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Abstract: We introduce and study a family o1 interconnection schemes, the Midimew net-
works, based on circulant graphs of degree 4.

A family of such circulants is determined and shown to be optimal with respect to two dis-
tance parameters simultaneously, namely maximum distance and average distance, among all
circulants of degree 4. These graphs are regular, point-symmetric, and maximally connected,
and one such optimal graph exists for any given number of nodes.

The proposed interconnection schemes consist of mesh-connected networks with wrap-around
links, and are isomorphic to the optimal distance circulants previously considered. We demon-
strate how to construct one such network for any number of nodes, examine their good prop-
erties to build interconnection schemes for multicomputers, and discuss some interesting par-
ticular cases.

The problem of routing is also addressed, and a basic algorithm is provided, which is adequate
to implement the routing policy required to convey messzges, traversing shortest paths between
nodes.

Index terms:

Circulant graphs

Graph models

Large message-passing multicomputers

Mesh-connected topologies

Message routing

Minimum distances

Static regular interconnection networks

& .
| Some of the results presented in this paper were announced at 14th International Sympo-

sium on Computer Architecture, Pittsburgh, 1987.
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I. INTRODUCTION

The study of interconnection networks and their combinatorial properties has been
pursued in the last decades with many different goals in mind, and more recently has
been encouraged by its applicability to large scale parallel computer systems, mainly as
one of the consequences of the growing use of VLSI technologies.

A parallel architecture constitutes a response, based upon the utilization of many
cooperating computing elements (even full computers), to the increasing demands for
greater computational power, which go beyond the potential of uniprocessor systems.

Paradigms such as message-interchange oriented concurrent programming, and dis-
tribution of memory into modules owned by each processing element, must be taken
into account in order to achieve higher performance through massive (beyond 100)
replication of processing elements. The resulting architectures may be broadly denoted
as multicomputer systems [4], where each system node essentially includes processing
element(s), some amount of private memory, and the inter-node communication unit.

Several multicomputer architectures have been proposed and designed in the last
few years. The Cosmic Cube [25] constitutes the first completed experimental effort
which has become the archetype of early operative multicomputers. Commercial suc-
cessors to this concurrent computer include, among others, the Intel iPSC /1, N-cube/10,
and Ametek S/14, which were introduced in 1985. Further developments have given rise
to some other machines, such as the Intel iPSC/2 of the Symult Series 2010.

In order to efficiently exploit these parallel systems, one of the important problems
to be addressed refers to the interconnection scheme which ties all of the system nodes
together. The most essential function of the interconnection network is the allowance of
an efficient message interchange between processes which execute on the system nodes.
In order to minimize the potential communication bottleneck which appears in the
implementation of multicomputer systems, the design of this network then becomes a
major topic to be studied.

The characteristics of the interconnection topology directly affect the expected
performance measures of the global system. The ideal solution, of providing a direct
linking to connect every pair of nodes, is prohibitively expensive as soon as N (number
of nodes) becomes large. Therefore other cost-effective schemes should be proposed and
evaluated. The total number of links must be reduced, yet providing low communi-
cation overhead, as well as allowing simple routing strategies to keep high operational
capabilities in presence of links/nodes faults [1].

Consequently, among other important factors which affect the expected system per-

formance, attention must be paid to the amount of extra delay due to the nonexistence
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of direct links between any pair of nodes, and to the routing procedures to be executed
for message passing communication schemes.

One classification of communication subsystems for parallel computers distinguishes
three types: 1) link-based schemes, 2) bus-oriented schemes, 3) interconnection network-
based schemes [18]. The present work deals with topologies belonging to the first type.
We consider structures with dedicated channels available for information transfer be-
tween nodes, which require message routing through intermediate nodes. This approach
is well suited to high traffic rates and to variable communication patterns.

Combinatorial aspects of networks in multicomputer systems (and also in local area
networks, array processors and other paralle] computer systems) are often studied by
means of graph theory, which is specially well suited as a directly applicable tool to
analyze and design link-based topologies. We adopt this approach in the present work.

In our graph models, the vertices represent the nodes of the multicomputer system
and the edges represent the bidirectional communication links between nodes. Measures
obtained from the graph model allow us to predict the system behavior.

To obtain a high performance in a multicomputer system, the structure of its inter-
connection scheme must accomplish several conditions. Different performance metrics
are commonly used in order to characterize the merits of the proposal. One generally
accepted set of network parameters, which is adequate for this purpose, includes the fol-
lowing: total number of links, diameter, average distance, link- and node-connectivity,
symmetry, embeddability of algorithms, and extensibility. Let us consider briefly each
of these network parameters, related to the properties of the underlying graphs.

The graph degree refers to the maximum number of edges incident with a graph
node. We consider regular networks in which this number is the same for all nodes.
Making constant and small the graph degree signifies a simplicity for the routing policy,
as well as a reduction in the cost of noces and links.

The graph diameter and average distance are measures related to the delay during
transmission of messages, and thus, the performance. To keep the values of these mea-

sures as small as possible is a desirable goal in order to obtain a high system throughput.

The edge- and vertex-connectivities refer to the minimum number of edges and
vertices, respectively, whose removal results in a disconnected graph. That is, these two
properties represent a measure for the degree of robustness exhibited by the network,
and so are related to fault-tolerance issues.

The vertex-symmetry property of a graph allows the analysis of its topological
characteristics by considering any arbitrary vertex as the reference node. This desirable

property makes the network look the same when viewed from any vertex, and is related
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to the reduction in the complexity of designing distributed routing algorithms, as well
as to programmability issues.

Good embeddability of many important parallel computation graphs, such as rings,
trees, meshes, and others, allows the topology to attain an efficient matching to the
communication structure inherent to many well-known parallel applications. This char-
acteristic also facilitates the use of existing software which has been designed for other
topologies.

Finally, the extensibility of a network is an important property which allows a
graceful scaling of the network size, without adversely affecting the cost/performance

nor the existing interconnection setup, and maintains the node degree as well.

