164 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.2, FEBRUARY 2002

Rigorous Development of an Embedded
Fault-Tolerant System Based on
Coordinated Atomic Actions

Jie Xu, Brian Randell, Alexander Romanovsky, Robert J. Stroud, Avelino F. Zorzo,
Ercument Canver, and Friedrich von Henke, Member, IEEE Computer Society

Abstract—This paper describes our experience using coordinated atomic (CA) actions as a system structuring tool to design and
validate a sophisticated and embedded control system for a complex industrial application that has high reliability and safety
requirements. Our study is based on an extended production cell model, the specification and simulator for which were defined and
developed by FZI (Forschungszentrum Informatik, Germany). This “Fault-Tolerant Production Cell” represents a manufacturing
process involving redundant mechanical devices (provided in order to enable continued production in the presence of machine faults).
The challenge posed by the model specification is to design a control system that maintains specified safety and liveness properties
even in the presence of a large number and variety of device and sensor failures. Based on an analysis of such failures, we provide in
this paper details of: 1) a design for a control program that uses CA actions to deal with both safety-related and fault tolerance
concerns and 2) the formal verification of this design based on the use of model-checking. We found that CA action structuring
facilitated both the design and verification tasks by enabling the various safety problems (involving possible clashes of moving
machinery) to be treated independently. Even complex situations involving the concurrent occurrence of any pairs of the many possible
mechanical and sensor failures can be handled simply yet appropriately. The formal verification activity was performed in parallel with
the design activity and the interaction between them resulted in a combined exercise in “design for validation”; formal verification was
very valuable in identifying some very subtle residual bugs in early versions of our design which would have been difficult to detect

otherwise.

Index Terms—Concurrency, coordinated atomic (CA) actions, embedded fault-tolerant systems, exception handling, object

orientation, formal verification, model checking, reliability, safety.

1 INTRODUCTION

MANY embedded systems today are designed in an
ad hoc fashion. They are tuned for specific operating
environments and validated through extensive testing.
Research on the systematic design and development of
embedded systems has traditionally focused on function-
ality, performance, and hardware reliability. However, the
software and systems are becoming more and more
complex and they often involve concurrent tasks such as
low-level feedback control, supervision logic, data logging,
and interprocess communications. Controlling such system
complexity and ensuring system consistency and complete-
ness with respect to various quality requirements are
becoming a great challenge. We need better technologies—
adequate solutions to the technical complexity of building a
dependable embedded system that can be relied upon, even
in the occurrence of failures and user’s errors and when the

J. Xu is with the University of Durham, DH1 3LE, UK.

E-mail: Jie. Xu@durham.ac.uk.

B. Randell, A. Romanovsky, and R.]. Stroud are with the University of

Newcastle upon Tyne, NE1 7RU, UK.

e AF. Zorzo is with the Faculdade de Informatica, PUCRS, 90619-900,
Brazil.

e E. Canver and F. von Henke are with the University of Ulm, D-89069

Ulm, Germany.

Manuscript received 15 Oct. 2000; revised 16 May 2001; accepted 19 June
2001.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 114413.

018,

Authorized licensed use limited to: Pontificia Universidade Catolica do Igelo G‘)%lrg)épez@y l?l %ﬁ?&%&%ﬁFDownloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

system environment and user’s requirements change. The
goal of our work is, therefore, to investigate a rigorous
approach to the development of embedded fault-tolerant
systems for critical applications. In particular, we will
examine the feasibility of using coordinated atomic (CA)
actions [19] as a structuring tool to manage the system
complexity and to design a fault-tolerant control program
for a realistically detailed model of an industrial production
cell that contains some redundant devices and sensors. We
will then use model-checking to debug, improve, and verify
the design formally.

An industrial production cell model, based on a metal-
processing plant in Karlsruhe, Germany, was first created
by the FZI in 1993 [8], within the German Korso Project, in
order to evaluate and compare different formal methods
and to explore their practicability for industrial applica-
tions. Since then, this original case study, Production Cell I,
has attracted wide attention and has been investigated by
over 35 different research groups. In 1996, the FZI presented
the specification of an extended version of the original
production cell, called the “Fault-Tolerant Production Cell”
or Production Cell II [10]. This second model, which has an
additional press, extra sensors, and warning light systems
to facilitate fault detection and fault tolerance, is much more
complex and realistic than Production Cell I. Unlike the first
model, failures of electro-mechanical components and
sensors in Production Cell II are of major concern. In

XU ET AL.: RIGOROUS DEVELOPMENT OF AN EMBEDDED FAULT-TOLERANT SYSTEM BASED ON COORDINATED ATOMIC ACTIONS 165

particular, the cell is intended to be used to provide
continued service even if one of the two presses is out of
order. However, to the best of our knowledge, very little
work has been done on Production Cell II, especially
regarding the development and formal treatment of
different control programs.

