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Improving Latency Tolerance of
Multithreading through Decoupling

Joan-Manuel Parcerisa and Antonio Gonzalez, Member, IEEE Computer Society

Abstract—The increasing hardware complexity of dynamically scheduled superscalar processors may compromise the scalability of
this organization to make an efficient use of future increases in transistor budget. SMT processors, designed over a superscalar core,
are therefore directly concerned by this problem. This work presents and evaluates a novel processor microarchitecture which
combines two paradigms: simultaneous multithreading and access/execute decoupling. Since its decoupled units issue instructions in-
order, this architecture is significantly less complex, in terms of critical path delays, than a centralized out-of-order design, and it is
more effective for future growth in issue-width and clock speed. We investigate how both techniques complement each other. Since
decoupling features an excellent memory latency hiding efficiency, the large amount of parallelism exploited by multithreading may be
used to hide the latency of functional units and keep them fully utilized. Our study shows that, by adding decoupling to a multithreaded
architecture, fewer threads are needed to achieve maximum throughput. Therefore, in addition to the obvious hardware complexity
reduction, it places lower demands on the memory system. Since one of the problems of multithreading is the degradation of the
memory system performance, both in terms of miss latency and bandwidth requirements, this improvement becomes critical for high
miss latencies, where bandwidth might become a bottleneck. Finally, although it may seem rather surprising, our study reveals that
multithreading by itself exhibits little memory latency tolerance. Our results suggest that most of the latency hiding effectiveness of
SMT architectures comes from the dynamic scheduling. On the other hand, decoupling is very effective at hiding memory latency. An
increase in the cache miss penalty from 1 to 32 cycles reduces the performance of a 4-context multithreaded decoupled processor by
less than 2 percent. For the nondecoupled multithreaded processor, the loss of performance is about 23 percent.

Index Terms—Access/execute decoupling, simultaneous multithreading, latency hiding, instruction-level parallelism, hardware

complexity.

1 INTRODUCTION

HE gap between the speeds of processors and memories

has kept increasing in the past decade and it is expected
to sustain the same trend in the near future. This divergence
implies, in terms of clock cycles, an increasing latency of
those memory operations that cross the chip boundaries. In
addition, processors keep on growing their capabilities to
exploit parallelism by means of greater issue widths and
deeper pipelines, which makes the negative impact of
memory latencies on performance even higher. To alleviate
this problem, most current processors devote a high fraction
of their transistors to on-chip caches in order to reduce the
average memory access time.

Some processors, commonly known as out-of-order
processors [8], [9], [17], [19], [41], include dynamic schedul-
ing techniques, most of them based on Tomasulo’s algo-
rithm [35] or variations of it. These processors tolerate both
memory and functional unit latencies by overlapping them
with useful computations of other independent instructions
which are found by looking ahead in the instruction stream
inside a limited instruction window. This is a general
scheduling mechanism that dynamically extracts the in-
struction parallelism available in the instruction window.
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As memory latency continues to grow in the future, out-
of-order processors will need larger instruction windows to
find independent instructions to fill the increasing number
of empty issue slots and this number will grow even faster
with greater issue widths. The increase in the instruction
window size will have an obvious influence on the chip
area, but its major negative impact will strike at the
processor clock cycle time. As reported recently [21], the
issue and the bypass logic and, also—although to a lesser
extent—the renaming circuitry, are in the critical path that
determines the clock cycle time. In their analysis, the
authors of that study state that the delay function of these
networks increases quadratically with the issue width and
window length. Furthermore, since wire delays remain
constant as feature sizes shrink, these latencies will not scale
down in future process technologies. According to these
results, some authors have recently proposed several
superscalar architectures which address the clock cycle
problem by partitioning critical components of the archi-
tecture and/or providing less complex scheduling mechan-
isms [6], [15], [21], [24], [31], [42]. These architectures follow
different partitioning strategies and implement different
instruction issue schemes, either in-order or out-of-order.

This work focuses on a particular partitioning paradigm
called access/execute decoupling. Decoupling was first
proposed for early scalar architectures to provide them with
dual issue and a limited form of dynamic scheduling that
has low complexity and is especially oriented to tolerate
memory latency. Typically, a decoupled access/execute
architecture [2], [7], [11], [23], [27], [28], [39], [40] splits,
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either statically or dynamically, the instruction stream into
two. The access stream is composed of those instructions
involved in the fetch of data from memory, while the
execute stream is formed by the instructions that consume
these data and perform the actual computations. These
streams execute in different processing units, which are
called Access Processor (AP) and Execute Processor (EP),
respectively, in this paper. Although each processing unit
issues instructions in-order, both units are allowed to run
asynchronously, one with respect to the other. As far as the
AP manages to go ahead of the EP, data from memory is
effectively prefetched into the appropriate buffering storage
so that the EP consumes it without getting stalled.