Although the above commented set of parameters may serve to accomplish, to a
certain extent, a qualitative comparison of network proposals, it does not constitute a
definitive set of good performance criteria. The lack of standard metrics only permits
partial quantitative evaluations, which must. in any case, take into account the partic-
ular area of applications kept in mind when the system is designed. In this direction,
several authors have previously reported different comparative studies of multicomputer
networks in order to establish some relative merits among them (1], (2], {24}, (23], [29].

Let us outline now more precisely the extent of our paper, and also review other
related research works from different authors. We shall address here the problem of
appropriately selecting the intercommunication topology used to connect a large number
of nodes. Our interest points at one class of circulant graphs with degree 4, as & good
compromise with respect to the above mentioned desirable characteristics. This type
of graphs was first introduced by Harary [16] and later named as circulant graphs by
Boesch and Tindell [8] because they hold a circulant adjacency matrix. As we shall
justify at the end of section II, our graphs are maximally connected. Therefore, highly
reliable networks may be constructed on their basis, and this fact justifies the interest

shown by several authors.

Once the high connectivity of circulant graphs had been asserted, the problem
of diameter reduction on certain families of circulant graphs was addressed, in order
to minimize the communication delays associated with these topologies. The reader is
referred to [28] for an excellent survey on this subject. More recently, in [9] the minimiza-
tion of diameter in a class of degree 4 circulant graphs is studied, where also reliability
topics are discussed. On the other hand, results obtaining simultaneous minimization
of diameter and average distance for some circulant graphs of degree 4 have been pre-
viously published in [7]. Compound graphs based upon a family of circulant graphs

are also proposed in [10] in order to design hierarchical networks for message-passing
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multicomputers.

Another type of well-known topologies of this kind are the toroidal meshes, which
are isomorphic to some circulant graphs. In the ILLIAC IV computer [5], which is one of
the first parallel machines successfully designed, underlies a variant of toroidal mesh as
interconnection topology. Other subsequent topologies based on circulant graphs are the
Twisted Torus [19) and the Double Twisted Torus (27, and all of them are constructed
as different types of mesh-connected networks with wrap-around links, family to which
the networks obtained in our work belong. This type of mesh networks is of particular
interest because they allow a convenient and simple projection onto the plane. This
fact provides & practical way to implement these interconnection networks for any large
number of nodes, in opposition to other topologies not so well suited for this purpose,
as the binary n-cube networks which make necessary the mapping of their n dimensions
into a 2D space [11].

The low degree of mesh networks presents a practical advantage over other topolo-
gies with greater number of links per node: to achiéve a more complete utilization of
the network connectivity when programming parallel applications on the resulting ar-
chitectures [13]. Moreover, meshes with wrap-around links such as those obtained in
our work have proved to be topologies which allow an efficient mapping of many regular
problems.

Directed graphs of a similar nature have attracted attention of researchers in the
last years. Analysis of digraphs showing minimum diameter and/or average distance
have been reported [13], [22], [17]. Directed graphs of this kind are commonly denoted
as “double loop graphs”, or “reliable loop topologies”, pointing out their good fault
tolerance capabilities. Nevertheless, their scope of application is mainly reduced to
local area networks, due to the fact that their links are oriented and do not allow the
exploitation of the locality of communications between processes resident in neighbour
nodes of the multicomputer system [4]. |

Now we shall briefly describe the organization c;f this paper. We pursue to obtain,
characterize, and design a class of topologies able to link any number of functional
nodes, in order to construct interconnection networks for general-purpose multicomput-
ers exhibiting good cost/performance trade-offs. These topologies are suitable, as well,
for a broader scope of other parallel architectures.

Section II deals with circulant graphs of degree 4. A class of such graphs, which
is optimal in the sense of simultaneously minimizing diameter and average distance,
is identified. We characterize the topology, in a nice manner, by means of only one

adjacency pattern parameter which defines the graph for any number of vertices. The
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optimal distance properties of these graphs are provéd in this section.

In order to implement interconnection networks for parallel machines, several prac-
tical considerations must be taken into account. For this constructive purpose, the
circulant graphs of section II present several disadvantages which are addressed in sec-
tion III, and which lead us to search for a convenient transformation of these topologies.
Consequently, a class of mesh-connected networks with wrap-around links is obtained
here, by using an isomorphism which preserves the optimal distance properties. This
isomorphism is adequately presented and proved, and yields simple yet precise guidelines
to construct networks of this class, for any number of nodes. We call them Midimew
networks. Particular cases of these networks are discussed, and comments about the
number of links in the boundaries are given. Several quantitative comparisons are also
provided at the end of this section, in order to establish the suitability of Midimew
networks as an alternative to other well known stati;: interconnection structures.

The routing policy is the problem analyzed in section IV, where an algorithm to
obtain all the information required to guide messages between Midimew network nodes,
is presented. This algorithm serves to obtain descriptions of paths of minimum length,
between any pair of source and destination nodes. Besides, the same algorithm computes
routing records for other alternative paths, which could be useful to add fault-tolerance
capabilities, and to avoid local traffic congestions, if they are integrated into an adaptive
global routing mechanism.

Section V closes the paper with the summary of the work and with the main

concluding remarks related to it.
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II. OPTIMAL CIRCULANT GRAPHS -

This section is devoted to study a family of circulant graphs of degree 4 connecting any
given number of nodes greater than 2. The definition of this family is given, and two
theorems are presented to show that these circulant graphs are optimal in the sense that
they have minimum diameter and minimum average distance among all the circulant
graphs of degree 4. Some known results are used to show that these graphs are also
maximally connected.

The family consists of one graph for each number of nodes. The description of
these graphs is as follows. Let N > 2 be the number of vertices in the graph. Assume
each vertex labeled by an integer from 0 to N — 1. Then there is an edge from each
vertex n, 0 < n < N — 1, to the four vertices ((n + b) mod N), ((n — b) mod N)
((n + (b= 1)) mod N), and ((n — (b — 1)) mod N), where the value of the integer b is
b= [\/-%}T ] Observe that b > 1 since N > 2. The graphs obtained in this manner are
denoted Cn(b). Observe that knowledge of N is enough to compute the parameter b
and to set all the edges appropriately.

