
Cost-Conscious Strategies to Increase
Performance of Numerical Programs on

Aggressive VLIW Architectures
David LoÂpez, Josep Llosa, Mateo Valero, Fellow, IEEE, and Eduard AyguadeÂ

AbstractÐLoops are the main time-consuming part of numerical applications. The performance of the loops is limited either by the

resources offered by the architecture or by recurrences in the computation. To execute more operations per cycle, current processors

are designed with growing degrees of resource replication (replication technique) for memory ports and functional units. However, the

high cost in terms of area and cycle time of this technique precludes the use of high degrees of replication. High values for the cycle

time may clearly offset any gain in terms of number of execution cycles. High values for the area may lead to an unimplementable

configuration. An alternative to resource replication is resource widening (widening technique), which has also been used in some

recent designs in which the width of the resources is increased (i.e., a single operation is performed over multiple data). Moreover,

several general-purpose superscalar microprocessors have been implemented with multiply-add fused floating-point units (fusion

technique), which reduces the latency of the combined operation and the number of resources used. In this paper, we evaluate a broad

set of VLIW processor design alternatives that combine the three techniques. We perform a technological projection for the next

processor generations in order to foresee the possible implementable alternatives. From this study, we conclude that if the cost is

taken into account, combining certain degrees of replication and widening in the hardware resources is more effective than applying

only replication. Also, we confirm that multiply-add fused units will have a significant impact in raising the performance of future

processors architectures with a reasonable increase in cost.

Index TermsÐVLIW processors, instruction level parallelism, software pipelining, numerical applications, performance/cost trade-off.

æ

1 INTRODUCTION

CURRENT high-performance microprocessors rely on
hardware and software techniques to exploit the

instruction-level parallelism (ILP) available in applications.
These processors make use of deep pipelines in order to
reduce the cycle time and wide instruction issue units to
increase the number of instructions executed per cycle. The
selection of the instructions issued each cycle is done either
at runtime in out-of-order superscalar processors or at
compile time in Very Long Instruction Word (VLIW)
architectures.

In a basic VLIW architecture, an instruction is composed
of a number of operations that are issued simultaneously to
the functional units. For these architectures, the compiler is
responsible for the scheduling of the operations, so the
dispatch phase is very simple. These architectures have
been widely used in the DSP arena (as in Texas Instru-
ments' `C6701 [27] and Equator's MAP1000 [28]) and
constitute the core of several current designs (as Sun's
MAJC [29], [31] and the EPIC from Intel-HP [25], [30])
targeting general-purpose applications.

The static nature of VLIW schedulings requires good
compilation techniques to effectively exploit the ILP
available in real programs [34]. Loops are the main time-

consuming part of numerical programs. Software pipelin-
ing [1] is a compilation technique that extracts ILP for the
innermost loops by overlapping the execution of several
consecutive iterations. Modulo scheduling [35] is a class of
software pipelining algorithms that has been incorporated
in many production compilers. In a modulo-scheduled
loop, the Initiation Interval is the number of cycles between
the initiation of two consecutive iterations. The Initiation
Interval is bounded either by the recurrences in the
dependence graph or by the resource constrains of the
target architecture [7], [33].

The performance of loops bounded by resources can be
improved by increasing the number of resources available
in the architecture (replication technique). Using this
technique, the number of operations that can be simulta-
neously executed over independent data is increased. As
an alternative to replication, the width of the resources
can be increased, exploiting data parallelism at the
functional unit level, like in vector processors, or, in
superscalar and VLIW processors, using the widening
technique. Using this technique, a single operation can be
performed over multiple data (SIMD). Both replication and
widening can be combined in the same processor design.
Each one of the configurations has a different performance,
but also a different cost.

The use of replication and widening allows us to have a
scalable architecture in which hardware to increase the
number of operations performed per cycle can be added.
Although replication has been extensively used in the
design of superscalar processors, only small degrees of

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 10, OCTOBER 2001 1033

. The authors are with the Computer Architecture Department, Technical
University of Catalunya (UPC), Campus Nord, Modul D6, Jordi Girona 1-
3, 08034-Barcelona, Spain.
E-mail: {david, josepell, mateo, eduard}@ac.upc.es.

Manuscript received 21 Apr. 2000; revised 5 Feb. 2001; accepted 4 May 2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111976.

0018-9340/01/$10.00 ß 2001 IEEE

widening have been applied in current microprocessors.
For instance, IBM's POWER2 [39] applies widening to the
memory ports. Vector processors, like NEC's SX-3 [38],
apply widening to the floating point units (FPUs). Multi-
media processors extensions combine sub and superword
parallelism, which, in some way, use the basic idea of
widening applied to integer and FP operations, like the
Motorola AltiVec [26] or the MultiMedia eXtensions (MMX)
and Stream SIMD eXtensions (SSE) in Pentium III [12].

As the number of transistors on a single chip continues to
grow, more hardware can be accommodated on a chip, so
future microprocessors will use these techniques to exploit
ILP aggressively. Replication and widening focus on increas-
ing the performance of resource-bound loops. Consequently,
the more aggressive the architectures, the more critical the
recurrences. Several current microprocessors use functional
units that can perform multiple elemental operations as a
monolithic complex operation; for instance, fused multiply and
add (FMA) FPUs perform a multiplication and a dependent
addition as a single operation. This technique (fusion
technique) has been implemented in the floating-point units
of several microprocessors, such as the IBM RS/6000 [11],
IBM POWER2 [39], MIPS R8000 [10], and MIPS R10000 [42],
and can reduce the latency of the recurrences, but also has
some advantages for resource-bound loops.

This paper focuses on a cost-conscious evaluation of a
broad range of VLIW processor designs in which the
replication, widening, and fusion techniques are combined.
The paper targets numerical applications based on FP
operations. Here, we extend and improve the previous
research work done in [22], [23], and [24]. In this evaluation,
we take into account the individual impact of the static
scheduler, register file size, area, and cycle time. The
analysis of the results coming from this evaluation obliges
us to view the performance from a global perspective.

The area cost defines those configurations that could be
implemented in the next microprocessor generations,
according to the predictions of the Semiconductor Industry
Association [37]. For each generation, we estimate the
performance of a set of implementable configurations,
taking into account the number of cycles required to
execute the programs and the cycle time. From this study,
we conclude that, for a given technology, the best
performance is obtained when replication, widening, and
fusion are appropriately combined. Related studies have
been conducted in the context of custom-fit processors [9]
and transport triggered architectures [13].

All the evaluations have been performed for VLIW
architectures and numerical programs. Our workbench is
composed of 1,180 loops that account for 78 percent of the
execution time of the Perfect Club benchmarks [5]. The
loops have been obtained using the experimental tool
IctõÂneo [4] and software pipelined using Hypernode Reduc-
tion Modulo Scheduling [21]. Register allocation has been
performed using the wands-only strategy and the end-fit
with adjacency ordering [36]. When a loop requires more
than the available number of registers, spill code is added
and the loop is rescheduled [20]. The focus of this paper is
to perform a study of architectural techniques that can be
used to improve ILP, assuming a given compilation

technology. This is the reason why we do not analyze the
impact of compiler transformations (such as loop inter-
change, unroll-and-jam, tiling, etc.) and refined techniques
to analyze dependencies [41]. These transformations may
lead to innermost loops that are able to take even more
advantage from processor core organizations which include
some degrees of widening. We believe that the general
conclusions of the paper will not change and provide the
same insights for microprocessor designers.

The organization of the paper is as follows: Section 2
presents the basic concepts of modulo scheduling and the
issues that limit the performance (for instance, register
pressure). Section 3 describes the techniques evaluated in
this paper (replication, widening, and fusion) and includes
some examples to understand their role in improving the
exploitation of ILP. This section ends with a classification of
loops to give an idea of the potential benefit of the described
techniques in the final performance. Section 4 presents the
workbench following the previous classification. In
Section 5, we present some design considerations (area
cost, register file access time) which are the main ingre-
dients of the cost-conscious evaluation performed in
Section 6. Finally, Section 7 summarizes the main conclu-
sions of this work.

2 OVERVIEW OF RELATED CONCEPTS

This section includes an overview of software pipelining
[1], modulo scheduling [35], and the problems caused by
the high register pressure introduced by these aggressive
techniques [19].

2.1 Data Dependence Graph (DDG) and Extended
Data Dependence Graph (EDDG)

The dependences of an innermost loop can be represented
by a Data Dependence Graph:

Definition 1: Data Dependence Graph G � DDG�V ;E; ��.
V is the set of vertices, where each vertex v 2 V represents an
operation of the loop body. E is the dependence edge set, where
each edge �u; v� 2 E represents a dependence between two
operations u and v. The dependence distance ��u;v� is a
nonnegative integer associated with each edge �u; v� 2 E.
There is a dependence with distance ��u;v� between two nodes u
and v if the execution of the operation v depends on the
execution of operation u, ��u;v� iterations before.