One of the main arguments for the decoupled approach
is the reduced issue logic complexity. In this model, several
instructions per cycle are issued in-order within each
processing unit. Such a decoupled architecture adapts to
higher memory latencies by scaling much simpler struc-
tures than an out-of-order, i.e., scaling at a lower hardware
cost or, conversely, scaling at a higher degree with similar
cost. Therefore, we believe that decoupled access/execute
architectures can progressively regain interest as issue
width and memory latency keep on growing and demand-
ing larger instruction windows because these trends will
make it worth trading issue complexity for clock speed.

On the other hand, simultaneous multithreading [37],
[38] has been shown to be an effective technique to boost
ILP. In this paper, we analyze its potential when imple-
mented on a decoupled processor core. We present a
multithreaded architecture where each thread executes in
access/execute decoupled mode. That is, after being
decoded, each instruction is dynamically steered either to
the AP or to the EP processing units and the instructions of
a given thread in each processing unit are issued in-order.
All the threads are active simultaneously and they compete
for the issue slots in each processing unit so that
instructions from different contexts can be issued in the
same cycle. For the rest of this paper, we will refer to it
either as simultaneous multithreading or, simply, multi-
threading, for short.

We show in this paper that multithreading by itself, i.e.,
without dynamic scheduling support, has little effect in
hiding a high memory latency. Instead, decoupling pro-
vides an excellent memory latency tolerance. Therefore, the
combination of decoupling and mulithreading takes ad-
vantage of their best features: While decoupling is a simple
but effective technique for hiding a high memory latency
with less issue logic complexity than out-of-order, multi-
threading provides enough parallelism to hide the latency
of the functional units and to keep them busy. In
addition, multithreading also contributes to hiding mem-
ory latency when a program decouples badly. However,
since decoupling hides most memory latency, few threads
are needed to keep the functional units busy and achieve
a near-peak issue rate. This is an important result since
decreasing the number of threads reduces the memory
pressure produced by the large combined working sets,
which has been reported to be a major bottleneck in
multithreading architectures, and reduces the hardware
cost and complexity.
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Fig. 1. Scheme of the single-threaded decoupled processor.

The rest of this paper is organized as follows: Section 2
describes a single-threaded decoupled architecture. In
Section 3, the latency hiding effectiveness of decoupling is
evaluated. Section 4 describes and evaluates the proposed
multithreaded decoupled architecture. Finally, in Section 5,
we summarize the main conclusions.

2 OVERVIEW OF A SINGLE-THREADED DECOUPLED
ARCHITECTURE

In this section, the single-threaded decoupled architecture is
described that will be assumed throughout the rest of the
paper (Fig. 1). Its main architectural parameters are
summarized in Table 1. Later on, in Section 4, the multi-
threaded decoupled architecture is described which con-
sists of some extensions of this model.

The single-threaded decoupled architecture fetches
instructions from a single stream (it has a single PC).
Then, the program is dynamically split into two streams
which are dispatched to two superscalar, in-order issue,
decoupled processing units: the Access Processing unit
(AP) and the Execute Processing unit (EP), each having
separate physical register files, functional units, and
datapaths. Precise exceptions are supported by means of
a reorder buffer, a graduation mechanism, and a register
renaming map table [12], [29].

The fetch logic fetches four instructions per cycle (or up
to the first taken branch) and it includes a bimodal branch
predictor with 2K 2-bit counters [26] updated at branch
resolution. After being decoded and renamed, up to four
instructions of any kind are dispatched to the AP or to the
EP, according to their data type, i.e., integer and memory
instructions are dispatched to the AP while FP instructions
are sent to the EP, which is the same approach as that of
other decoupled processors, like the ZS-1 [28] or the MIPS
R8000 [11]. Although this rather simplistic dynamic
partitioning scheme mostly benefits numerical programs,
it still provides a basis for our study, which is mainly
focused on the latency hiding potential of decoupling and
its synergy with multithreading. Recent studies [3], [22],
[25] have proposed other alternative partitioning schemes
that address the decoupling of integer codes, but they are
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TABLE 1
Default Single-Threaded Architecture Parameters
Parameter AP EP
Fetch, Decode/Rename width up to 4 instructions
Issue width