For instance, let N = 24. The corresponding value b = 4 is easily computed, and
therefore from each vertex n there are edges to the four vertices ((n % 4) mod 24) and
((n % 3) mod 24). The resulting circulant graph Cz(4) can be seen in figure 1.

The circulant graphs Cn(b) are node-symmetric. The node symmetry allows us
to analyze distance properties by considering any arbitrary vertex as initial node; to
simplify the calculations we choose node 0.

In order to prove the optimality, in the above stated sense, of this family of circulant
graphs, let us establish some additional notation. For integers a and a', we denote by
[a, a'] the interval of all the integers n witha <n < d'. Vis [0, N — 1), which we identify
with the set of vertices of the graph.

We also define the set Dy as:

Dy = {(z,v) € Z* | lz| + ly| < k}
where r and y are integers, and the accessing function fy from Z? into V as:
fn(z,y) =zb+y(b—1)mod N

The value given by the accessing function fy on (z,y) is the node reached from node
0 after z many b-hops and y many (b— 1)-hops in the graph Cn(b). The set Dy is the
domain that should be considered for fy to find out all those nodes that are within

distance k& from node 0.



To proceed with the demonstration, we need a few preliminary lemmas.

Lemma 1. b= [/§ | if and onlyif 20— 1)7 < N < 28%.

Proof. Solvefor Ninb—1< \/-g <b u

Lemma 2. For each k, the cardinality of Dy is 2k* + 2k + 1. Therefore, & circulant
graph of degree 4 and diameter k cannot have more than 2k? + 2k 4+ 1 nodes.

Proof. For each z with —k < z < k there are 2(k — |z]) + 1 valid values for y to have
(z,y) € Di. Thus, the cardinality of Dy is
k
3 2(k = i) +1 =2k + 2k +1 "
i=—k
We show next some lemmas regarding surjectiveness and injectiveness properties

of the functions (z,y) — zb+ y(b— 1) and z — z mod N on various domains.
Lemma 3. The function (z,y) — zb + y(b — 1) from Dy to [—b*,b%] is surjective.

Proof. First observe that the indicated function indeed maps all the elements of D,

into [—b?, b?], since
jeb+y(5— 1) = I(= + )b — 1) + 2l < (Jel + Db = 1)+ lel < bb— 1)+ b= b

We will show that no element of the range is the image of more than two different
preimages, and that exactly 2b are the image of two preimages. Since the cardinality
of Dy is 2b® 4+ 2b+ 1 by lemma 2, we will obtain that there must be 252 + 1 different
images and hence every element of [—b?,b?] is an image.

Assume that zb4+y(b—1) = z'b+y'(b—1) for (z,y), (z',¥') € Ds. A simple operation
vields (y — v')(b — 1) = (z' — z)b, whose solutions are all of the form z' — z = d(b— 1)
and y — y' = db since b and b — 1 are relatively prime. Summing the last two equalities
and taking absolute values yields |d(2b — 1)| < 2b, which implies |d| < 1 since b > 1.
The solution for d = 0 is the trivial one, z = z' and y = y', and the two other solutions
d = %1 are the same by renaming (z,y) and (z',y'). Thus, at most two different pairs
are mapped to the same image.

Without loss of generality we can assume d = 1, and therefore

y=y-b
g =z+4+(b-1).

(*)

Since |y'| < b, we have y > 0. Let us count the number of potential repetitions for each

value of y. For y = b, the only value of z so that (z,y) € D, is ¢ = 0, a2nd thus y = b can
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only contribute one repetition (the pair (z,y) = (0,b) and the pair (z',y") = (6-1,0)).
Similarly, for y = 0, we get y' = —b, which implies z' = 0, and we have only one
repetition (the pair (z,y) = (—(b — 1),0) and the pair (z',¢') = (0,—=b)). Each of the
remaining b — 1 values of y will contribute exactly two repetitions. Indeed, for each y
with 1 < y < b— 1, the equations (*) yield a unique value y' = y—b < 0. By the
definition of Ds, we have |z| < b— |y| and |z'| < b—|y'|, and further operation yields
y—b <z <y—>b+1, and therefore only two values of z can be chosen. The total
number of repeated pairsis 1+ 2(b—1) +1 = 2b as was to be shown. ]

-Lemma 4. The function (z,y) — zb+ y(b— 1) from Dy—; into [—(b— 1?2 = (b-1),

(b —1)? + (b= 1)} is a bijection.

Proof .  Follows the same guidelines of the previous proof. The fact that the image
of Dy—; is included in [— (b -1 —(b-1),(b— 1)2 + (b — 1)] is shown analogously.
The cardinality of both sets is the same, and therefore it is enough to show that the
function is injective. To show that there are no repetitions, proceed as in the proof of
the previous lemma to find that pairs (z,y) and (z',y') mapping to the same image
must fulfill z' — z = d(b—1) and y — y' = db. However, now summing the equalities and
taking absolute values yields |d(2b~ 1)| < 2(b — 1), since the domain is now Dj_,; this
equation has only one solution, d = 0, and therefore the two pairs are the same. Thus

the function is a bijection. .

Lemma 5. The function (z,y) — zb + y(b— 1) from D2 into [—(b— 12 - (b-1),
(b —1)2 + (b — 1)) is injective.

Proof. Follows directly from the previous lemma, since the restriction of an injective

function to a smaller domain is also injective. =

Additionally, we need to characterize the surjectiveness and the injectiveness of the

function z — z mod N.

Lemma 6. For every integer a, the function z — z mod N from [—a,a] to V is:
(a) surjective if N < 2a +1

(b) injective if N > 2a+1

Proof .

(a) The image of [—a,—1] coincides with the image of [N —a,N — 1], and thus the
image of [—a, a) coincides with the image of the union [0,a] U [N —a,N — 1. If
N < 2a+1then [0,a)U[N —a, N — 1] includes all of [0, N —1]. Since the function

is the identity on that last range, it is surjective.

9
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. (b) Again the image of [—a,~—1] coincides with the image of [N —a;N -1]. The

function is the identity on the intervals [0,¢) and [N — a, N — 1}, and they are

disjoint. Therefore the function is injective. "

We are now ready to show that the circulant graph Cn(b) has minimum diameter

and minimum average distance. We discuss diameter first.

