + Wit
Utilization Also we underline that having the same periods for all tasks

(b) . .
implies that REW-PER can be formulated as:

Figure 6. The Reward Ratio of Mandatory-First schemes: o n n
logarithmic reward functions maximize Doti(ti—si)+W 3t (11)
i=1 i=1
concave functions. The improvement of the optimal algquthm subject to Z (12)
would be larger for a larger range éf values (wherék; is i=1
the coefficient of the linear reward function). We recall that 0<t <s (13)

the worst-case performance of BIR may be arbitrarily bad with

respect to the optimal one for linear functions, as Theorem 2 | et us denote by ax Rew the total reward of the optimal

suggests. schedule. Observe that for< t; < s;, the quantityt; (¢; —
s;) < 0. Otherwise, at either of the boundary values G:r

5 Periodic Reward-Based Scheduling Problem ¢ (t; — s;) = 0. Hence,Max Rew < WM.

with Convex Reward Functions is NP-Hard Now, consider the question: "I ax Rew equal toW M ?”.
Clearly, this question can be answered quickly if there is a
As we mentioned before, maximizing the total (or average)yolynomial-time algorithm for REW-PER where reward func-

reward with 0/1 constraints case had already been proven igyns are allowed to be convex. Furthermore, the answer can be
be NP-Complete in [15]. In this section, we show that convex

reward functions also result in an NP-Hard problem. positive only whenz t: = M andeach; is equal to either 0
We now show how to transform the SUBSET-SUM prob- or s;. Therefore,MaxRew equal toW M, if and only if there

lem, which is known to be NP-Complete, to REW-PER withis a set54 C Ssuchthad . s; = M, whichimplies that

convex reward functions. REW-PER with convex reward functions is NP-Hard.



6 Solution of Periodic Reward-Based Schedul-
ing Problem with Concave Reward Functions

When F contains nonlinear functions then the procedure
becomes more involved. In the next two subsections, we in-
o troduce two auxiliary optimization problems, namely Problem

Corollary 1 reveals that the optimization problem whose SoppT (which considers only the equality constraint) and Prob-
lution provides optimal service times is of the form: lem OPT-L (which considers only the equality and lower bound

. n constraints), which will be used to solve OPT-LU.
maximize Z fi(ts)
Zn:1 6.1 Problem OPT: Equality Constraints
subject to Sbit; <d Only
i=1
ti <o i=1,2,..n The problem OPT is characterized by:
0<t; i=1,2,..n

maximize Y f;(t;)
=1

where d (the ’slack." avallgble for optional pa}rts) apd subjectto 3 b t; = d

b1, bs, ..., b, are positive rational numbers. In this section, i=1

we present polynomial-time solutions for this problem, where

eachf; is a nondecreasing, concave and differentiablec- whergF - {fl’.' o .f”} |s'the set of FO”decrea?'”g concave
tion. functions, possibly including some linear function(s). As it

First note that, if the available slack is large enough to ac-gggst;rea?r?tes nc;f%fgb?gﬁsggtffﬂsﬁét2|eg Lor\i’f['ﬁrrna\?vﬂizmgubr%nd
commodate every optional part entirely (i.e.DIf_, b; o; < \ g .
y op P y (e 2z, bi o; < the solution of Problem OPT, is denoted by “Algorithm OPT".

d), then the choice; = o; V¢ clearly maximizes the objective WhenF | d solelv afon-I d functi
function due to the nondecreasing nature of reward functions, en IS composed Solely alon-linearreward functions,

Otherwise, the slack should be used in its entirety since the applicat[ion of Lagrange multipliers technique to the Prob-
the total reward never decreases by doing so (again due igm OPT, yields:
the nondecreasing nature of the reward functions). In this
case, we obtain a concave optimization problem with lower
and upper bounds, denoted by OPT-LU. An instance of OPT-

LU is specified by the set of nondecreasing concave function§ €€~ ,
derivative of the reward functiotf;.