2 ‘ 2

Branch predictor

bimodal, 2K 2-bit counters

IQ size 4 ‘ 48

SAQ size 32

Functional units count 2 2

Functional units latency 1 4

Physical Registers 64 96

L1 I-cache infinite

L1 D-cache 64 KB, direct mapped, write-back, 32 byte lines, 1 cycle
hit time, 16 primary outstanding misscs, 2 R/W porls

L2 off chip cache infinite, 16 cycles hit time, 16 bytes/cycle bus bandwidth

not considered here. The instructions dispatched to the EP
are buffered into a long 48-entry FIFO Issue Queue (IQ),
while those dispatched to the AP are put in a small 4-entry
FIFO queue. If the target queue for a dispatched instruction
is full, the dispatch stalls. The 48-entry IQ in the EP
provides enough storage to allow the AP to run ahead of the
EP without blocking the dispatch.

In each processing unit, two instructions per cycle are
issued in-order, to the functional units, that are general
purpose and fully pipelined. To better exploit the paralle-
lism between the AP and the EP, the instructions can issue
and execute speculatively beyond up to four unresolved
branches (like the MIPS R10000 [41] or the PowerPC 620
[19]). This feature may sometimes become a key factor to
enable the AP to slip ahead of the EP. After having their
address calculated, stores are held in the Store Address
Queue (SAQ) for disambiguation until they graduate,
allowing nonmatching loads to bypass stores. Whenever a
matching pair is found, the data from the pending store is
immediately forwarded to the load if it is available.
Otherwise, the load is put aside until this data is forwarded
to it, without blocking the pipeline.

In many decoupled processors ([2], [20], [28] among
others), data fetched from memory is buffered into a load
data queue. In these architectures, either the compiler or the
dispatch logic must generate a duplicate of the load
instruction for the EP to read the operand from the load
data queue head and copy it to a register. Since we found in
preliminary experiments (not shown here) that such code
duplication would significantly reduce performance, it is
avoided by implementing dynamic register renaming.
That is, data fetched from memory is written into a
physical register rather than a data queue, eliminating the
need for copying. It is also a convenient way to manage
the disordered completion of loads when a lockup-free
cache is present. Duplication of conditional branch
instructions, also used in [28] to communicate branch
outcomes between processing units, is not needed if the
processor includes support for control speculation and

recovery and it can identify the instructions to squash in
case of a misprediction.

The primary data cache is on-chip, with two R/W ports
[32], direct-mapped, 64 KB-sized, with a 32 byte line length,
write-allocate, and it implements a write-back policy to
minimize off-chip bus traffic. It is a lockup-free cache, with
its Miss Status Hold Registers [16] modeled similarly to the
MAF of the Alpha 21164 [5]. It can hold up to 16 outstanding
(primary) misses to different lines, each capable of merging
up to four (secondary) misses per pending line. We assume
that L1 cache misses always hit in an infinite multibanked
off-chip L2 cache and they have a 16-cycle latency plus any
penalty due to the contention of the L1-L2 bus, which is
modeled in detail. This is a fast 128-bit wide data bus,
operating at full processor frequency, thus capable of
delivering 16 bytes per cycle, like that of the R10000 (the
bus is busy during two cycles for each line that is fetched or
copied back).

3 THE LATENCY HIDING EFFECTIVENESS OF
DECOUPLING

Since the interest in decoupling is closely related to its
ability to hide memory latency without resorting to other
more complex issue mechanisms, we have first quantified
such ability for a wide range of L2 cache latencies, from one
to 256 cycles. Other similar studies on decoupled machines
have been reported before [1], [7], [13], [18], [27], [28], [30],
[39], [40], but they did not incorporate techniques like store-
load forwarding, control speculation or lockup-free caches.
We have evaluated a single-threaded decoupled architec-
ture, as described in Section 2, with all the architectural
parameters shown in Table 1. However, for these experi-
ments, the sizes of all the architectural queues and physical
register files are scaled up proportionally to the L2 latency
(e.g., when doubling the L2 latency from 16 to 32 cycles, we
also doubled the sizes of the IQ in EP, the SAQ, the ROB,
and the number of outstanding misses and renaming
registers). Of course, such scaling—especially the register
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file—may have implications in the cycle time that should be
handled by considering other partitioned layouts [21], but
the concern of this study is about exploiting access/execute
parallelism to tolerate memory latency.