One of the studied techniques is the widening technique,
which compacts memory and arithmetic operations (see
Section 3.1). The compaction of memory operations is based
on accesses to data stored in consecutive memory locations.
For this reason, we define the Extended Dependence Graph
that includes information about strides:

Definition 2: Extended Dependence Graph G0 �
EDG�G;S; ��: G is the dependence graph defined in
Definition 1. There is a stride edge �u; v� 2 S if u and v
represent the same kind of memory access (load or store) to the
same array and there is a constant difference between the
addresses accessed in operations u and v. This difference is the
stride ��u;v� associated to the edge �u; v�.

1034 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 10, OCTOBER 2001

For example, assume the EDDG in Fig. 1a. It consists of
seven nodes, labeled 0 through 6, that represent basic
operations: three memory operations (loads L0, L1, and
store S6) and four arithmetic operations (products *2, *3,
and *4, and addition +5). The dotted edges represent the
stride between memory operations (e.g., load L0 has a stride
of 1 with itself). The solid edges between nodes represent
values generated and consumed by these operations. All the
solid edges have distance zero except for edge < �5;�5 > ,
which has a distance of one iteration: �5n�1 (i.e., node +5 of
iteration n� 1) uses the data generated by �5n (i.e., the
same node in the previous iteration). This dependence
defines a recurrence (cycle in the dependence graph).

2.2 Software Pipelining and Modulo Scheduling

Assuming that memory operations and arithmetic opera-
tions can be served in one and two cycles, respectively,
Fig. 1b shows one possible scheduling for an architecture
whose resources are one memory port (bus) and one
floating point unit (FPU). In this case, 11 cycles per iteration
are required.

In a software pipelined loop, the scheduling of an
iteration is divided into stages so that the execution of
consecutive iterations that are in distinct stages is over-
lapped. There are different approaches to generate a
software pipelined scheduling for a loop. Modulo schedul-
ing is a class of software pipelining algorithms that was
proposed at the beginning of the 80s [35] and has been
incorporated in many production compilers. The number of
cycles per stage is termed Initiation Interval (II). The
execution of a loop can be divided into three phases: a

ramp up phase that fills the software pipeline, a steady state
phase where the same pattern of operations is executed in
every stage and the software pipeline achieves maximum
overlap of iterations, and a ramp down phase that drains
the software pipeline. During the steady state phase, the
execution of a new iteration starts every II cycles. This
Initiation Interval II between two successive iterations is
bounded either by loop-carried dependences in the graph
(RecMII) or by the resources constrains of the architecture
(ResMII). This lower bound on the II is termed the
Minimum Initiation Interval (MII � max (ResMII,
RecMII)). Sometimes, unrolling is required to match the
number of resources required by the loop with the
resources of the processor and also to schedule loops
with a fractional MII [16].

In the loop of Fig. 1a, ResMII � 4 because there are four
FPU operations and only one FPU unit. The recurrence
forces us to schedule node �5n�1 two cycles after node �5n,
so RecMII � 2 cycles and MII � max�4; 2� � 4. Loops
constrained by the resources are know as resource-bound
loops, while loops whose performance is limited by the
recurrences are know as recurrence-bound loops. Fig. 1c
shows the schedule of this loop divided into three stages of
four cycles. Notice that the loop has been rescheduled
(nodes *4, +5, and S6 have been delayed one cycle with
respect to the linear schedule of Fig. 1b) in order to make
possible the iteration overlap. Fig. 1d shows the execution
of three iterations, where the data dependence due to the
recurrence is marked by an arrow. In Fig. 1d, it can be
observed that a new iteration starts every II cycles by

L �OPEZ ET AL.: COST-CONSCIOUS STRATEGIES TO INCREASE PERFORMANCE OF NUMERICAL PROGRAMS ON AGGRESSIVE VLIW... 1035

Fig. 1. (a) The sample EDDG, (b) one possible scheduling, (c) scheduling of one iteration after applying software pipelining, (d) software pipelining

loop execution, and (e) kernel code.

overlapping different iterations, generating a pattern of
length II cycles that is indefinitely repeated. This pattern is
shown in Fig. 1e, where all nodes have a subscript that
indicates the stage to which the node belongs.

2.3 Register Pressure

The register requirements for a given schedule depend both
on the number of loop-invariants and on the lifetime of the
variables. We assume that the lifetime of a loop variant
starts when the producer is issued and ends when the last
consumer is issued; for instance, in the graph of Fig. 2a the
data produced by the load L0 has a lifetime of two cycles
from the moment in which the load is issued (cycle 0)
through the moment the last consumer (*2) is issued
(cycle 2). The minimum number of registers is estimated
as the maximum number of variables alive for all cycles in
the schedule (MaxLive). In the example of Fig. 2b,
MaxLive � 3 because three variables are alive in the same
cycle (cycle 1): two from loads L0 and L1 and another one
containing the result of +5 of the previous iteration. As
shown in [36], the maximum number of simultaneously live
values is an accurate approximation of the number of
registers required by the schedule.

There are also two loop-invariants in the loop (constants
C1 and C2, right part of Fig. 2b). Loop-invariants are
repeatedly used, but never defined, during loop execution
and have a single value during all the iterations of the loop.
Therefore, they require one register each, regardless of the
schedule and the machine configuration. So, in the schedule
of Fig. 2b, five registers are required (two for the loop-
invariants and three for the loop-variants).

Fig. 2c shows the register requirements after applying
software pipelining. In that case, the loop-variant require-
ments increase up to four registers (in cycles 0 and 1), so the
final requirements are six registers. This example shows the
typical situation when software pipelining is applied: The
cycles per iteration are reduced (from 11 to four in the
steady state), but the register requirements increase (from
five to six).

The actual number of registers required is not known
until the register allocation step of the whole scheduling
algorithm is done. In this work, scheduling is performed
using Hypernode Reduction Modulo Scheduling (HRMS) [21], a
register sensitive heuristic that achieves schedules with II =
MII in 97.5 percent of the tested loops with reduced register
requirements. To allocate registers, we use the wands-only
strategy using end-fit with adjacency ordering [36], which
almost never requires more than MaxLive� 1 registers. If
the number of required registers overpass the number of
physical registers available, spill code is added in order to
free registers, using the iterative algorithm described in [20].
However, this additional code may reduce the performance.

3 TECHNIQUES TO INCREASE ILP AND THEIR

IMPLICATIONS

3.1 Replication and Widening

In order to increase the number of operations performed
per cycle, the resources of the processor must be increased.
In this section, we analyze two alternatives to make the
architecture more aggressive: resource replication and
widening. Resource replication consists of increasing the
number of resources available by adding more independent
functional units. Widening consists of increasing the
number of operations that each functional unit can
simultaneously perform per cycle (i.e., functional units that
operate in a SIMD way).

Fig. 3 shows the use of replication and widening, both for
memory ports (buses) and FPUs. Fig. 3a shows a base
configuration with one bidirectional bus and one FPU. In
this case, one memory and one arithmetical operation can
be issued per cycle. Higher performance can be obtained by
adding another bus and another FPU (replication technique,
Fig. 3b); in this case, two independent memory accesses and
two independent arithmetic operations can be issued per
cycle. The same peak performance can also be obtained by
duplicating the width of the memory bus and the FPU

1036 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 10, OCTOBER 2001

Fig. 2. (a) Sample graph and register requirements, (b) before and (c) after applying software pipelining.

(widening technique, Fig. 3c); in this case, two consecutive

words in memory can be accessed and stored in a single
register (of width 2) and one operation can be performed

over registers of width 2.
Fig. 4 illustrates the factors that limit the exploitation of

parallelism when replication and/or widening are used.
Fig. 4b shows the example loop unrolled so that two

consecutive iterations of the original loop are considered for

scheduling. The subscripts indicate the iteration to which

the operations belong to. Let us assume that the loop in

Fig. 4b is scheduled for a machine with one FPU and one

bidirectional bus. Let us assume that memory operations

and arithmetic operations are fully pipelined with a latency

of one and two cycles, respectively. For any pair loop/

architecture, it is possible to compute the bounds of the

execution time of an iteration. In our example, we consider

three separate bounds (see Fig. 4d1):

. Recurrences: In the loop in Fig. 4b, there is one
recurrence (�50;�51) that limits the execution time
of the loop to four cycles per iteration of the unrolled
loop since the sum of latencies is 4.

. Memory bandwidth (BUS): In the loop in Fig. 4b,
there are six memory operations (L00, L01, L10, L11,
S60, and S61). Since all of them are fully pipelined
and we have only one memory unit, at least six
cycles are required to execute them.