Theorem 1. For every N > 2 and for b = [\/ %1, the diameter of Cn(b) is optimal
among all circulant graphs of degree 4.

Proof. We consider two disjoint cases.

" Case 1: 2(b—1)2 < N < 2(b—1)* + 2(b— 1) + 1. We show that the diameter is b—1;

this is optimal by lemma 2. We must show that at most b — 1 hops allow one to reach
any node from node 0. Then the result follows since Cn(b) is node-symmetric. The
accessing function is fy : Dy—y — V, fn(z,y) = (zb + y(b — 1)) mod N. The function
mapping (z,y) into zb+y(b—1) is surjective onto [—(b— 1)2 —(b=1),(b~1)2+(b—1)] by
lemma 4. By the conditions on N and lemma 6(a), the function mapping zb+y(b-1)
into (zb + y(b — 1)) mod N is surjective. Then the function fn : Dp—y — V is the
composition of two surjective functions and is therefore surjective. Thus all nodes can
be reached in at most b — 1 hops. |

Case 2: 2(b—-1)2+2(b—-1)+1 < N < 2b2. We show that the diameter is b; again
this is optimal by lemma 2. The argument is analogous to case 1. The accessing
function from node 0 is fin : Dy — V, fn(z,y) = (zb + y(b — 1)) mod N. The function

(z,y) — zb+y(b—1) is surjective onto [—b?, b?] by lemma 3, and the mod N function on

this domain is surjective by the conditions on N and lemma 6(a). Therefore the function
fn : Dy — V is again surjective, being the composition of two surjective functions. All

nodes can be reached in at most b hops. u

Now we discuss the average distance. The optimal value for this parameter is
obtained when the number of vertices at maximum distance from node 0 is as small as

possible, i.e. when all the vertices at & distance strictly smaller than the diameter are
different. ‘ 2

Theorem 2. For every N > 2 and for b = [1/-';—' ] , the average distance of Cn(b) is
optimal among all circulant graphs of degree 4 having optimal diameter.

Proof . We show the following claim: all the nodes at a distance smaller than the
diameter are different. Again we consider two disjoint cases.

Case 1: 2(b— 1) < N < 2(b—1)2+2(b—1) + 1. Lemma 5 shows that the function
(z,y) — zb+y(b—1) from Dy_; into [—(b—1)* = (b—1),(b—1)* + (b— 1)] is injective.

By the conditions on N and lemma 6(b), the function mod N on this domain is also

10
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injective. Thus fn(z,y).=.zb+ y(b:~ 1) mod N from D, into V is a composition of
injective functions and must be also injective.
Case 2: 2(b—1*+2(b-1)+1 <N < 2b?. Similarly, from lemma 4, the function
(z,y) — zb+y(b—1) from Dy to [—(b=1)*—(b=1),(b— 1)? 4+ (b—1)] is & bijection and
therefore is injective, and by the conditions on N and lemma 6(b) the function modN
on this domain is also injective. Thus fn(z,y) = zb+ y(b— 1) mod N from D,_; into
V is again injective. "
In summary, by considering jointly theorems 1 and 2, we have shown that the
family of circulant graphs Cn(b) as defined above, indeed minimize both the diameter
and the average distance for any value N > 2, and are optimal in this sense compared
to any other circulant graph of degree 4.
The value of the diameter k follows from theorem 1, and can be expressed, as &
function of N, by:
- {b—l if N <262 —2b+1
b N >20%-2b+1
The value of the average distance k is formally derived in [7); it also follows from

theorem 2, and can be expressed, as a function of N, by:

To end this section, we discuss the connectivity properties of Cn(b). A complete
characterization of the circulants with maximum vertex connectivity appears in theo-
rem 1 of [8]. From this result, a theorem of Wang follows, which directly shows that a
connected circulant in which the hops differ by 1 always has maximum vertex connec-
tivity (see the discussion at the end of section 4 in [8]). This result clearly applies to our
graphs Cn(b), which hence are maximally vertex-connected. On the other hand, a the-
orem of Mader quoted in (8] guarantees that every connected vertex-symmetric graph
has maximum edge-connectivity. This applies of course to Cn(b). As a consequence,
the fault tolerance capabilities of the graphs Cn(b) are optimal among all graphs of
degree 4.

11
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ITI. MIDIMEW NETWORKS

In the light of the discussion presented in the previous section, it is clear that the graphs
Cn(b) are interesting in that they minimize both the diameter and the average distance,
and exhibit homogeneity and high connectivity; however, planar design and embedding
of parallel algorithms could be substantially improved if a regular way of laying them
out is found, such as a mesh with wrap-around links.

We shall describe in this section a method that yields a transformation of these
graphs into a mesh-connected network with wrap-around links, preserving all the prop-
erties enjoyed by the Cn(b) graphs. We call this class of mesh-connected topologies
Midimew networks (Minimum Distance Mesh with Wrap-around links). The re-
sulting topology highly simplifies the task of solving the aforementioned design prob-
lems, since the processing elements not in the boundaries only need communication
with the four physically nearest neighbors, and the corresponding design vields a pla-
nar representation having the minimum number of crossing links. On the other hand,
the near-neighbor connectivity is strongly suggested by several kinds of computational
problems such as those of image processing and numerical applications. Consequently,
the treatment of these types of programs results in a very convenient mapping on 2
mesh-connected graph.

We present in this section a Midimew network isomorphic to each of the graphs
Cn(b), and satisfying the indicated requirements. As a consequence, & simple method-
ology for the systematic construction of Midimew networks 1s obtained. Also, the rect-
angular Midimew networks are characterized, and furthermore it is shown that exactly
two square Midimew networks exist.

Let N > 2 be fixed, and b as in the previous section. We will use the following
additional notation:

]\T

T=[T]b—N 0<r<d

erern (f8])-
- f] -0

The following lemmas will be used to prove the existence of an isomorphism between
Cn(b) graphs and Midimew networks. Their proofs are reasonably straightforward and

therefore omitted here.