%fi’(ti)—/\:o i=1,2,...,n (18)

hereA is the common Lagrange multiplier arf(¢;) is the
The quantity;-f/(t;)

gna tf’lj;:’i‘\/‘z’:l‘iig&]; ;Ihaeoksce'}'r?; l;pl)rzelrs tt)(()):unda = {o,- o) in (18) actually represents thearginal returncontributed by
n T to the total reward, which we will denote as(¢;). Ob-
maximize > filts) (14)  serve that sincd;(t;) is non-decreasing and concave by as-
221 sumption, bothw; (¢;) and f/(¢;) is non-increasing and posi-
subject to Sibiti=d (15)  tive valued. Equation (18) implies that the marginal returns

i=1 wi(t;) = bi !(t;) shouldbe equal for all reward functions in
ti<o; i=1,2,..n (16)  the optimal solutior{ty, .. .,t,}. Considering that the equal-
t; (17) S

=
IAINA

i=1,2,..n ity > b; t; = d should also hold, one can obtain closed for-

=1
whered < d < Y " | b;-o;. mulas in most of the cases which occur in practice. The closed
Special Case of Linear functions:If F comprises solely formulas presented below are obtained by this method.
linear functions, the solution can be considerably simplified.

Note that for a functiory; (t;) = k; - t;, if we increase; by ¢ Forlogarithmicreward functions of the form

A then total reward increases byA. However by doing so,
we make use of; A units of slack ¢ is reduced by; A due

to (15)). Hence, the “marginal return” of tasgk per slack
unitis w; = ’g— It is therefore possible to order the functions
according to their marginal return, and distribute the slack in
decreasing order of marginal returns, while taking account the

fitti) =In(k; - t; + ¢),
d"‘Z %_kflbl ij
=1
Db
=1

tj = bl tl —|— —kflbl — —k]c]b] V_] 1 < _] S n.

upper bounds. We note that this solution is analogous to the e Forexponentiateward functions of the form

one presented in [17]. The dominant factor in the time com-
plexity comes from the initial sorting procedure, hence in the
special case of all-linear functions, OPT-LU can be solved in
timeO(nlogn).

LIn the auxiliary optimization problems which will be iotduced shortly,
the differentiability assumption holds as well.

Fi(t:) = ¢i(1 — e~ hiti),

1=

=gt +In(2P2)] Vi 1<j<n



e For “k*" root” reward functions of the form 6.2 Problem OPT-L: Equality Constraints

filti) =¢ til/k (k> 1), with Lower Bounds

= —4— . L .

1 Z(%)ﬁ Now, we consider the optimization problem with the
i equality and lower bound constraints, denoted by OPT-L.

ti =t (Zji%)ﬁ Vil<j<n. An instance of Problem OPT-L is characterized by the set

F={f1, f2, .-, [} Of nondecreasing concave reward functions,

When it is not possible to find a closed formula, follow- and the available slack

ing exactly the approach presented in [10, 13], we salve maximize > filty) (19)
the equatiod ., b; hi(\) = d, whereh; (k) is the inverse =t
function of ;- /() = wi(t;) (we assume the existence of the subject to Zn: bit; =d (20)
derivative’s inverse function whenevgy is nonlinear, com- i=1
plying with [10, 13]). Once\ is determined{; = h;(A), 7 = 0<t; i=1,2,..n (21)

1,...,nis the optimal solution.

We now examine the case whdfeis amix of linear and
nonlinear functions. Consider two linear functiogh&) = k;-t
andf;(t) = k; - t. The marginal return of;(t;) is w;(t;) =
By _ ky
p; = wi and that off; is w; (t;) = 5, = Wil wy > then the solutionSo pr. Otherwise, we will construc§o pr—y, it-
the service time; should be deflnltely zero, since marginal re- eratively as described below.
turn of f; is strictly less thary; everywhere. After this elimina- Let I = {z|~f.(0) < Lf/(0) Vi}. Remember that
tion process, if there ang > 1 linear functions with the same ;| ,, . b t0 ) = b . :
(largest) marginal retur,,, .. then we will consider themas a b« z(t:) is the marginal return assomatgd wih(t.) f"md
single linear function in the procedure below and evenly divideVas denoted by, (¢;). Informally, IT contains the functiorfs
the returned service tim,, amongt; values corresponding fr € F with the smallest marginal returns at lower bound 0,

to thesep functions. wy(0).