. Execution bandwidth (FPU): In the loop in Fig. 4b,
there are eight floating-point operations (�20, �21, �30,
�31, �40, �41, �50, and �51). Since all of them are fully

L �OPEZ ET AL.: COST-CONSCIOUS STRATEGIES TO INCREASE PERFORMANCE OF NUMERICAL PROGRAMS ON AGGRESSIVE VLIW... 1037

Fig. 3. (a) Base configuration, (b) the same configuration after applying

replication, and (c) after applying widening. Notice that the register file

has also been widened.

Fig. 4. (a) Dependence graph for the original loop, (b) graph after unrolling with u � 2 (gray shadow indicates compactable operations), (c) graph with

compacted operations, (d) cycles to execute two iterations for different architecture configurations.

pipelined and we only have one FPU, at least eight
cycles are required to execute them.

The most limiting factor of our example is the execution
bandwidth that limits the performance to eight cycles per
iteration of the loop in Fig. 4b (i.e., four cycles per iteration
of the original loop).

Fig. 4b shows, with a gray shadow, the pairs of
operations that can be compacted into a single wide
operation. In Fig. 4d, we identify, for the different resources,
the cycles contributed by compactable operations (white)
and the cycles contributed by noncompactable operations
(striped). In this loop, all operations are compactable except
the pair (�50;�51) that are inside a recurrence and,
therefore, must be executed sequentially and the pair
(S60; S61) that cannot be stored with a wide bus because
they have a stride different than one. Fig. 4c shows the loop
once operations are compacted. This loop has five wide
operations and four single operations.

Fig. 4d2 shows the execution bounds when the loop in
Fig. 4b is scheduled for a machine where a degree of
replication equals 2 has been applied (i.e., two buses and
two FPUs). Notice that, in this case, we can reduce both
cycles due to compactable operations and cycles due to
noncompactable operations. In this case, we require four
cycles to execute the eight floating-point operations. Notice
that, in this case, we have reached the limit imposed by the
recurrence and no more parallelism can be exploited by
simply adding more resources to the architecture.

Fig. 4d3 shows the execution bounds when the loop in
Fig. 4c is scheduled for a machine where a degree of
widening equal to 2 has been applied (i.e., one bus and one
FPU, both of width two). Notice that the cycles due to the
recurrence are still four. However, the cycles due to
resources have been reduced to four cycles for the memory
operations and five cycles for the FP operations, summing
up five cycles per iteration of the unrolled loop. However,
cycles due to noncompactable operations are not reduced
by widening the functional units.

Fig. 4d4 shows the execution bounds when both
techniques (replication and widening) are applied. Now,
we have a machine with two wide buses and two wide
FPUs, therefore, we require two cycles to execute the four
memory operations and 2.5 = 3 cycles to execute five
floating point operations. If this loop had no recurrences, it
would benefit from this reduction in cycles due to
resources. However, the recurrence imposes a hard limit
that cannot be reduced by adding more resources (either
adding functional units or widening them).

Some preliminary conclusions can be drawn from this
simple example. They will help us to understand the
classification of the loops done in Section 3.3:

. Loops with recurrences are limited by the latency of
the operations involved in the recurrence, even with
an unbounded number of resources.

. Replicating the functional units reduces the limit
imposed by resources by a factor equal to the
replication degree.

. Widening functional units also reduces the limit
imposed by resources. However, this reduction only

affects the cycles contributed by compactable opera-
tions. Therefore, the noncompactable operations
limit the parallelism, even with an unbounded
widening degree. For an operation to be compact-
able, it is required that it not belong to a recurrence.
In addition, for memory operations, it is also
required that this operation have an access pattern
with stride 1.

The replication technique is more versatile than the
widening technique: Applying a replication degree of n
means that the configuration can access n independent
words in memory or perform n independent operations per
cycle. Applying the same degree of widening requires a
study at compile time to detect compactable operations (i.e.,
n single operations that can be unified in one wide
operation, that can be performed in one wide functional
unit). The compaction algorithm can be found in [24]. On
the other hand, the replication technique has, in general,
higher costs than the widening technique:

. Buses: Widening increases the width of the data bus,
but not the control and address buses. Besides this,
replication increases the number of buses between
the register file and the first-level cache, so it
requires more ports in the cache memory (multi-
ported caches require more area and have more
access time [17]). Also, widening requires no addi-
tional address translations, while replication re-
quires several addresses translated per cycle (this
affects the number of ports of the TLB, causing an
increase in cycle time and die area of the TLB [3]).

. Register file (RF): In our proposal, widening is
applied to buses, FPUs, and register file. Every
register in the RF increases its width in bits, but they
have the same number of ports per bit. Applying
replication increases the number of ports per bit.
Both techniques increase the RF area and cycle time,
but increasing the number of ports per bit has a
higher cost than increasing the number of bits per
register, as we show in Section 5.

. FPUs: Both techniques require almost the same
hardware at the FPU level because they perform
the same number of operations per cycle.

. Code size: From the point of view of code genera-
tion, widening can reduce the total number of
instructions (a single wide operation is the result of
compacting multiple operations). This reduction of
the code size can reduce the miss rate of the
instruction cache and further improve performance.

3.2 Fusion

In order to improve the performance of recurrence-bound
loops, the number of cycles needed to perform the
operations in the recurrence needs to be reduced. This
reduction can be achieved either by reducing the latency of
the functional units (which is a technological problem
beyond the scope of this paper) or by solving complex
operations in the same amount of time. The latter option has
been included in the design of some current microproces-
sors with functional units that execute fused multiply and
add (FMA) opera t ions as s ing le ins t ruc t ion :

1038 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 10, OCTOBER 2001

T � �A � C� �B. In these FPUs, the floating-point hardware
is designed to accept up to three operands for executing
FMA instructions, while other floating-point instructions
requiring fewer than three operands may utilize the same
hardware by forcing constants into the unused operands. In
general, FPUs with FMA implementations use a multiply
array to compute the AC product, followed by an adder to
compute AC �B.

This operation has been implemented in the floating-
point units of several microprocessors, such as the IBM
RS/6000 [11], IBM POWER2 [39], MIPS R8000 [10], and
MIPS R10000 [42]. In the case of the R10000, the FMA
operation has been implemented by chaining the multiplier
FPU output with the adder FPU input requiring rounding
and alignment between them. Therefore, the MIPS R10000
requires two cycles to compute an add or a multiply and
four cycles to compute an FMA operation providing no
latency benefit. The only benefit is the reduction in
instruction bandwidth and in the register requirements
(no register is required to store the intermediate result). On
the contrary, processors like the POWER2 implement the
FMA operation, integrating the multiplier and the adder
without rounding and alignment in the middle. Therefore,
in the POWER2, the FMA operation has the same latency
(two cycles) as the individual add or mul operations

For example, let us consider the dependence graph
shown in Fig. 5a with a recurrence that includes nodes 3, 4,
and 5. The recurrence also includes a product followed by
an addition. Fig. 5b shows how the graph is transformed
when these two operations are fused in a single FMA
operation, thus reducing the number of operations of the
recurrence from three to two and reducing the recurrence
limit to four cycles. Notice that the number of nodes
corresponding to arithmetical operations has also been
reduced from four to three.

Implementing the FMA functional unit in a micro-
processor incurs several costs in terms of area and cycle
time. With respect to the FPUs, the area required for the
extra hardware needed to implement the FMA operation
is practically negligible because the area of a general-
purpose floating-point unit is mainly governed by the
area of the multiplier [18]. The main additional cost is
due to the associated register file. The overall size of a
register file is determined mainly by the size of the
register cell, which grows as the square of the number of
ports (see Section 5). As every FMA functional unit has

three read and one write ports, it requires an additional
read port to the register file cells.

On the other hand, using FMA functional units can
reduce the MII of some loops. It also reduces the need for
spill code (because no register is required to store the
intermediate result) and reduces the complexity of the
scheduled graph, increasing the likelihood of the scheduler
finding an optimal schedule [22].

3.3 Classification of Loops

In order to increase the performance of a loop, the technique
that affects the most limiting factor of the loop must be
used. Several cases can occur: The loop can be recurrence
bound without any fusionable operation in the recurrence
(Fig. 6a), in which case none of the techniques have any
effect on the final performance; if the loop is recurrence
bound, but there are fusionable operations in the recur-
rence, fusion can be applied (Fig. 6b). If the loop is resource
bound, the performance can be increased using widening if
there are compactable operations (Fig. 6c), fusion if there
are fusionable operations or using replication. If there are
no compactable operations (Fig. 6d), only fusion (if there are
fusionable operations) and replication can be applied.
According to that, we can classify the loops in the following
way (Fig. 6e):

. NtD (Nothing to Do). These are loops whose
performance is limited by recurrences and there
are no fusionable operations into the recurrence. The
performance of these loops cannot be increased
either by using widening, by using replication, or by
using fusion.

. MRL (Maximum performance achievable Reducing
Latency). These loops are recurrence bound loops
with fusionable operations into the recurrence that
can achieve the maximum possible performance
applying only the fusion technique to reduce the
latency of the most critical recurrence (i.e., when
fusion is applied, the loop becomes a Nothing to Do
loop).