Lemma 7. For any two integers i, 7 with 0 < i < h and 0 £ j < v, it holds that
0<i(b-1)4+5b<2N.
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» Lemma 8. For every integer d; if. N — (v — d)b is a multiple of (b~ 1) then dis also a.

multiple of (b—1).
Now we prove our mair theorem in this section. Two additional definitions are

required. _
Go={(i,j)‘0§i<ha.nd03,1<v}

G={Gj)|r<i<hand0<j<v}
U{(i,j)lOSi(randOSj(b—l}
The relation between Gy and G is depicted in figure 2.
Theorem 3. The function f:G — V defined by f(i,j) = (i(b — 1) + jb) mod N is a
bijection.

Proof. First observe that the cardinality of G is:

(h=rhv+rd-1)=
b([%l —r)+r(b-1)=b[1vb-] —r=N

Therefore it suffices to show that f is injective. To this purpose we will show that:

(i) No more than two pairs (i,j) and (p,g) from Go are mapped to the same image,
and

(i1) If two pairs (i,j) and (p,q) from Go are mapped to the same image then one of
them lies out of G. _
Let (¢,7) and (p, ¢) be two different pairs giving the same value:

(i(b ~ 1)+ jb) = (p(b— 1) + gb) (mod N)

Without loss of generality, we assume that (i(b— 1) + jb) < (p(b— 1) + gb) and,
furthermore, in case of equality we assume i < p. By lemma 7, either:
(2) (#(b—1)+3b) = (p(b—1) +gb), or
(b) (2(b—-1)+3b) + N = (p(b— 1) + ¢b).
Claim: Case (b) does not hold.

To prove it, assume (b) true; we will derive a contradiction. From (b) it follows
that

(p—i)(b—1)=N—-(g-J)b

Therefore N — (g —j )b must be a multiple of (b—1). The smallest value of (p—1) is found
when (g — j) is as large as possible. Since (¢ — j) < ¢ < v, we have that (¢ —j) =v - d
for some d > 0. By lemma 8, d must be a multiple of (b — 1), and therefore d is at least

(b—1) > 1, which implies that (p — {)(b — 1) is at least N — (v — (b —1))b. Substituting

13
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_the value of vt turns.out that the smallest value of (p — i) is h, which contradicts the

range of p and i. Therefore case (b) does not hold, and this proves the claim.

Thus case (a) holds, and it is equivalent to

(p-ib-1)=0G-b

Since (b—1) and b are relatively prime, all the solutions of this equation are of the form

S (p=i)=ab, (j-g)=a(b-1)

where a ranges over the integers. The convention that p > 1 gives a > 0. Let us find
an upper bound on a. Since p < h, 1 >0, j < v, and ¢ > 0, we have ab=(p—1)<h
and a(b—1) = (j — ¢) < v. Therefore ab+ a(b—1) < h + v. Substituting h and v by
their values, and using lemma 1 in the previous section and the fact that > 1, 8 bound
of a < 2 is obtained by straightforward manipulation. This proves our first statement:
the inverse image of each element of V' contains at most two pairs, corresponding to the
only admissible values for a, 0 and 1. Value 0 gives the trivial solution p =1, 3 = g,
discarded by the assumption that the pairs were different. The remaining value gives
i=p—>bandj=g¢g+b—1 From the inequalities 0 <1, p <k, 0 < g, and j < v, we

derive:
0<i<h-b=r
(xx)
b—1<j<v
Thus, if (i,7) is a pair for which there exists another different pair (p,q) giving
the same result, i.e. (i(b — 1) + jb) = (p(b — 1) + gb), then i and j must satisfy the
properties (). But, by definition, these properties are precisely those that prevent the

pair (z,7) to belong to G. The theorem is proved. #

Now we present our interpretation of the theorem, in order to obtain systematic
guidelines to construct Midimew networks. Transform the set G into a grid by setting
at most four edges from each pair (i,7) to those of their immediate neighbors (1£1,5)
and (3,7 = 1) that belong to G; we identify the set G with the graph obtained in this
manner, which is denoted also G. Consider the function f given in theorem 3, which
maps pairs from G onto the vertices of the circulant graph Cn(b) in a bijective manner.

Observe that the following holds:
£+ 1,5) = (Fr5) + (b= 1)) mod N
FG =1,7) = (f(i,7) — (b—1)) mod N
fG,7+1)=(f(5,7) +b) mod N
f(&,7 = 1)=(f(i,7) —b) mod N

14
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"Thus, if two pairs of G-are joined by an edge of the:grid.then their:images under f.are

joined by an edge of the circulant graph. Since f is bijective, this shows that the grid
G is isomorphic to a subgraph of Cn(b).

A graph isomorphic to C(b) can be obtained by setting some wrap-around con-
nections corresponding to the edges of Cn(b) missing in f(G). Once these wrap-around
connections are established, if done in the appropriate manner, the extended grid will
be isomorphic to Cn(b).

Let us discuss how to set the wrap-around edges on G to obtain a graph isomorphic
to Cn(b). Each of the nodes in the bottom border (i.e. those elements of G with j = 0)
have to be connected to some node in the top border (which can be at two different
heights); similarly, each node in the right border must be connected to a node in the
left border (which can be in two different columns). To maintain the isomorphism, care
must be taken that each wrap-around edge added in this way corresponds to an edge of
Cn(b).

These edges must be set as follows:

A) Node (%,0) of G must be connected to the top node of the column

(i 4+ r) mod h.

B) Node (h —1,;) of G must be connected to the leftmost node of the row

(7 +b—1)mod v.