3.1 Experimental Framework

The experiments consisted of a set of trace driven cycle-by-
cycle simulations of the SPEC FP95 benchmark suite [34],
fed with their ref input data sets. The programs were
generated with the Compaq {77 compiler, applying full
optimizations, for an AlphaStation 600 5/266. The traces
were obtained by instrumenting the binaries with the
ATOM tool [33]. Since the simulator is very slow, due to
the detail of the simulations, we run only a portion of 100 M
(million) instructions of each benchmark, after skipping an
initial start-up phase. To determine the length of this initial
portion to discard, we compared the instruction-type
frequencies of such a fragment, starting at different initial
points, with the frequencies measured in a full run. We
found that the start-up phase does not have the same length
for all the benchmarks: about 5,000 M instructions for
101.tomcatv and 103.su2cor, 1,000 M for 104.hydro2d and
146.wave5, and less than 100 M for the rest.

The simulator assumes an infinite I-cache. Notice that
I-cache miss ratios for SPEC FP95 are usually very low, so
this approximation introduces a small perturbation. Due to
the trace-driven nature of the simulator, branch mispredic-
tions are modeled by stalling the fetch until the branch is
resolved and, therefore, cache pollution effects are not taken
into account. In contrast, handling of load and store misses
is accurately modeled cycle by cycle to reflect the MAF-like
behavior, the availability of the L1-L2 bus, and the time
when line-refill and copy-back transactions gain access to
the L2 cache, and when they complete. Besides this, for
higher accuracy, the L1 cache tags are not updated
immediately at tag probe time, but at the time the line
replacement actually takes place.

3.2 Results

Load miss latency is hidden by overlapping it with useful
computations and also with the latency of subsequent
misses, provided that these computations do not need the
missing data. This overlapping is naturally achieved for
decoupled loads (FP loads, in our implementation) when
the AP runs far enough ahead of the EP. On the other hand,
the latency of two integer missing loads (not decoupled by
our implementation) may also overlap if the two loads are
scheduled prior to their first uses. However, since the AP
schedules the issue of integer loads in order, their latency
overlapping depends entirely on the static scheduling.

The anticipation of the AP is lost due to the so-called
“loss of decoupling” events: The AP stalls caused by integer
load misses fall into this category, but it also includes
several control and memory data dependences that force
the AP and the EP to synchronize [2], [36]. For instance, data
dependence synchronization occurs in some particle-in-cell
codes like wave5, where data generated by the EP is used by
the AP to compute array indices. Control dependence
synchronization is caused by mispredicted conditional
branches, especially those of FP branches, since they
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completely drain the pipeline. Codes with many such
events are said to have a bad decoupling behavior.

The nonhidden memory latency can be measured as the
number of stall cycles that a load miss causes. For this
purpose, in addition to the IPC, we have measured the
average “perceived” latency of integer and FP load misses
separately. We define the perceived latency of a load as the
number of stall cycles that it causes to the first instruction I,
that uses its data. That is, the number of cycles between the
time 1, is first considered for issue (when it reaches the head
of the Issue Queue) and the time the memory operand is
actually delivered (a similar definition is found in [2]). The
simulator measures the perceived latency of every load by
identifying and time-stamping its target register. The
average perceived latency of hits and misses depends on
the miss ratio. In contrast, the average perceived latency of
load misses does not depend on the miss ratio, but only
depends on whether the anticipation or decoupling of the
AP over the EP is large enough to hide the latency and,
therefore, this metric characterizes the “decoupling beha-
vior” of each program.

Fig. 2a and Fig. 2b depict the perceived load miss latency
for FP and integer loads, respectively. As shown in Fig. 2a,
except for fpppp, more than 96 percent of the FP load miss
latency is always hidden. Fig. 2b shows that fpppp, su2cor,
turb3d, and waveb5 are the programs with the highest
perceived integer load miss latency. Notice that, as
discussed above, integer load misses have quite high
perceived latencies because these loads are not decoupled
(their dependent instructions are also executed in the AP),
so their latency tolerance relies exclusively on the schedul-
ing ability of the compiler.