. MIR (Maximum performance achievable Increasing
Resources). These are either loops without recur-
rences or loops with recurrences whose most limit-
ing factor is the resource constraints and there are no
fusionable operations into the most limiting recur-
rence. In all cases, the maximum performance can be
achieved if we only apply the replication technique.

L �OPEZ ET AL.: COST-CONSCIOUS STRATEGIES TO INCREASE PERFORMANCE OF NUMERICAL PROGRAMS ON AGGRESSIVE VLIW... 1039

Fig. 5. Graph transformation and impact in performance limits in an architecture with one bus and one FPU: (a) without FMA and (b) with FMA.

Replication is a very expensive technique and the
goal of this paper is to show the potential benefit of
combining replication with fusion and widening, so,
according to the nature of the operations, MIR loops
have been divided in four subtypes:

- OF (Only Fusion loops) are loops that can achieve

maximum performance applying replication but

also applying only the fusion technique (i.e.,

loops where the most limiting factor is the FPU

resources, but, when fusion is applied, the loop

becomes Nothing to Do).

- OW (Only Widening loops) are loops where the

limit imposed by the recurrence can be reached

by applying only the widening technique. Some

of these loops can benefit from applying fusion,

but none of them can reach the maximum

performance using only fusion.

- OR (Only Replication loops) are loops where all

the operations that require the most limiting

resource are noncompactable (so widening

does not affect the final performance). Some

of these loops can also benefit from having

FMA FPUs, in spite of not achieving the

maximum performance.

- WbR (Widening but Replication loops) are the ones

where there are compactable and noncompact-

able operations (so some performance benefit

can be obtained by widening, but replication is

also needed to achieve the maximum perfor-

mance). Again, some of these loops can benefit

from having FMA FPUs, but none of them can

reach the maximum performance using only

fusion.
. MRL+I (Maximum performance achievable Reducing

Latency and Increasing the resources). These are loops
with recurrences where the maximum performance
can be achieved combining replication and fusion,
but not using only one. These loops can be divided
in subtypes in a similar way as the MIR loops, but
there are so few in the workbench (see the next
section) that we will not show numbers for the
subtypes.

4 THE WORKBENCH AND ITS CHARACTERISTICS

The workbench is composed of 1,180 loops of the Perfect

Club [5], which account for 77.82 percent of the total

execution time (on an HP 9000/735 workstation). The

extended dependence graphs of all the innermost loops

have been obtained with the ICTINEO compiler [4]. We

have not measured loops with subroutine calls or with

conditional exits since they are not suitable for software

pipelining. Loops with conditionals in their body have been

converted to single basic loops using IF-conversion [2].

Current (and future) advanced compiler transformations

can produce final loops with different extended depen-

dence graphs. For instance, techniques such as backward

substitution will enhance the performance of loops with

recurrences. Also techniques like loop interchange or

unroll-and-jam can be used to maximize stride-1 memory

accesses, benefiting even more from wide architectures.
Table 1 shows some characteristics of the loops according

to the classification of Section 3.3. The results are shown for

1040 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 10, OCTOBER 2001

Fig. 6. (a)-(d) Some types of loops. (e) Classification of loops.

an architecture with one bus and two FPUs1 and the
latencies are as follows: A store is served in one cycle;
division and square root are not pipelined and require 19
and 27 cycles, respectively; the rest of the operations (load,
add, ...) are fully pipelined and require four cycles to be
executed. The cells in Table 1 show the percentage of cycles
spent on each kind of loop. Each row corresponds to a
program in the workbench and the last row shows the total
cycles spent (notice that it does not correspond to the
average because every program spends different amounts
of cycles).

The first column shows the cycles spent in loops that
cannot benefit from any of the studied techniques (Nothing
to Do loops). The second and third column show the
percentage of cycles spent in loops which can achieve
maximum performance using only the fusion technique,
divided in recurrence-bound loops (MRL) and resource-
bound-loops (MIR-OF). Columns 3 to 9 show the cycles
spent in loops that achieve maximum performance by
increasing the number of resources (MIR). These loops are
further divided into the ones that can also achieve this
maximum using only the fusion technique (OF), the ones
that achieve maximum performance using the widening
technique alone (OW), the ones in which replication is the
only technique that can bring us to the maximum
performance (OR), and the ones that can benefit from
widening, but require a small degree of replication to
achieve the performance limit (WbR). Columns OW, OR,
and WbR are further divided in loops that are not affected
by FMA FPUs (No FMA) and the ones that can benefit from
having FMA FPUs (BfFMA). Finally, the last column
corresponds to the MRL+I loops (where replication and

fusion are required in order to achieve the maximum

performance).
From the results shown in Table 1, the following

conclusions can be drawn about the techniques:

. Despite some programs having a high percentage of
Nothing to Do loops (as QCD or DYFESM), in most of
the programs, this percentage is 0 (as FLO52 and
TRFD) or very small. On average, 6.1 percent of the
cycles are spent in loops that cannot be improved by
any of the studied techniques. Even so, having a
higher latency or very aggressive configurations can
convert this small percentage to critical for the
application performance.

. Using FMA can result in an important increase of
performance: Despite that, only 1.6 percent of the
final cycles are spent in loops that achieve maximum
performance using only fusion (columns 2 and 3).
Most of these cycles belong to a few programs (like
ADM, with 32.9 percent of cycles spent in recur-
rence-bound loops, cycles that would belong to
Nothing to Do loops if FMA operations were not
available). However, the most important issue
regarding FMA is that 82.8 percent of the cycles
are spent in loops that can benefit from having this
operation (columns 2, 3, 5, 7, and 9), so the potential
benefit of this technique is very high.

. Up to 91.4 percent of the cycles are in loops that can
achieve maximum performance using only the
replication technique, but, as shown in Section 3.1,
this is an expensive technique. The widening
technique (a cheaper one) can achieve maximum
performance in loops that represent 30.2 percent of
the total spent cycles (columns 4 and 5), this being a
very high percentage in some programs (90.7 percent
in FLO52, 69.8 percent in TRACK, 65 percent in
ARC2D, 60.5 percent in DYFESM). Also, loops that

L �OPEZ ET AL.: COST-CONSCIOUS STRATEGIES TO INCREASE PERFORMANCE OF NUMERICAL PROGRAMS ON AGGRESSIVE VLIW... 1041

1. Preliminary studies show that a relation of two FPUs for each bus is
the most balanced configuration. Also, we have based the cost of the
computations on the MIPS R10000, which can issue two floating-point and
one memory operation per cycle.

TABLE 1
Some Characteristics of the Perfect Club Loops

represent 55.5 percent of the spent cycles can benefit
from this technique, even those not achieving the
maximum performance (so 85.7 percent of the spent
cycles are in loops that benefit from the widening
technique).

. Finally, notice that the column with the highest
number of cycles (column 9: 53.7 percent) corre-
sponds to loops that, despite requiring replication,
benefit from both widening and fusion. Therefore,
an architecture combining the three techniques can
be very cost-effective.

5 DESIGN CONSIDERATIONS

5.1 Area Cost

To estimate the area cost, we take into account the SIA
(Semiconductor Industry Association) predictions [37] for the
technology size (�) and the chip size in order to compute
the number of �2 per chip for the next processor generations
(Table 2).

We have estimated the area of a general purpose FPU
using the MIPS R10000 processor as a reference. The R10000
processor FPU includes a multiplier, an adder, and a divider.
We consider these components as the basic components of a
general purpose FPU. With a 0:25�m technology, the R10000
FPU requires 12mm2 of area [32]. So, we assume that the area
of a FPU is 12mm2 � 16� 106�2=mm2 � 192� 106�2. As the
area cost of an FPU is mainly governed by the size of the
multiplier [14], we consider the same area for FPUs with
and without FMA.

The overall size of a register file is determined mainly by
the size of a register cell. The other components that are
needed to access the register file typically represent less
than 5 percent of the area required by the register cells [18].

To access the register cell of a multiported RF, each port
requires one transistor, a select line, and a data line. In

addition, a write port requires a second access transistor

and a data line. The area of the register cell grows

approximately as the square of the number of ports added

because each port forces the cell to increase both the height

and the width. The memory portion of the register cell at a

typical dual scalable CMOS register file is a pair of cross-

coupled inverters, consisting of four transistors that force a

minimum height of 41�. The memory portion of the cell can

accommodate three select lines running widthwise across

the cell. Therefore, the height of the cell does not grow until

more than three ports are implemented. After that, each

port adds 8� to the eight. The width of a dual ported cell is

50�. Each additional read port adds 14� to the width: 8� for

the data line and 6� for the access transistor. Each

additional write port adds 28� to the width because it

requires two data lines and two access transistors [15], [18].
To illustrate the cost difference between the techniques,

let's consider several processor configurations labeled XwY.