Edges described under A) correspond to a “—b" edge in C ~(b). The top node of
the indicated column is (({ + r) mod (b + r),v — 1) if such node exists, otherwise it
is ((i + r) mod (b + r),b — 2). Moreover, the first case holds when i < b, and then
(i +r) mod (b + r) is plainly (i +r), while the second case holds when i > b, and in this
case (i + ) mod (b + r) becomes i — b. All this is easy to show from the definition of
G (a glance to figures 3 and 4 may help). To prove that these edges are correct, it is
enough to check the following easy identities:

16.0-={ G070 chrwi

Edges described under B) correspond to a “+(b—1)" edge in Cn(b). The leftmost
node of the indicated row is (0,(j + b — 1) mod v) if such node exists, otherwise it is
(r,( + b — 1) mod v). Moreover, the first case holds when j +b—1 2 v, and then
(5+b—1) mod v becomes j + b— 1 — v, while the second case holds when j +b—-1 <,
and in this case (j + b — 1) mod v is plainly j + b — 1. See the definition of G and the
figures to check all these facts. The correctness of these edges can be checked also easily
by proving the following identities:

: [ fO,G+b=1)=v) f(0,(j+b-1)-v)EG
fh=1,j)+b-1= {f(r,(j +b-1)) otherwise

15



B S sl i

AR L R T R e M | LI 5

st slanbicdnt  SRa Tl PITI RIS J Sy

I e L

eh

fand

]

This argument shows how to extend the grid G with wrap-arourd edges, obtaining
an isomorphism with the circulant graph Cn(b). The extended network therefore shares

“all the graph-theoretic properties of Cn(b), and thus minimizes simultaneously the

diameter and the average distance for the given number of nodes N. It also exhibits the

high connectivity and the other desirable properties of the circulant graph described

in section II, and is therefore suitable as a good alternative to other proposed static

" jnterconnection networks, as will be further examined at the end of this section.

Systcmatié construction of Midimew networks
As a consequence of the results presented up to now in this section, we describe next
an algorithm for systematically constructing Midimew networks for any given number

of nodes N > 2.

Step 1: Computing parameters. Find the following quantities:

E e
h=br o= [ 3] -7

Step 2: Design a rectangular grid of horizontal dimension h and vertical dimension v.

Step 3: If r # 0 and r # [&] —b+1, then discard from the drawn grid a leftmost upper

rectangle of horizontal dimension r and vertical dimension v — b+ 1.

Step 4: Establish the wrap-around links: Connect each node (1,0) to the top node of
the column (i + r) mod h,'and connect each node (h —1,7) to the leftmost node of the
row (7 +b—1) mod v.

The Midimew network is constructed. The networks in figures 3 and 4 have been
obtained by this algorithm, and the nodes have been labeled according to the function
f of theorem 3. Notice that the mesh of figure 3 is isomorphic to the circulant graph of
figure 1.

Rectangular and square cases
It can be seen from figure 2 that fully rectangular Midimew networks are obtained in
each of the following cases:

1/ When b+r = b, i.e. r = 0. This case occurs when N is a multiple of b, and then the
dimensions of the network are h = b and v = N/b. For each b, exactly four such
full rectangles appear, with sizes v =2b—3,v=2b—-2,v = 2b — 1, and v = 2b,

corresponding to N = 2b2 — 3b, N = 2b* — 2b, N = 2b* — b, and N = 2%
2/ When b -1 = I'-’\—"l —r,le 1 = [l\ﬂ — b+ 1. This case occurs when N =

b
([%'1 4+ 1)(b — 1), and then the dimensions of the network are h = N/(b—1)

16
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snd v = b~ 1. For each b, exactly one such full.rectangle appenrs; namely.with..

h = 2b— 1, that is, when N = 2b? — 3b+ 1.

Remark that, out of the 4b — 2 Midimew networks existing for each value of b > 2
(N > 8), only § of them are rectangular. On the other hand, only two square Midimew
networks exist, corresponding to the cases where N = 4or N = 9. This can be
easily seen from the fact that a square Midimew can be obtained only if b = N/b or
b—1= N/(b—1), and that the second equality never holds. Spme manipulation shows
that the first case implies that N < 4\/}-\7- — 2. Solving for \/J_\f yields that N < 12, and
thus the only perfect squares fulfilling this condition are 4 and 9. Figure 5 presents the
square Midimew with N = 9.

A generally desirable characteristic is to achieve high density meshes (large number
of nodes) yet minimizing the number of wrap-around links, since they may raise some
implementation difficulties. Square meshes with wrap-around links present an advantage
over similar networks with rectangular or “L” shapes, due to the fact that the square is
the quadrangular geometric figure which minimizes the perimeter for a given area. The
number of wrap-around links in Midimew networks is equal to the value of the network
semiperimeter, and the area corresponds to the total number of nodes.

Midimew networks are designed with the criterion of minimization of distances in
mind. Furthermore, the isomorphism between Cn(b) graphs and Midimew networks has
been chosen looking for the minimization of the resulting topology perimeter. Figure 6
shows the percentage of wrap-around links with respect to the total number of network
links needed to construct Midimew networks, as a function of the number of nodes N.
The same figure also shows this numerical relation for the case of 2-D torus networks.

In connection with this point, it is worthwhile remarking that the authors have
introduced and presented in [6) another class of square meshes with wrap-around links,
which are only defined for N equal to an even power of 2, exhibiting 2 good trade-off
between distances and number of peripheral links. These topologies are based on another
different class of circulant graphs of degree 4, characterized by adjacency patterns of

the following form: each node n,0 <n < N —1,is connected to the four neighbours:
/N
(n+ (17— — 1)) mod N

(n— (g — 1)) mod N

(n+vN)mod N
(n — VN) mod N

17
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For these v/N. X VN networks,-the resulting values.of the.diameter k and average

distance k are:

k=3\/ﬁ/4

(23N/8 — 1)VN
6(N — 1)

Figure 7 shows an example of a network of that class for N = 64. Further study of

k=

this class is now in course.

In order to allow an estimation of the suitability of Midimew networks, we provide
here a table with relevant topological properties (see table 1), which compares several
well-known static interconnection networks (2-D and 3-D mesh, torus, hypercube) and
the hereby proposed alternative (Midimew).

The hypercube topology constitutes, up to the moment, the most popular intercon-
nection scheme which has been used to implement the first generation multicomputers.
Many important scientific and technological efforts have served to establish the com-
putational model, as well as the main applicability areas, of the early message-passing
multicomputers, mostly based on the hypercube topology. Nevertheless, such networks
present some important drawbacks, namely their difficult scalability and planar imple-
mentation, and the far from complete utilization of their high connectivity properties.
For this reasons, among others, hypercube networks are nowadays leaving room to other
different topologies exhibiting lower connectivity, but which lead to more feasible 2-D
or 3-D implementations, and which allow a greater utilization of the network resources.
Besides, topologies able to increment the system bandwidth (by using wider paths) and
to facilitate the system programmability, are desirable. Thus, we consider a realistic
choice to include in the comparison provided by table 1 the 2-D and 3-D meshes and
toruses, together with the Midimew structures.