The most appropriate approach to measure the latency
tolerance of an architecture is by analyzing the impact of
memory latency on performance and it depends on both the
number of load misses and their average penalty. Fig. 2c
shows the load miss ratios for the configurations at both
ends of the considered latency range: one and 256 cycles.
Note that, in some cases, the increase of L2 latency
substantially increases the miss ratio due to the late updates
of the L1 cache because, after a pending miss, subsequent
loads to the same line are more likely to produce new
misses. These new misses do not necessarily increase the
number of requests to the L2 cache if the hardware can
merge them in a single request.

Fig. 2d shows the IPC loss of each configuration, relative
to the 1-cycle L2 latency case, and their absolute IPC values
are tabulated in Table 2. We can see in Fig. 2d that, for
tomcatv, swim, mgrid, applu, and apsi, in spite of having
substantial miss ratios, their performance is hardly de-
graded due to their good decoupling behavior. In addition,
programs like fpppp or turb3d with quite bad decoupling
behavior are also little performance degraded due to their
extremely low miss ratios. On the other hand, the most
performance degraded programs are those with both high
perceived miss latencies and significant miss ratios: hydro2d,
wave5, and su2cor.

To summarize, performance is very little affected by the
L2 latency when either it can be hidden efficiently (well-
decoupled programs like tomcatv, swim, mgrid, applu, and
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Fig. 2. (a) Perceived miss latency of FP loads. (b) Perceived miss latency of Integer loads. (c) Miss ratios of Loads and Stores when L2 latency is
either one or 256 cycles. (d) Impact of latency on performance (loss relative to the 1-cycle L2 latency case).

apsi) or when the miss ratio is low (fpppp and turb3d), but it
is seriously degraded for programs that lack both features

(su2cor, waves, and hydro2d). On our decoupled architecture

TABLE 2
IPCs for Several L2 Latencies
Latency 1 16 32 64 128 256
tomcatv || 2.11 2.10 211 2.10 2.10 2.09
swim 3.54 3.53 3.53 3.51 3.51 3.48
su2cor 2.70 2.63 2.54 2.35 2.00 1.53
hydro2d 1.91 1.86 1.79 1.52 1.14 0.76
mgrid 3.44 3.42 3.47 3.46 3.46 3.45
applu 2.07 2.04 2.07 2.09 2.08 2.06
turb3d 2.58 2.57 2.56 2.53 2.47 2.32
apsi 1.83 1.81 1.81 1.81 1.78 173
fpppp 2.36 2.34 2.32 2.26 2.14 1.93
waves 2.17 2.14 2.07 1.90 1.59 1.20

implementation, the hidden miss latency of FP loads
depends on the degree of program decoupling, while that
of integer loads relies exclusively on the static instruction
scheduling.

4 A MULTITHREADED DECOUPLED ARCHITECTURE

In the experiments of the previous section, we also analyzed
the causes that prevent the EP from filling the issue slots
and found that the latency of the functional units caused
more wasted issue slots (30 percent to 25 percent of the
issue slots for L2 latencies of one to 256 cycles) than the
memory latency (3 percent to 20 percent) and it was the
most important source of wasted issue slots. In other words,
this observation suggests that the in-order issue policy
imposed on the EP has little tolerance to the multicycle
latency of the EP functional units.

Simultaneous multithreading (SMT) is a dynamic sche-
duling technique that increases processor throughput by
exploiting thread level parallelism. Multiple simultaneously
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Fig. 3. Scheme of the multithreaded decoupled processor.

active contexts compete for issue slots and functional units.
Previous studies of SMT assumed several dynamic instruc-
tion scheduling mechanisms ([4], [10], [37], [38], among
others) other than decoupling. In this paper, we analyze its
potential when implemented on a decoupled processor, i.e.,
each thread context executes in a decoupled mode, as
described in the previous section. We still refer to it as
simultaneous, although there are obvious substantial
differences from the original SMT, because it retains the
key concept of issuing from different threads during a
single cycle. Since decoupling provides excellent memory
latency tolerance and multithreading supplies enough
amounts of parallelism to remove the remaining stalls, we
expect important synergistic effects in a microarchitecture
which combines these two techniques. In this section, we
present and evaluate the performance and memory latency
tolerance of the multithreaded decoupled access/execute
architecture and we analyze the mutual benefits of both
techniques, especially when the miss latency is large.