Each one of these configurations has X bidirectional buses

(to perform load/store operations) and twice the number of

functional units. The width of the resources is Y words. For

instance, configuration 4w1 has four buses and eight FPUs

and all the resources have a width of one word, while

configuration 1w4 has one bus and two FPUs, all of width

four words. The latencies are the ones shown at the

workbench section. We append F to those configurations

in which FMA is implemented.
Table 3 shows the area cost of configurations 4w1, 2w2,

2w2F, and 1w4 for a 64-RF. Each configuration requires two

read plus one write port per FPU (except 2w2F, which

requires three read and one write ports) and one read plus

one write port per bus, so configuration 1w4 (two FPUs and

one bus, all of width 4) requires 5R� 3W ports. Doubling

the replication degree doubles the port requirements. Also,

configuration 2w2F has a cost halfway between 4w1 and

2w2 (and better performance than either, see the next

section).

5.2 Register File Access Time

A multiported register file follows the scheme shown in

Fig. 7. The access time model used in this paper is based on

an adaptation proposed [8] for the register file of the CACTI

memory model [40]. In the model, the access time of the

register file is assumed to be governed by the read time, and

can be written as the sum of the following terms:

1042 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 10, OCTOBER 2001

TABLE 2
Semiconductor Industry Association (SIA) Predictions in 1997

TABLE 3
RF Area Cost for Several 64-Register File Configurations

. Decoder time: time to decode the register being
accessed and select its wordline. This time mainly
depends on the number of registers available.

. Wordline time: the time required to drive the select
line. It depends on the length of the line (which
depends on the size in bits of every register and on
the width of every register cell).

. Bitline time: the time delay between the wordline
going high and the sense amplifier being able to
detect the state of the cell. This delay mainly
depends on the height of the cell and on the number
of registers.

. Sense time: the time delay through the sense
amplifier.

. Outdrive time: the time required to drive the read
data onto the internal bus to the ALU.

. Precharge time: the time to precharge the bitlines,
comparators and internal decoder bus.

To summarize, the access time is governed by the
number of registers, the width of every register, and the
size of every register cell (which depends on the number of
read and write ports).

Table 4 shows the relative access time for different
configurations varying the number of registers (32, 64, 128,
and 256), the width of every register (64 bits times the width
degree), and the size of the register cell. In order to consider
the access time independent of the technology used, all
times have been normalized with respect to the time of the
1w1 32-RF configuration.

To reduce the access time, a register file can be
partitioned into several RF, maintaining copies of all the
data [6]. For example, the RF of a configuration 8w1 can be
implemented on a single RF where each cell requires 40 read
plus 24 write ports (8R� 8W for the eight buses and 32R�
16W for the 16 FPUs). This RF can be also implemented by
two identical copies, where all functional units can write in
both copies of the RF, but only four buses and eight FPUs
read each copy. In this case, 20R� 24W ports are required
for each copy. Register file partitioning reduces access time
at the expense of an increase in RF die area. The
configuration 8w1 can be partitioned in one, two, four, or
eight blocks, increasing the relative area and decreasing the
cycle time, as shown in Fig. 8. Notice that the behavior of
the area growth is exponential while the decrease of the
access time is logarithmic. A small partitioning, like a

2-partitioning, has a slight increase in area and an important
decrease in access time.

6 PERFORMANCE/COST TRADE-OFFS

In this section, we first show an evaluation of the
performance considering an ªideal framework.º Then, we
make some aspects real and analyze the influence of using a
heuristic algorithm to do software pipelining and having a
bounded register file. Finally, we calculate the costs of the
studied configurations and study the performance/cost
trade-offs.

6.1 Performance with an Ideal Framework

We have removed some constraints in order to study what
performance can be expected from the tested loops. The
ideal framework has the following characteristics: We
assume that each loop can be scheduled with its Minimum
Initiation Interval, (i.e., II �MII). We consider an un-
bounded register file, so no spill code is required. Also, the
memory is ideal (i.e., all references always hit in the cache).

The processor configurations considered in this section
are named XwY (i.e., X bidirectional buses and twice the
number of functional units, all of width Y; we append F to
those configurations in which FMA is implemented, see
Section 5.1).

Fig. 9 shows the performance (relative to a baseline
configuration: 1w1) achievable using the studied techniques
under the described conditions.2 The configurations shown
in the figure are grouped at the horizontal axis by the
maximum number of operations that can be performed per
cycle (i.e., configurations X1wY1 and X2wY2 are plotted on
the same vertical line if X1 � Y1 � X2 � Y2). For instance,
both configurations 1w2 and 2w1 can issue two memory
and four arithmetic operations at the same time, but using
different techniques. Both configurations are at the label 2
because they can issue twice the number of operations of
the baseline configuration (1w1). From these plots, several
conclusions can be drawn:

. Configurations based on replication (i.e., configura-
tions Xw1, upper dashed plot in Fig. 9) show a
progressive performance degradation. This is be-
cause aggressive configurations can easily convert
resource-bound loops into recurrence-bound loops
and these loops cannot benefit by an increase in
resources.

. Configurations based on widening (i.e., configura-
tions 1wY, lower dashed plot in Fig. 9) show even
more performance degradation due to noncompact-
able operations. For instance, in a 1w8 configuration,
either eight compactable operations or one noncom-
pactable operation can be issued per cycle; therefore,
the presence of noncompactable operations intro-
duces an enormous penalty on these configurations.

. Some of the intermediate configurations (i.e., con-
figurations where replication and widening techni-
ques are combined) also report good performance.

L �OPEZ ET AL.: COST-CONSCIOUS STRATEGIES TO INCREASE PERFORMANCE OF NUMERICAL PROGRAMS ON AGGRESSIVE VLIW... 1043

2. Performance for each configuration is estimated by the sum of the
cycles required by all loops. The cycles required by a loop is computed as
MII times the number of iterations.

Fig. 7. Multiported register file structure.

For example, the behavior of the 2wY configurations
saturates in the same way as the 1wY configurations,
but the saturation point is close to a speed-up of 8
instead of 5. Also, the Xw2 configurations have
performances very close to the Xw1 configurations.

. FMA functional units can play an important role,
especially in aggressive configurations where repli-
cation is used (for instance, configuration 1w8F has a
performance 2.1 percent better than 1w8, while 8w1F
has a performance 9.4 percent better than 8w1).

6.2 Scheduler and Register Constraints

The studied techniques can increase the performance of a

loop by reducing its Initiation Interval (II). Regretably,
reducing the II can increase the register requirements. If the

registers required to schedule a loop on an architecture
exceed the number of physical registers, spill code must be
inserted in order to free some registers. However, spill code
increases the memory traffic and can result in an increase of
the II, with the associated performance degradation.

When widening is applied, we also have a wide register
file (i.e., in an XwY configuration, all registers are of Y words
wide; in our case, 64 bits times Y). For instance, a 32-RF 4w1
configuration has 32 registers of width 1 (i.e., 64 bits), while
a 32-RF 4w2 has 32 registers of width 2 (i.e., 128 bits). Notice
that if we schedule a loop with compactable operations in a
4w2 configuration, these operations produce two results
that are stored in a single wide register, so we have an
additional storage capacity; however, if the loop scheduled
in the 4w2 configuration has no compactable operations, we
do not benefit from this additional capacity.

Fig. 10 shows the performance for different processor
configurations and sizes of the register file (r-RF config-
uration uses a register file of r registers, Y words wide).
The baseline configuration considered is 1w1 with a 256-
RF, so it does not require spill code and, therefore, is
equivalent to the baseline configuration in Fig. 9. Fig. 10
shows the expected results:3 The performance grows with
the aggressiveness of configurations and the register file
size has an important impact on the final performance.
The FMA operations (white portion in each bar) improve
the performance of all configurations. However, the

1044 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 10, OCTOBER 2001

TABLE 4
Relative Register File Access Time without Register Partitioning (Baseline: 1w1 32-RF)

Fig. 8. Behavior of the RF area and cycle time of an 8w1 64-RF

configuration with RF partitioning in one, two, four, and eight blocks.

3. Notice that the configuration 8w1 does not include the 32-RF bar; this
is because this configuration can produce 24 results per cycle (eight memory
and 16 FPU) and we consider a 4-cycle latency configuration. In this case,
the register pressure is so high that the scheduler fails to produce a valid
schedule with the available registers. This situation becomes more critical in
configurations with a factor higher than x8 and this is the reason why we do
not present the results of these configurations with this latency model.

improvement is more noticeable for those configurations
with high register pressure.

The results show that, when the configurations become
more aggressive, the need for spill code increases, reducing
the performance. For example, configuration 4w2 has a
performance of 2.25 (with 32-RF), 3.28 (64-RF), 4.39 (128-
RF), and 4.76 (256-RF), while the 1w2 configuration
achieves almost its maximum performance with a 64-RF.