Since there is no single standard measure to directly evaluate and compare the
performance of these interconnection networks, no attempt is made here to establish
any ranking identifving which one is the best. We believe instead that some valuable
information may be drawn from several commonly accepted parameters which serve as
relative merit figures; we shall consider here the product of diameter and degree, the
average distance, and the message density, whose values are shown in figures 8§, 9, 10,
and 11, as functions of the number of nodes.

Figure 8 illustrates the comparison of all the networks listed in table 1 with respect
to a typical cost measure (see, for example, [14], [10}), i.e. the product of diameter and
degree. Figure 9 depicts with greater clarity the behavior of the same function for a
number of nodes up to around 2200. Present medium-grain multicomputers fall in this

range, see [4].

18
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In figure 10, the values of average distance for these networks-{except-hypercubes)
can be seen.- On the-other hand, figure 11 shows the curves of message-density values;
another frequently used metric [1] which serves also as a good comparison parameter.
Message density can be defined as the product of average distance times number of

nodes, divided by the total number of links.
Figures 12a and 12b show a quantification of the improvement obtained in the

-average distance of Midimew networks, compared to 2.D toruses and 2-D meshes re-
spectively. In figure 12¢, 2-D and 3-D toruses and meshes are also compared. Finally,
in order to complete this analysis, the improvement in message density of Midimew

networks versus 2-D meshes can be seen in figure 13.
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IV. ROUTING SCHEME - .

The problem of message routing between nodes in & Midimew network is partially ad-
dressed in this section, providing the basis to solve it. We present and prove correct here
an algorithm taking as input data the numbers identifying the source and destination
nodes, and computing as outputs two routing records. One of them describes a set of
shortest paths between the input nodes; the second describes another set of alternative
paths.

Each routing record is constituted by two signed integers z, y. Their absolute
values |z|, |y| represent the distance between the input nodes in terms of the number
of hops through each kind of link, i.e. |z| indicates the number of times the b hop must
be followed and |y| indicates the number of times the b — 1 hop must be followed. The
signs determine the orientation to be chosen for the hops when the path is constructed.

The routing records furnished by the algorithm are to be used by another routing
module which would decide the exact path to be followed on the basis of externa'
conditions such as node or link faults or local traffic congestion. In this sense, the
algorithm for generating routing records is conceived to be integrated into an adaptive
multipath routing system.

Let us proceed to describe some facts needed to prove our algorithm correct. Since
the graph is undirected, any shortest path joining any two nodes can be used for commu-
nication in either direction. Thus our problem is to find the routing record corresponding
to the shortest paths joining any two nodes s and t, with s, t € V. Without loss of
generality we can assume that ¢ > s. We must find two integers = and y that minimize
the sum |z| + |y| under the condition that

i

0<m=t—s=zb+yldb—-1)< N

Taking into account the properties of the graphs considered here, it can be seen that
we can restrict our study to the values 0 < m < N div2, because the values Ndiv2<m
can be reduced to these by simply changing the signs of z and y after operating with
(N —m).

The general problem is, thus, to obtain solutions to equation
m = zb+ y(b—-1) (x*)

with m, z, y, and b integers, and b > 1.
If (zo,v0) is a solution, then m = zob + yo(b — 1). Since b and b — 1 are relatively

prime, any other solution can be expressed as (z¢ — a,yo + B) imposing the condition

20
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ab = (b — 1), which leads to-a= n{b — 1) andf =nb withn € Z. Consequently, any
solution to equation (x*+) belongs to the family (zo —n(b—1),y0 + nb).

A particular solution can be straightforwardly obtained in the form

zo=Q+R Q=mdivbd
with
yo=-—R R=mmodb

taking into account that equation (*+) can be rewritten as
m = (z +y)b+(~y)

We conclude that any solution is in the form

2o, =Q+R-n(b-1)
yn =—R+nb

with n integer.

Shortest path solution

Now we impose the condition that P, = |Zn|+|ys| > 0 be minimum, so that we minimize

the distance to be traversed. Recall that theorem 1 guarantees that an optimal path
always exists with P, < b.

Theorem 4. Values n < 0 and n > 1 never yield shortest path solutions.

Proof . We prove the following two claims:
Claim 1. P, > P, for every n < 0.
Claim 2. P, > b for every n > 1.
From these two claims the theorem follows.
Proof of claim 1. It is straightforward by checking that |zn| > |zo| and |ya| > lyo| for
any n < 0. _
Proof of claim 2. It is not difficult to see that the following inequalities hold:

Q+R<L20b-1)
R<b
Q+ 2R <3(b-1)

Then, for any n > 1, we have
Po=n(b-1)=(Q+R)+nb—-R=n(2b-1)—(Q +2R)

which yields P, > b by algebraic manipulation. This completes the proof. n
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Consequently, theorem 4 guarantees that, in any case, only. values ni=0 andn =1
may yield shortest path solutions. Now we must derive the-conditions required to choose
the optimal solution as Py or P;. That is, we determine the solution (zo,¥0) or (z1,¥1)
to be the best routing record. Recall that Py = |zo| + lyo| = 2o — Yo = Q + 2R and
Py =|zy|+ |nl=1Q+R-(b-1[+b-R.

Theorem 5. P, < P; if and only if yo = 0 or 2o < ¥1.

Proof . We consider two disjoint cases, depending on the value of Q + R, and later
combine them into the statement.

Casel. Q+R>b—1. Then P, = Q+1, and Py < P if and only if R = 0. In this
case, Py represents the shortest paths because Pp = Q < b.