4.1 Architecture Overview

Our proposal is a multithreaded decoupled architecture
(Fig. 3). That is, each thread executes in a decoupled mode,
sharing the functional units and caches with other threads.
The multithreaded decoupled architecture is based on the
decoupled design described in Section 2 and Table 1, with
some extensions: It can run up to six independent threads
and issue up to eight instructions per cycle (four at the AP
and four at the EP) to eight functional units. The L1 lockup-
free data cache is augmented to four ports. The fetch and
decode stages—including branch prediction and register
map tables—and the register files and queues—including
the ROB, the issue queues, and the SAQ—are replicated for
each context. The issue logic, the functional units, and the
data cache are shared by all the threads. There is no thread
communication mechanism other than memory since, in
this work, we consider only independent threads.

In our model, all the threads are allowed to compete for
each of the eight issue slots each cycle and priorities among
them are determined in pure round-robin order (similar to
the full simultaneous issue scheme reported in [38]). Each
cycle, only two threads have access to the I- cache and each
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of them can fetch up to eight consecutive instructions (up to
the first taken branch). The chosen threads are those with
fewer instructions pending to be dispatched (similar to the
RR-2.8 with I-COUNT schemes, reported in [37]).

4.2 Experimental Evaluation

The multithreaded decoupled simulator is fed with
t different traces, corresponding to t independent threads.
The trace of every thread is built by concatenating the first
10 million instructions of the 10 traces used in the previous
section—each thread using a different permutation—thus
totaling 100 million instructions per thread. In this way, all
threads have different traces but balanced workloads,
similar miss-ratios, etc.

4.3 Wasted Issue Slots

Fig. 4 shows the breakdown of wasted issue slots when
varying the number of threads from one to six. Each cycle,
the number of wasted issue slots is recorded, along with the
cause that prevents each individual thread from filling
them, obtaining a per thread issue slot breakdown. These
results are then averaged among the running threads to
obtain the graphs of Fig. 4. The main causes that make a
thread lose an issue slot are having the issue queue empty
(labeled empty IQ) and having any operand unavailable
either because it is the result of a previous load (labeled
memory latency) or an instruction other than a load (labeled
FU’s latency).

The first column in Fig. 4 represents the case with a
single thread and it shows that the major bottleneck is
caused by the EP functional units latency in accordance
with similar results observed on the single threaded
decoupled architecture (mentioned at the beginning of
Section 4). When two more contexts are added, the
multithreading mechanism drastically reduces these stalls
in both units and produces a 2.31 speed-up (from 2.68 IPC
to 6.19 IPC). Since the AP functional units are nearly
saturated (90.7 percent) for three threads, negligible addi-
tional speed-ups are obtained by adding more contexts
(6.65 IPC is achieved with four threads).

Notice that, although the AP almost achieves its
maximum throughput, the EP functional units do not
saturate due to the load imbalance between the AP and the
EP. Therefore, the effective peak performance is reduced by
17 percent, from eight IPC to 6.65 IPC. This problem could
be addressed with a different choice of the number of
functional units in each processor unit, but this is beyond
the scope of this study.

Another important remark is that, when the number of
threads is increased, the combined working set is larger and
the miss ratios increase progressively, putting greater
demands on the external bus bandwidth. On average, this
results in more pending misses, thus increasing the effective
load miss latency and increasing the EP stalls caused by
memory latency (see the rightmost graph of Fig. 4). On the
other hand, the AP stalls due to integer load misses, which
cannot be reduced by decoupling, as discussed in Section 3,
are almost eliminated by multithreading (see memory latency
in the leftmost graph of Fig. 4).
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Fig. 4. AP (left) and EP (right) issue slots breakdown for the multithreaded decoupled architecture.

4.4 Latency Hiding Effectiveness

Multithreading and decoupling are two different ap-
proaches to tolerating memory latency. We have run some
experiments, similar to those of Section 3, to reveal the
separate contributions of decoupling and multithreading to
the latency hiding effect. We have quantified the latency
tolerance for two multithreaded architectures, both having
from one to four contexts: a multithreaded decoupled
processor and a degenerated version of it where the issue
queues are disabled, i.e., similar to a pure in-order multi-
threaded architecture. Such nondecoupled architecture also
has register renaming to support out-of-order completion of
nonblocking misses and to provide precise exceptions.
Notice that, therefore, it may still hide some memory
latency by overlapping the execution of nonblocking misses
with subsequent instructions, including other misses.