Hence, without loss of generality, we assume thal) = | emma 1 If S, pr violates some lower bound constraints of

ky, - t is the only linear function irF. Its marginal return is Problem OPT-L, then, in the optimal solution = 0 Vim € 1.

wn(ty) = £ = wpqee. We first compute the optimal distri-

bution of slackd among tasks with nonlinear reward functions

To solve OPT-L, we first evaluate the solution $ipr
to the corresponding problem OPT and check whether all in-
equality constraints are automatically satisfied. If this is the
case, the solution sétopr— of Problem OPT-L is clearly

fi,- .5 fa—1. By the Lagrange multipliers technique;(t;) —  The proof of Lemma 1 is based on Kuhn-Tucker optimality
A =0 andthus, (t7) = w(t3) = ... = ws—1(t;_1) = Aat  conditions for nonlinear optimization problems and is not pre-
the optimal solution?, ¢3, . ...t _;. sented here for lack of space (the complete proof can be found
Now we distinguish two cases: in [1]). The time complexityCopr(n) of Algorithm OPT is
O(n) (If the mentioned closed formulas apply, then the com-
e )\ > mazx. Inthis caset],t3,...,t7_, andt, = 0is  plexity is clearly linear. Otherwise the unique unknowoan

the optimal solution to OPT. To see this, first rememberbe solved in linear time under concavity assumptions, as indi-
that all the reward functions are concave and nondecreagated in[10, 13]). Lemma 1 immediately implies the existence
ing, hencewl(t* —€) > wi(t]) > wn(€) = wmae 1 =  of an algorithm which sets,, = 0 ¥m € 11, and then re-
1,...,n—1foralle >= 0. This implies that transferring invokes Algorithm OPT for the remaining tasks and slack (in
some service time from another tébkto 7, would mean  case that some inequality constraints are violatedbyr).
favoring the task which has the smaller marginal rewardSince the number of invocations is boundedythe com-
rate and would not be optimal. plexity of the algorithm which solves OPT-L (3(n?).
Furthermore, it is possible to converge to the solution in

e A\ < wnae. INn this case, reserving the sladksolely  timeO(n log n) by using a binary-search like technique on La-
to tasks with nonlinear reward functions means violatinggrange multipliers. Again, full details and correctness proof of
the best marginal rate principle and hence is not optimalthis faster approach can be found in [1].

Therefore, we should increase service timentil w; (¢;) . .
drops to the level ofv,,,, fori = 1,2,...,n—1,butnot 6.3 Problem OPT-LU: Equality Constraints

beyond Solvingh; (wmaer) = t; fori = 1,2,...,n— 1 with Upper and Lower Bounds
and assigning any remaining slaekzli1 tot, (the An instance of Problem OPT-LU is characterized by the
service time of unique task with linear reward func- setF= {f1, f2,..., fn} of nondecreasing, differentiable, and

tlon.) Clearly ?atls.ﬂes the best marglnal rate prlnC|pIe and 2We use the expression “functions” insteadioflices of functions” unless
achieves optimality. confusion arises.



concave reward functions, the €8t {04, 02, ..,0,} of upper  O(n - logn). Furthermore, the cardinality &f decreases by
bounds on optional parts, and available sldck at least 1 after each iteration. Hence, the number of iterations

- n is bounded byn. It follows that the total time complexity of
maximize i (T 22 . . :
Z»;f( ) (22) Algorithm OPT-LU isO(n? - log n). However, in case of all-
) n linear functions, OPT-LU can be solved in titén - log n) as
subject to ; biti =d (23)  shown before.
ti<oi i=12..n (24 7 conclusion
0<t; i=1,2,..n (25)