It is very important to remark that the additional RF
capacity of a configuration where the widening technique
has been applied reduces the need for spill code. For
example, the 8w1 configuration has a theoretical perfor-
mance greater than the 4w2 configuration, but Fig. 10 shows
that the configuration 4w2 with 64-RF has a performance
greater than the 8w1 64-RF configuration and the same
happens with a 128-RF. Only with a 256-RF does 8w1 have
better performance than 4w2. Looking at the results, we can

conclude that the additional capacity of the register file,
obtained when the widening technique is used, has an
important impact on the final performance.

Another important point can be observed in Fig. 10: There
is a significant difference between the performance reported
in this section and the theoretical performance shown in
Section 6.1. For instance, there is an increase of the theoretical
performance of 7.5 percent from configuration 8w1 to
configuration 8w1F. However, when the loop is scheduled
with a 64-register file, this difference grows up to
20.5 percent. This difference is due to several factors that
have an important effect on the final performance.

The total amount of cycles required to execute a loop in a
given architecture can be divided into three components:

. The MII: This is the minimum number of cycles
required to execute a loop; it depends on the
characteristics of the loop itself and on the
architecture.

. Cycles due to spill code: These are the cycles due to
the code introduced to fit the scheduling in the
available number of registers.

. Cycles due to the scheduler heuristic: These are the
cycles added by the scheduler when it fails to find an
optimal schedule.

Each bar in Fig. 11 shows the distribution of cycles
contributed by each one of these components for all the
configurations with X � Y � 2 and X � Y � 4. Other con-
figurations have been omitted in order to simplify the
figure. The plot is divided in blocks of three columns
representing processor configurations with and without
FMA FPUs; the 3 columns of each block represent cycles for
register file sizes of 32, 64, and 128-registers (from left to
right). For each column, the total amount of cycles (vertical
axis) is divided in the components previously described:

L �OPEZ ET AL.: COST-CONSCIOUS STRATEGIES TO INCREASE PERFORMANCE OF NUMERICAL PROGRAMS ON AGGRESSIVE VLIW... 1045

Fig. 9. Speed-up for different configurations XwY and XwYF.

Fig. 10. Performance of some processor configurations for several sizes

of the register file. Baseline: configuration 1w1 with a 256-RF.

The dark gray part represents the minimum theoretical
cycles, so it is independent of the register file size. The light
gray part shows the spill code cycles and the black part
shows the cycles added by the scheduler. The results for a
256-RF are practically indistinguishable from the
128-RF plot, so they are not shown.

From the analysis of Fig. 11, we can conclude that, when
the scheduling heuristic and the spill code are taken into
account, mixing the widening and the replication techni-
ques and using fusion have an impact on the final
performance greater than what we can expect if we only
take into account the theoretical analysis.

. With a small RF, some aggressive configurations
have an enormous penalty in terms of spill code. For
instance, configuration 4w1 with a 32-RF spends
more cycles due to spill code than due to the MII.
With this RF size, configurations 2w2 and 1w4 have
better performance than 4w1 (6.7 percent and
3.8 percent, respectively), whereas the latter has the
best theoretical performance (8.7 percent better with
respect to 2w2 and 32.5 percent with respect to 1w4).

. The use of FMA functional units reduces the MII, but
it also reduces the cycles due to spill code and the
scheduler. The cycles of spill code are reduced
because it does not require a register to store the
intermediate result (e.g., the number of cycles due to
spill code are reduced by 37 percent when FMA is
used in configuration 4w1 with a 32-RF). The cycles
due to the scheduler are reduced for two reasons: the
reduction of operations in the loop and the reduction
of the spill code required. This makes the graph less
complex and the scheduler has more opportunities
to find a schedule closer to the optimal (e.g., the
number of cycles added by the scheduler is reduced
by 20.9 percent when FMA is used in configuration
4w1 with a 32-RF).

. Finally, the cost of configurations affects the decision
of the architecture to be chosen. For instance,
configuration 2w2 with a 128-RF has a performance

8.3 percent better than 4w1 with a 64-RF; if the first
one has also a smaller cost, this will be the one to
choose. In the next section, we will study the cost of
the evaluated techniques.

6.3 Area and Cycle Time Constraints

In this section, we perform a study of the performance-cost
trade-offs. We first analyze the individual effects of some
parameters. Then, we show the performance/cost ratio for
the most significative configurations (of a total of 360 con-
figurations evaluated). Finally, we show the best config-
urations for the technology generations considered.

Configurations are labeled XwY(Z:n) (i.e., X buses and
2*X FPUs, all of width Y, with an RF of Z registers of
width Y, partitioned in n-blocks). We append F to those
configurations in which FMA is implemented.

Assuming the SIA predictions and our area cost models,
Fig. 12 shows the area cost for a broad range of processor
configurations that include replication, widening, and FMA
with different sizes for the RF (notice that the vertical axis
has logarithmic scale). From the analysis of the layout of
some current microprocessors, we consider that 20 percent
of the area devoted to the FPU core is a good limit (most of
current processors are well below this limit), so each
horizontal line represents this limit for each technology
generation and, therefore, defines the set of implementable
configurations for this technology.

For each implementable configuration, we compute its
cycle time, assuming that the cycle time is determined by
the RF cycle time. We adapt the latency in cycles of the
FPUs to match this cycle time and we perform the
scheduling to find the cycles required to execute our
benchmark set.4 Each FPU requires an amount of time to
perform one operation; its latency in cycles depends on the
processor cycle time. For instance, let's assume an FP adder

1046 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 10, OCTOBER 2001

Fig. 11. Distribution of the spent cycles for configurations with factors X � Y � 2 and 4. For each configuration, the three columns represent (from left

to right) register files of 32, 64, and 128-registers.

4. The cycles required are calculated in the same way as those in Section
6.1, but, in this case, the cycles per iteration are the Initiation Interval once
the graph has been scheduled (with spill code if necessary). The cycles
required to execute all the loops times the cycle time give us the final
performance.

that requires N nanoseconds to perform an addition,

corresponding to a latency of four cycles. If the RF access
time forces us to double the cycle time, an addition still

requires N nanoseconds, so the latency in cycles of the
addition is now two. This adaptation is important because

the latency of each operation determines the schedules of

the loops. For this reason, we compare configurations
modifying the latency of the FPUs in order to make them

coherent with the processor cycle time. The four models we
have tested are listed in Table 5.

We assume the 4-cycles model for configuration 1w1.

Each configuration considered can be classified into a cycle
model depending on its relative (from the 1w1 configura-

tion) cycle time. A configuration with a relative cycle time
Tc belongs to the c-cycles model, where c � d4=Tce. For

example, the 2w4(32:1) configuration has a relative cycle
time of 1.85 (i.e., 3-cycles model), while the 2w4(128:1)

configuration has a relative cycle time of 2.09 (i.e., 2-cycles
model), and the 2w4(128:2) configuration has a relative

cycle time of 1.80 (i.e., 3-cycles model).
Before going into the final results, let us analyze the

individual effects of some parameters on the configurations
evaluated (Fig. 13):

. Number of registers: Having large register files
reduces the register pressure and the need for spill

code. However, the increase in the cycle time may
counteract this gain. For example, Fig. 13a shows the
performance/cost ratio when we increase the num-
ber of registers available in the register file, for
configuration 1w1. Notice that the performance for
this configuration declines when we use a register
file larger than 64. This configuration has negligible
need for spill code when a 64-RF (or bigger) is
available, so an increase of the register file does not
reduce the execution cycles required, but increases
the cycle time.

. Replication: Configurations based on replication

report good increases in ILP. However, high degrees

of replication can make the configuration unimple-

mentable (they occupy more than 20 percent of the

total chip area) or suffer a decrease in performance

because a small increase in IPC (instructions per

cycle) is counteracted by a high increase of the cycle

time. For instance, Fig. 13b shows the performance/

cost ratio when only replication is applied.

. Replication and widening: The same peak perfor-

mance can be obtained by applying different degrees

of replication and widening. Although replication is

more versatile and reports higher ILP returns, cycle

time puts configurations based on small degrees of

widening in a better position, as shown in Fig. 13c

for configurations where X � Y � 8.

. Fused Multiply-Add: FMA returns good perfor-
mance relative to its low implementation cost. The
three plots in Fig. 13 also show the performance for
the same configurations when FMA is included (the
cross marks). For instance, configuration 8w1F(128:8)

performs 21.1 percent better than 8w1(128:8), with an
increment of only 8.3 percent in the area. Also,
configuration 2w4F(128:2) has a performance 2 per-
cent better than configuration 4w2(128:4) and only
has 72 percent of its area requirements.

L �OPEZ ET AL.: COST-CONSCIOUS STRATEGIES TO INCREASE PERFORMANCE OF NUMERICAL PROGRAMS ON AGGRESSIVE VLIW... 1047

Fig. 12. Implementable configurations for each technology generation considered.