These two architectures have similar complexity, except
for the number of physical registers required per thread.
However, this number does not grow—in fact, it decreases
—when the number of contexts increases since each has its
own register file. Therefore, the register file access time is
not expected to determine the processor cycle time. Other
structures that have similar complexity in both architectures
will more likely stay in the critical path. We have thus
considered cycle time implications as a second order factor
to compare them and performance is given in terms of IPC.
A further complexity analysis, while important, is beyond
the scope of this paper.

Fig. 5a shows the average perceived load miss latency
when varying L2 latency from one to 256 cycles, for the
eight configurations (combinations of one to four threads
with/without decoupling). The definition of perceived
latency given in Section 3 is slightly modified for a
multithreaded architecture to express the same notion of
memory latency tolerance: The latency perceived by a load
is the number of cycles where an instruction that uses its
value cannot issue and it causes an issue slot to be wasted
(not filled by any other thread). That is, if a load use is at the
head of a thread’s issue queue, but all the issue slots in a

cycle are successfully filled with instructions from other
threads, this cycle does not add to the load perceived
latency. Fig. 5b shows the corresponding relative perfor-
mance loss (with respect to the 1-cycle L2 latency) of each of
the eight configurations. Notice that performance loss
compares the impact of memory latency on the IPC for
each architecture, rather than their absolute performance.
Several conclusions can be drawn from these graphs.
First, we can observe in Fig. 5a that the average perceived
load miss latency is quite low when decoupling is enabled
(less than six cycles for an L2 latency of 256 cycles), but it is
much higher when decoupling is disabled, and it may only
be hidden by overlapping instructions from other threads.
Second, although it may seem rather surprising, multi-
threading does not significantly improve the average
perceived miss latency: There are less than three cycles
difference in the perceived latency for one and four threads
in the nondecoupled processor and less than 1.5 cycles in
the decoupled processor. Although having more threads
increases the opportunity to fill some empty issue slots,
there are very few additional cases when all of them are
filled, which is the condition needed in our definition to
consider that the memory latency is not perceived by a
stalled load use instruction. Moreover, the little latency
hiding provided by the additional threads is almost offset
by the increase of the miss ratio (due to the larger combined
working set), which produces longer bus contention delays.
Third, when the L2 memory latency is increased from
one cycle to 32 cycles, it is shown in Fig. 5b that the
decoupled multithreaded architecture experiences perfor-
mance drops of less than 3.6 percent (less than 1.5 percent
with four threads), while the performance degradation
observed in all the nondecoupled configurations is greater
than 23 percent. Even for a huge memory latency of
256 cycles, the performance loss of all the decoupled
configurations is lower than 39 percent, while it is greater
than 79 percent for the nondecoupled configurations.
Fourth, multithreading provides some additional latency
tolerance improvements, especially in the nondecoupled
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Fig. 5. (a) Average perceived load miss latency of individual threads. (b)
case. (c) Contribution of decoupling and multithreading to performance.

configurations, but it is much lower than the latency
tolerance provided by decoupling.

Some other conclusions can be drawn from Fig. 5¢, which
shows the IPC for each configuration. While having more
threads raises the performance curves, decoupling makes
them flatter. In other words, while the main effect of
multithreading is to provide more throughput by exploiting
thread level parallelism, the major contribution to memory
latency tolerance, which is related to the slope of the curves,
comes from decoupling and this is precisely the specific role
that decoupling plays in this hybrid architecture.

4.5 Hardware Context Reduction and the External
Bus Bandwidth Bottleneck

Multithreading is a powerful mechanism that highly

improves the processor throughput, but it has a cost: It

needs a considerable amount of hardware resources. We
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have run some experiments that illustrate how decoupling
reduces the hardware context requirements. We have
measured the performance of several configurations having
from one to eight contexts, both with a decoupled multi-
threaded architecture and a nondecoupled multithreaded
architecture (see Fig. 6a). While the decoupled configura-
tion achieves the maximum performance with just three or
four threads, the nondecoupled configuration needs six
threads to achieve similar IPC ratios.

One of the traditional claims of the multithreading
approach is its ability to sustain a high processor through-
put, even in systems with a high memory latency. Since
hiding a longer latency may require a higher number of
contexts and, as is well-known, this has a strong negative
impact on the memory performance, the reduction in
hardware context requirements obtained by decoupling
may become a key factor when L2 memory latency is high.
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Fig. 6. (a) Decoupling reduces the number of hardware contexts. (b) Maximum performance without decoupling cannot be reached due to external

bus saturation.