Case 2. Q+ R<b—1. Then

Po=(b-1)-(Q+R)+b-R=(2b-1)-(Q+2R)=(2b-1)-Fo

and Py < P, if and only if (Q +2R) < b. In this case P, is the routing record associated
to the optimal solution because Py = Q + 2R < bbut P, =2b—1— (Q+2R) 2 b.
So far, we have proved that P is the shortest paths solution if and only if

(R=0)AQ+R>b-1)V(Q+2R<bAQ+R<b—1)

Now this condition can be rewritten in a simpler manner since it reduces to (R = 0
V Q + 2R < b) through straightforward boolean manipulations. Finally, as R = -y
and Q + 2R = z¢ — y; + b, the proof of the theorem is completed. =

Theorems 4 and 5 allow us to design a simple algorithm to generate the shortest
paths routing record. The algorithm uses the previous results to find the values z,,y,

of the routing record assuming t > s and m < N div 2, and deals with the remaining

cases by changing the signs of the solution. The algorithm is as follows:

8%
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{ Algorithm to obtain the routing record z,,y, for shortest paths }
{ An alternative routing record is also obtained, Tns)¥ns }
{ Data: s source node, t destination node, N number of nodes, b = {\/g-\ }
BEGIN
m := ABS(t - s);
IF ¢t < s THEN sign := —1 ELSE sign i=1;
IF m > N DIV 2 THEN BEGIN
sign = —sign;
m:=N-m
END;
yo := —(m MOD b);
zp := (m DIV b) — yo;
1 := b+ yo;
Ty =z — (b—1);
IF (yo = 0 OR zo < y;) THEN BEGIN
Yo = Y05 Yns = Y1
T, = Tp} Tns = T1
END
ELSE BEGIN
Ve 1= V15 Yna = Yo
I, = T1) Tns = To;
END;
Vs 1= Y, * SIEN; Yn, := Yns * SIED;
T, i= I, * SIgN; Tp, = Tn, * SIgN;

END.

Using the routing records generated by this algorithm, the implemented global

routing mechanism shall convey messages to their respective destination through some
shortest path.
_ For these and other related topologies, a total number of ("""l:|l” l) different shortest
paths exist [7). The global routing policy must decide which one is chosen, at a given
time, accordingly with the possible conditions of node/link faults, and presence of local
traffic congestions in the network.

The algorithm to generate routing records which has been presented above, provides
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"all the information required to implement any one among the set of all possible.shortest

paths. In addition, another alternative routing record is produced which can be used
to improve the adaptive capabilities. In & forthcoming work, the authors will present a
more sophisticated algorithm to generate both optimal and suboptimal routing records.
The paths in the second alternative obtained shall be edge and node disjoint from the
paths associated to the optimal routing record, and yet shall minimize the distances
under these disjointness condition.

The utilization of this approach in connection with deadlock-free adaptive rout-
ing strategies, as those presented in {21], should provide a global routing scheme able
to guarantee a high throughput, to diffuse local traffic congestions, and to allow the

definition and use of redundant paths for fault-tolerance.
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V. CONCLUSIONS -~

Let us now summarize the main results obtained, as well as present & brief discussion
of several related considerations.

In first place we have characterized a family of optimal circulant graphs with de-
gree 4, denoted here as Cn(b). The optimality refers to the simultaneous minimization
of diameter and average distance for all circulant graphs of degree 4. For any arbitrary
number N of nodes, one such graph exists, and the only design parameter needed to de-
fine each Cn(b) is b = [\/g ] Besides the distances optimization, these graphs exhibit
homogeneity and maximum connectivity, and all these desirable characteristics provide
the ability to use them as the basis to construct interconnection networks suitable for
parallel architectures.

The resulting networks obtained in this paper, named Midimew networks, preserve
all the convenient properties of the Cn(b) graphs. The obtention of Midimew networks
is accomplished by using an adequate graph isomorphism, which has been described and -
demonstrated in a subsequent section. The interest of such a transformation is justified
because Midimew networks are better suited than circulant graph topologies as they
show practical advantages when the interconnection topology is implemented, mainly 1)
the ability to attain easier planar implementation with VLSI technology, and 2) greater
simplicity to program the parallel architectures. Both features are of major importance
in the development of current parallel computer systems. As a matter of fact, many well-
known parallel algorithms are available which exhibit regular communication patterns,
and are, consequently, adequate to be mapped on 2D mesh topologies like Midimew
networks.

On the other side, our aim is to design topologies to be implemented in general-
purpose machines. Present programming environments for multicomputers, like CE/RK
[26) and Cantor [3) include dynamic allocation of processes to processing elements. Fine-
grain multicomputers have shown that a random process allocation scheme can achieve
high system throughput. Mosaic [4] is a good example of this. Thus, it is of fundamental
importance, in this context, to minimize distance-related parameters in order to obtain
a reduction in the communication latency due to the interconnection network.

Moreover, small degree networks allow the implementation of parallel channels,
with a number of links sufficient for the required information bandwidth, to keep 2
Jower communication delay overhead. 2D or 3D meshes are, in this aspect, better than
hypercubes [11], provided that adequate routing techniques are implemented [12]. Easy
expandability and greater ability to make a complete use of the network connectiv-

ity are, furthermore, other reasons for the growing appearance of mesh topologies in
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:recent second generation multicomputer systems, such-as-the iPSC/2 and the'Symult -

series 2010.

Different variations on mesh-like topologies are also present in some local area
networks, as the Manhattan LAN [20], which uses & class of mesh with wrap-around
links.

Altogether, it seems clear to us that the family of Midimew networks constitute,
from a strictly topological point of view, & good candidate to apply compound graphs
techniques on them, in order to design new hierarchical networks adequate to message-
passing architectures. An example of the application of these techniques to obtain
the network topology for a parallel system is the design of DOOM, currently under
development [10].

Finally, we have addressed in this paper the problem of message routing in Midimew
networks, with the purpose of giving a more complete operational environment. A low-
complexity algorithm to generate routing records, which may serve as the basis for
a multipath global routing scheme, is provided. The output of this algorithm directly
gives the information about a set of paths with minimum length, and also about another
set of non-shortest paths. Thus, it makes possible the implementation of adaptive
routing strategies, which are useful when the presence of node/link failures or local

traffic congestions is considered.
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Figure 1. Circulant graph Cp(b) with N = 24 and b=4.
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Figure 2. Relationship between G.and Go,
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