TABLE 5
Cycles/Operation for the Cycle Models Tested

Operations div and sqrt are not pipelined; other operations are fully
pipelined.

We have tested a total of 360 configurations. Fig. 14
shows the speed-up and area cost for some of them (the
ones with the best performance/cost ratio). The dashed line
links the ªeligibleº configurations. A configuration is
ªeligibleº if there is no configuration that can achieve the
same performance, or better, with a smaller cost. Notice that
none of the most aggressive configurations (like 8w1 or
16w1) are in this figure due to their high cost. The
configurations that offer better performance are the ones
that combine small degrees of replication and widening.
Notice that, usually, configurations with FMA FPUs offer a
considerable speed-up with a small increase in area cost. At
the bottom of this figure, the reader can find the percentage
of area devoted to the FPU core for each technology.
Technology � � 0:05 is not shown since the best configura-
tions are the same as that of � � 0:07 and the only difference
is the relative percentage of area required. Notice that the
area (horizontal axis) has logarithmic scale.

In order to complement the results of Fig. 14, Fig. 15
shows, for the previous technologies, the five configurations
that achieve the best performance. For each technology, we
have also highlighted the ªeligibleº configurations among

the top five (black triangles). Notice that all except two

ªeligibleº configurations implement the FMA operation in

their FPUs. For example, for a technology of � � 0:13

(Fig. 15b), the configuration with best performance is

2w4(128:2), using 18.7 percent of the total chip area. The

configuration with the second best performance is

2w2F(64:2), which achieves 99.3 percent of the performance

of the first one using only 8.18 percent of the total chip area.

Configuration 2w4F(128:2) is not included in the plot

because it requires 20.6 percent of the total chip area (more

than 20 percent) but offers a performance 12.5 percent

greater than 2w4(128:2).
We can conclude that combining small degrees of

replication and widening results in better performance than

using only replication when we have a technological limit.

Also, we can conclude that using FPUs that implement the

FMA operation has some costs, but the benefits that it offers

overcome these costs.

1048 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 10, OCTOBER 2001

Fig. 13. Effect of (a) increasing the RF size, (b) replication, and (c) different ways of implementing a configuration with the same peak performance.

All figures compare FPUs with and without FMA.

Fig. 14. Speed up and area cost of several configurations. The dashed line links the configurations with the best performance for their cost (ªeligibleº

configurations). The lines below the figure show, for each technology, the percentage of area that the horizontal axis represents (it has logarithmic

scale).

7 CONCLUSIONS

In order to exploit the ILP available in numerical applica-
tions, aggressive processor configurations capable of ex-
ecuting a high number of operations per cycle are required.
More operations can be executed per cycle by either
increasing the number of functional units (replication
technique) or by increasing the number of data each
functional unit can process per cycle (widening technique).
Also, fused multiply-add functional units (fusion techni-
que) increase the number of operations performed by cycle
and improve performance in recurrence-bound loops that
contain multiply-add chains in their critical recurrence.

We have proposed combining replication and widening
in the design of VLIW processors oriented to execute
numerical applications. We applied widening to the
floating-point functional units, the register file, and the
buses between the register file and the first-level data cache.
We have presented a study of the ILP with no register
constraints from which we can conclude that applying only
the replication technique offers the best theoretical perfor-
mance. However, when a limited register file is used, the
increase of storage capacity due to wider registers can
reduce the need for spill code. The results show that this
additional capacity has an important impact on the final
performance (e.g., with a 128-RF, configuration 4w2
achieves better performance than configuration 8w1,
whereas the latter has the best theoretical performance).

We have also analyzed the effects of FMA on resource-
bound loops and on recurrence-bound loops. With no
register constraints, FMA units provide a significant
advantage. This is because FMA units increase the peak
number of operations that can be performed per cycle and
can reduce the latency of critical recurrences. When a
limited number of registers is considered, the advantage of
using FMA increases. This increment in performance is due
to two reasons: the influence of spill code and the influence
of the scheduler. The use of FMA units reduces the register

requirements, reducing the degradation due to spill code. In

addition, the compiler has a simpler task since there are

fewer operations to schedule (there are fewer spill load/

stores and some pairs of multiply-adds have been collapsed

into a single operation), obtaining better schedules.
We have estimated the cost of a large number of

configurations that combine the three techniques. We

compare the performance of the configurations that can be

built for the next processor generations (according to the

SIA predictions). The performance has been calculated

assuming that the register file access time limits the

processor cycle time. From this study, we conclude that,

for a given technology, the best performance is obtained

when combining a small degree of replication and widening

in the hardware resources, using FMA functional units. For

instance, in configuration 4w1(128:4), only replication has

been applied, while configuration 2w2(128:2) can issue the

same number of operations per cycle by combining

widening and replication. Both configurations can be

implemented using a technology of 0:10�. Configuration

2w2(128:2) has a performance 3 percent better than

4w1(128:4). Also, the area cost of 2w2(128:2) is only

64 percent of the area cost of 4w1(128:4). If we apply fusion

to configuration 2w2(128:2), the area cost grows 11 percent,

but the performance increases 12 percent. Comparing

2w2F(128:2) with 4w1(128:4), the first one has a perfor-

mance 16 percent better having an area requirement of

71 percent of the second configuration.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Culture

and Education of Spain under contract TIC 98-0511 and by

CEPBA (European Centre for Parallelism of Barcelona). The

authors wish to thank the anonymous referees for their

valuable suggestions.

L �OPEZ ET AL.: COST-CONSCIOUS STRATEGIES TO INCREASE PERFORMANCE OF NUMERICAL PROGRAMS ON AGGRESSIVE VLIW... 1049

Fig. 15. Top five configurations for technology (a) 0.18, (b) 0.13, (c) 0.10, and (d) 0.07. For technology 0.05, the results are not shown because the

top five configurations are the same. In all cases, the possible increment of the clock speed has not been taken into account.

REFERENCES

[1] V.H. Allan, R.B. Jones, R.M. Lee, and S.J. Allan, ªSoftware
Pipelining,º ACM Computing Surveys, vol. 27, no. 3, pp. 367-432,
Sept. 1995.

[2] J.R. Allen, K. Kennedy, and J. Warren, ªConversion of Control
Dependence to Data Dependence,º Proc. 10th. Symp. Principles of
Programming Languages, Jan. 1983.

[3] T.M. Austin and G.S. Sohi, ªHigh-Bandwidth Address Translation
for Multiple-Issue Processors,º Proc. 23rd Int'l Symp. Computer
Architecture (ISCA-23), pp. 158-167, May 1996.

[4] E. AyguadeÂ, C. Barrado, A. GonzaÂlez, J. Labarta, J. Llosa, D.
LoÂpez, S. Moreno, D. Padua, F. Reig, Q. Riera, and M. Valero,
ªIctõÂneo: A Tool for Instruction-Level Parallelism Research,º
Technical Report UPC-DAC-1996-61, Technical Univ. of
Catalunya, Dec. 1996.

[5] M. Berry, D. Chen, P. Koss, and D. Kuck, ªThe Perfect Club
Benchmarks: Effective Performance Evaluation of Supercompu-
ters,º Technical Report 827, CSRD, Univ. of Illinois at Urbana-
Champaign, Nov. 1988.

[6] A. Capitanio, N. Dutt, and A. Nicolau, ªPartitioned Register Files
for VLIWs: A Preliminary Analysis of Tradeoffs,º Proc. 25th Int'l
Symp. Microarchitecture (MICRO-25), pp. 292-300, Dec. 1992.

[7] J.C. Dehnert and R.A. Towle, ªCompiling for Cydra 5,º
J. Supercomputing, vol. 7 nos. 1/2, pp. 181-227, May 1993.

[8] K.I. Farkas, ªMemory-System Design Considerations for Dynami-
cally-Scheduled Microprocessors,º PhD dissertation, Univ. of
Toronto, 1997.

[9] J.A. Fisher, P. Faraboschi, and G. Desoli, ªCustom-Fit Processors:
Letting Applications Define Architectures,º Proc. 29th Int'l Symp.
Microarchitecture (MICRO-29), pp. 324-335, Dec. 1996.

[10] P.Y.T. Hsu, ªDesign of the FTP Microprocessor,º IEEE Micro,
vol. 14, no. 2, pp. 23-33, Apr. 1994.

[11] IBM, Special Issue on the RS/6000, IBM J. Research and Develop-
ment, vol. 34 no. 1, Jan. 1990.

[12] INTEL, ªPentium III Processor: Developer's Manual,ºIntel Tech-
nical Report available at http://developer.intel.com/design/
PentiumIII, 1999.

[13] J. Janssen and H. Corporaal, ªPartitioned Register File for TTA,º
Proc. 28th Int'l Symp. Microarchitecture (MICRO-28), pp. 303-312,
Nov./Dec. 1995.