To illustrate this, we have run the previous experiment for
an L2 memory latency of 64 cycles. As shown in Fig. 6b,
while the decoupled architecture achieves the maximum
performance with just four or five threads, the nonde-
coupled architecture cannot reach similar performance with
any number of threads because it would need so many that
they would saturate the external L2 bus: The average bus
utilization is 89 percent with 12 threads and 98 percent for
16 threads. Moreover, notice that the decoupled architecture
requires just three threads to achieve about the same
performance as the nondecoupled architecture with 12
threads. Thus, decoupling significantly reduces the amount
of parallelism required to reach a certain level of perfor-
mance.

The previous result suggests that the external L2 bus
bandwidth is a potential bottleneck in this kind of
architecture. To further describe its impact, we have

measured the performance and bus utilization of several
configurations having from one to six hardware contexts,
for three different external bus bandwidths of eight, 16, and
32 bytes/cycle. Results are shown in Fig. 7a and Fig. 7b. For
an 8 bytes/cycle bandwidth, the bus becomes saturated
when more than three threads are running and performance
is degraded beyond this point.

To summarize, decoupling and multithreading comple-
ment each other to hide memory latency and increase ILP
with reduced amounts of thread-level parallelism and low
issue logic complexity.

5 SuMMARY AND CONCLUSIONS

In this paper, we have analyzed how access/execute
decoupling improves the latency tolerance of simultaneous
multithreading. A multithreaded decoupled architecture
aims at taking advantage of the latency hiding effectiveness
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of decoupling and the potential of multithreading to exploit
ILP. We have analyzed the most important factors that
determine its performance and the synergistic effect of both
paradigms. From this study, we have drawn the following
conclusions:

First, multithreading alone has good tolerance for short
latencies, like those of functional units, since these stalls are
almost eliminated when five threads are running (for a
16 cycle L2 latency, five threads achieve 93 percent
utilization of the functional units of the AP, which results
in a throughput of 6.35 IPC). But, we also show that it
suffers an important performance degradation caused by
long memory latencies: When L2 latency is increased from
one to 32 or more cycles, the IPC drop is higher than
23 percent in the best case (four threads).

Second, we have demonstrated that access/execute
decoupling is a dynamic scheduling policy that performs
quite well in the specific task of tolerating a long memory
latency, either alone or in conjunction with multithreading;:
We have found that, when L2 latency is increased from one
to 32 or more cycles, the IPC drop is always lower than
3.6 percent and it is quite independent of the number of
threads. Furthermore, even for a huge L2 latency of
256 cycles and four threads, the average perceived latency
of a load miss is less than six cycles.

Hence, we conclude that multithreading is quite effective
to increase ILP, but rather limited to hide memory latency.
Therefore, to tolerate long latencies, some sort of dynamic
scheduling is needed and decoupling is an excellent
alternative. Of course, out-of-order could do it as well, but
its issue logic has a much higher complexity, which may
have implications in the cycle time.

Third, in a decoupled multithreaded architecture, max-
imum performance is reached with very few threads: For a
16 cycle L2 latency, 6.19 IPC is achieved with just three
threads and 6.65 IPC with four threads. On the other hand,
more threads are needed to reach a similar level of
performance in an in-order architecture: It achieves
6.35 IPC with five threads and 6.49 IPC with six threads.
The number of simultaneously active threads supported by
the architecture has a significant impact on the hardware
chip area (e.g., number of registers and instruction queues)
and complexity (e.g., the instruction fetch and issue logic)
and, consequently, in clock cycle.

Reducing the number of threads reduces the number of
cache conflicts and also prevents the saturation of the
external bus bandwidth, which is usually one of the
potential bottlenecks of a multithreaded architecture. We
have shown that, in the assumed architecture, the bus
bandwidth becomes a bottleneck when the miss latency is
64 cycles if decoupling is disabled and prevents the
processor from achieving the maximum performance with
any number of threads.

In summary, we can conclude that decoupling and
multithreading techniques complement each other to
exploit instruction level parallelism and to hide memory
latency. This particular combination obtains its maximum
performance with few threads, has a reduced issue logic
complexity, and it is hardly performance degraded by a
wide range of L2 latencies. All those features make it a
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promising alternative for future increases in clock speed
and issue width.
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