In this paper, we have addressed the periodic reward-based
We first observe the close relationship between the probscheduling problemin the context of uniprocessor systems. We
lems OPT-LU and OPT-L. Indeed, OPT-LU has only an ad-proved that when the reward functions are convex, the prob-
ditional set of upper bound constraints. It is not difficult to lem is NP-Hard. Thus, our focus was on linear and concave
see that ifSo pr_ 1 satisfies the constraints given by Equationreward functions, which adequately represent realistic appli-
(24), then the solutioopr_ iy of problem OPT-LU is the cations such as image and speech processing, time-dependent
same asSopr_r. However, if an upper bound constraint is planning and multimedia presentations. We have shown that
violated then we will construct the solution iteratively in a way there exists always a schedule where the optional execution
analogous to that described in the solution of Problem OPT-Ltimes of a given task do not change from instance to instance.
LetT = {x|bif;(ox) > bif;(oi) Vi}. Informally, T con-  This result, in turn, implied the optimality of any periodic real-
tains the functiong, € F with the largest marginal returns at time policy which can achieve 100% utilization of the proces-
the upper boundsy; (o). sor. The existence of such policies is well-known in real-time
) ~ systems community: RMS-h, EDF and LLF. We have also pre-
Lemma 2 If Sopr— . violates some lower bound constraints sented polynomial-time algorithms for computing the optimal
of Problem OPT-LU, then, in the optimal solutign, = service times.
om Ym € T. We underline that besides clear and observable reward im-
. . i provement over previously proposed sub-optimal policies, our
: The proof.c')f Lemma 2 is again bgsed on Kuhn-Tucker op approach has the advantage of not requiring any runtime over-
timality conditions and can be found in [1]. -
. : S head for maximizing the reward of the system and for con-
The algorithm ALG-OPT-LU (see Figure 8) which finds so- o oo
. ; ; . _stantly monitoring the timeliness of mandatory parts. Once
lutionto the problem OPT-LU is based on successively solvm% timal optional service times are determined statically by our
instances of OPT-L. First, we find the solutisppr_ 1 of the b P y oy

. : .~ . algorithm, an existing (e.g., EDF) scheduler does not need to
correspondmg problem OPT-L. We' know that this soI.utlon 'She modified or to be aware of mandatory/optional semantic dis-
optimal for the simpler problem which does not take into ac-

) inction [Il. Thi j i -
count upper bounds. If the upper bound constraints are autt- ction at & 's appears as another major benefit of hav

matically satisfied, then we are done. However, if thisis not th({'g Prg-compyted .and optimafualservice t!mes for a given
) ask’s invocations in reward-based scheduling.
case, we sdf, = o, V¢ € I'. Finally, we update the seks O

In addition, Theorem 1 implies that as long as we are con-
ﬁg\(je”;)eezlr??iljetdo reflect the fact that the valuesiof Vm € T cerned with linear and concave reward functions, the resource

allocation can be also made in terms wiflization of tasks

Algorithm OPT-LU(F,0,d) without sacrificing optimality. In our opinion, this fact points
1 SetSopr—rv =10 to an interesting convergence wistance-basedb, 15] and
2 if F = 0 then exit utilization-based[17] models for the most common reward
3 EvaluateSopr—_r /* consider only lower bounds */ functions.
4 if all upper bound constraints are satisfied then About the tractability issues regarding the nature of reward
Sopr—ru = (Sopr—rLu U Sopr—1); exit functions, the case of step functions was already proven to be
5 computel’ NP-Complete ([15]). By solving efficiently the case of con-
6 setty=o0,VgeTinSopr_ru cave and linear reward functions and proving that the case of
7 sed=d-3 _pbeos convex reward functions is NP-Hard, we believe that efficient
8 setF=F-T solvability boundaries in (periodic or aperiodic) reward-based
9 setO=0—{ox|x € T'} scheduling problem have been reached by our work in this as-
10 Goto Step 2 pect (assuming B NP).
We believe that considering dynamic aperiodic task arrivals,
Figure 8. Algorithm to solve Problem OPT-LU fault tolerance issues and investigating good approximation al-

gorithms for intractable cases such as step functions and er-
Complexity: Notice that the worst case time complexity of ror cumulative jobs can be major avenues for reward-based
each iteration is equal to that of Algorithm OPT-L, which is scheduling.
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