[14] R.M. Jessani and M. Putrino, ªComparison of Single- and Double-
Pass Multiply-Add Fused Floating-Point Units,º IEEE Trans.
Computers, vol. 47, no. 9, pp. 927-937, Sept. 1998.

[15] R. Jolly, ªA 9-ns 1.4 Gigabyte 17-Ported CMOS Register File,º IEEE
J. Solid-State Circuits, vol. 25, no. 10, pp. 1407-1412, Oct. 1991.

[16] R.B. Jones and V.H. Allan, ªSoftware Pipelining: A Comparison
and Improvement,º Proc. 23rd Int'l Symp. Microarchitecture
(MICRO-23), pp. 46-46, Nov. 1990.

[17] T. Juan, J.J. Navarro, and O. Temam, ªData Caches for Superscalar
Processors,º Proc. 11th. Int'l Conf. Supercomputing (ICS-11), pp. 60-
67, July 1997.

[18] C.G. Lee, ªCode Optimizers and Register Organizations for Vector
Architectures,º PhD dissertation, Univ. of California at Berkeley,
May 1992.

[19] J. Llosa, E. AyguadeÂ, and M. Valero, ªQuantitative Evaluation of
Register Pressure on Software Pipelined Loops,º Int'l J. Parallel
Programming, vol. 26, no. 2, pp. 121-142, 1998.

[20] J. Llosa, M. Valero, and E. AyguadeÂ, ªHeuristics for Register-
Constrained Software Pipelining,º Proc. 29th Int'l Symp. Micro-
architecture (MICRO-29), pp. 250-261, Dec. 1996.

[21] J. Llosa, M. Valero, E. AyguadeÂ, and A. GonzaÂlez, ªModulo
Scheduling with Reduced Register Pressure,º IEEE Trans. Compu-
ters, vol. 47, no. 6, pp. 625-638, June 1998.

[22] D. LoÂpez, J. Llosa, E. AyguadeÂ, and M. Valero, ªImpact on
Performance of Fused Multiply-Add Units in Aggressive VLIW
Architectures,º Proc. 1999 Int'l Conf. Parallel Processing (ICPP-99),
pp. 22-29, Sept. 1999.

[23] D. LoÂpez, J. Llosa, M. Valero, and E. AyguadeÂ, ªWidening
Resources: A Cost-Effective Technique for Aggressive ILP
Architectures,º Proc. 31st Int'l Symp. Microarchitecture (MICRO-
31), pp. 237-246, Nov.-Dec. 1998.

[24] D. LoÂpez, M. Valero, J. Llosa, and E. AyguadeÂ, ªIncreasing
Memory Bandwidth with Wide Buses: Compiler, Hardware and
Performance Trade-Off,º Proc. 11th Int'l Conf. Supercomputing (ICS-
11), pp. 12-19, July 1997.

[25] ªIntel HP Make EPIC Disclosure,º Microprocessor Report, vol. 11,
no. 14, Oct. 1997.

[26] ªAltiVec Vectorizes PowerPC,º Microprocessor Report, vol. 12, no. 6,
May 1998.

[27] ªTI Aims for Floating-Point DSP Lead,º Microprocessor Report,
vol. 12, no. 12, Sept. 1998.

[28] ªMAP1000 Unfolds at Equator,º Microprocessor Report, vol. 12,
no. 16, Dec. 1998.

[29] ªMAJC Gives VLIW a New Twist,º Microprocessor Report, vol. 13,
no. 12, Sept. 1999.

[30] ªMerced Shows Innovative Design,º Microprocessor Report, vol. 13,
no. 13, Oct. 1999.

[31] ªSun Makes MAJC with Mirrors,º Microprocessor Report, vol. 13,
no. 14, Oct. 1999.

[32] K. Olukotun, B.A. Nayfeh, L. Hammond, K. Wilson, and K.
Chang, ªThe Case for a Single-Chip Multiprocessor,º Proc. Seventh
Int'l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VII), pp. 2-11, Oct. 1996.

[33] B.R. Rau, ªIterative Modulo Scheduling: An Algorithm for
Software Pipelining Loops,º Proc. 27th Int'l Symp. Microarchitecture
(MICRO-27), pp. 63-74, Nov. 1994.

[34] B.R. Rau and J.A. Fisher, ªInstruction-Level Parallel Processing:
History, Overview and Perspective,º J. Supercomputing, vol. 7,
nos. 1/2, pp. 9-50, May 1993.

[35] B.R. Rau and C.D. Glaeser, ªSome Scheduling Techniques and an
Easily Schedulable Horizontal Architecture for High Performance
Scientific Computing,º Proc. 14th Ann. Microprogramming Work-
shop, pp. 183-197, Oct. 1981.

[36] B.R. Rau, M. Lee, P. Tirumalai, and P. Schlansker, ªRegister
Allocation for Software Pipelined Loops,º Proc. SIGPLAN '92 Conf.
Programming Language Design and Implementation (PLDI-92),
pp. 283-299, June 1992.

[37] Semiconductor Industry Assoc., ªThe National Technology Road-
map for Semiconductors,ºSan Jose, Calif., 1997.

[38] T. Watanabe, ªThe NEC SX-3 Supercomputer System,º Proc.
CompCon91, pp. 303-308, 1991.

[39] S.W. White and S. Dhawan, ªPOWER2: Next Generation of the
RISC System/6000 Family,º IBM J. Research and Development,
vol. 38, no. 5, pp. 493-502, Sept. 1994.

[40] S.J.E. Wilton and N.P. Jouppi, ªCACTI: An Enhanced Cache
Access and Cycle Time Model,º IEEE J. Solid-State Circuits, vol. 31,
no. 5, pp. 677-688, May 1996. See also: http://research.compaq.
com/wrl/people/jouppi/CACTI.html.

[41] M. Wolfe, High Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

[42] K.C. Yeager, ªThe MIPS R10000 Superscalar Microprocessor,º
IEEE Micro, vol. 16 no. 2, pp. 28-40, Mar. 1996.

David LoÂpez received the degree in computer
science in 1991 and the PhD degree in computer
science in 1998, both from the Polytechnic
University of Catalonia (UPC), Barcelona, Spain.
In 1991, he joined the Computer Architecture
Department at UPC, where he has been lectur-
ing in computer organization and where he is
currently an associate professor. His research
interests include computer graphics, micropro-
cessor architecture, and compilation techniques.

Josep Llosa received the degree in computer
science in 1990 and the PhD degree in computer
science in 1996, both from the Polytechnic
University of Catalonia (UPC), Barcelona, Spain.
In 1990, he joined the Computer Architecture
Department at UPC, where he is currently an
associate professor. His research interests
include processor microarchitecture, memory
hierarchy, and compilation techniques with a
special emphasis on instruction scheduling.

1050 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 10, OCTOBER 2001

Mateo Valero obtained the telecommunication
engineering degree from the Polytechnic Uni-
versity of Madrid in 1974 and the PhD degree
from the Polytechnic University of Catalonia
(UPC), Barcelona, Spain, in 1980. He is a
professor in the Computer Architecture Depart-
ment at UPC. His current research interests are
in the field of high performance architectures,
with special interest in the following topics:
processor organization, memory hierarchy, in-

terconnection networks, compilation techniques, and computer bench-
marking. He has published approximately 200 papers on these topics.
He served as the general chair for several conferences, including ISCA-
98 and ICS-95, and has been an associate editor for the IEEE
Transactions on Parallel and Distributed Systems for three years. He is
a member of the subcommittee for the Ecker-Mauchly Award. Dr. Valero
has been honored with several awards, including the Narcis Monturiol,
presented by the Catalan Government, the SalvaÁ i Campillo presented
by the Telecommunications Engineer Association and ACM, and the
King Jaime I by the Generalitat Valenciana. He is the director of the C4
(Catalan Center for Computation and Communications). Since 1994, he
has been a member of the Spanish Engineering Academy and, since
January 2001, he has been a fellow of the IEEE.

Eduard AyguadeÂ received the engineering
degree in telecommunications in 1986 and the
PhD degree in computer science in 1989, both
from the Universitat PoliteÁcnica de Catalunya
(UPC), Spain. Since 1987, he has been lecturing
on computer organization and architecture and
optimizing compilers. Currently, and since 1997,
he is a full professor in the Computer Architec-
ture Department at UPC. His research interests
cover the areas of processor microarchitecture

and memory hierarchy, parallelizing compilers for high-performance
multiprocessor systems, and tools for performance analysis and
visualization. He has published more than 100 papers on these topics
and participated in several long-term research projects with other
universities and industries, mostly in the framework of the European
Union ESPRIT and IST programs.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

L �OPEZ ET AL.: COST-CONSCIOUS STRATEGIES TO INCREASE PERFORMANCE OF NUMERICAL PROGRAMS ON AGGRESSIVE VLIW... 1051