The original, rather simplistic, production cell model
assumes no device or sensor failures occur. Under such
assumptions, we used the CA action concept to organize
and design a control program and implemented it in Java
[24]. The control program that we developed was then
applied to an FZI-provided Tcl/Tk simulator, demonstrat-
ing how functional and safety-related requirements can be
satisfied separately by controlled multithreaded coopera-
tion and the strict enclosure of all interactions between
cooperating devices within CA actions.

The Fault-Tolerant Production Cell exposes more and
richer issues related to failures and fault tolerance and it is
therefore a valuable case study for investigating and
developing embedded fault-tolerant computer systems.
Because devices, sensors, and actuators can fail, the
required control program is necessarily much more com-
plex than the program that we developed for the original,
non-fault-tolerant production cell.

This paper is organized as follows: Following a brief
description of the CA action concept and the Fault-Tolerant
Production Cell model, Section 3 presents an analysis of the
possible failures of the various devices and sensors as
defined by FZI. Section 4 describes a design of a control
program that uses CA actions both as a basic structuring
tool and as a unified framework for handling exceptional
situations. Sections 5, 6, and 7 study the formal treatment of
CA action-based designs, formalize important properties of
Production Cell II, and examine those properties by model-
checking. Sections 8 and 9 discuss an implementation of the
control program and then conclude the paper.

2 PRELIMINARIES: CA ACTIONS AND PRODUCTION
CELL Il

An embedded computer system is a system that is “built-
in” or “embedded” within its environment. It has close
interactions with its environment by partly or wholly
controlling the functionality and the operation of the
environment. The system receives signals from its environ-
ment, collected by the various sensors or by one or more
communication channels, and sends control signals to its
environment, usually directed to actuators. An effective
supporting mechanism is often required for controlling and
coordinating these concurrent and interacting activities.
Also, due in no small measure to their complexity,
embedded computer systems are very prone to faults and
errors. Various fault tolerance techniques for coping with
hardware and software faults can provide a practical way of
improving the dependability of such systems. These
typically use fault masking or backward error recovery.
However, because faults can have an impact on, or arise
from, the environment of a computer system [1], some
forms of error recovery may require stepping outside the
boundaries of a computer system (i.e.,, considering the

computer system and its environment recursively as an
entire distributed system at a higher level of abstraction), in
which case, backward error recovery by the computer
system will normally not suffice and fault masking is
infeasible.

In current practice, however, the majority of fault-
tolerant computing systems do not attempt to tolerate
software faults or to facilitate provision of means of
recovering from errors that affect both the computer system
and its environment—rather, they concentrate on the
problems that arise from operational faults (typically
hardware faults). For example, many software systems that
use the concept of atomic (trans)actions to construct fault-
tolerant distributed applications generally assume that
erroneous outputs can be detected before transaction
commitment occurs and that user programs are correct.
The CA action scheme is motivated by the need to deal with
the more general and complicated fault situations that occur
in many real-world applications.

2.1 Coordinated Atomic Actions: Overview and

Example

A CA action is a mechanism for coordinating multithreaded
interactions and ensuring consistent access to objects in the
presence of concurrency and potential faults. CA actions
can be regarded as providing a programming discipline for
nested multithreaded transactions [3] that, in addition,
provides very general exception handling provisions. They
augment any fault tolerance that is provided by the
underlying transaction system by providing means for
dealing with 1) unmasked hardware and software faults
that have been reported to the application level to deal with
and/or 2) application-level failure situations, including
failures in the environment of a system, that have to be
responded to. (In fact, CA actions also provide a convenient
structuring mechanism for using software fault tolerance by
means of software design diversity at the application level,
but this use of them is not considered further in this paper.)

The concurrent execution threads participating in a given
CA action enter and leave the action synchronously. Within
the CA action, operations on objects can be performed
cooperatively by roles executing in parallel. To cooperate in
a CA action a group of concurrent threads must come
together and agree to perform each role of the action, with
each thread undertaking a different role. Inside a CA action,
some or all of its roles can be involved in further (nested)
CA actions. If an error is detected inside a CA action,
appropriate forward and/or backward recovery measures
must be invoked cooperatively, by all the roles, in order to
reach some mutually consistent conclusion. To support
backward error recovery, a CA action must provide a
recovery line that coordinates the recovery points of the
objects and threads participating in the action so as to avoid
the domino effect [15]. To support forward error recovery, a
CA action must provide an effective means of coordinating
the use of exception handlers. An acceptance test can and
ideally should be provided in order to determine whether
the outcome of the CA action is successful. Error recovery
for participating threads of a CA action generally requires
the use of explicit error coordination mechanisms, i.e.,
exception handling or backward error recovery within the

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

166

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 2, FEBRUARY 2002

CA action

raised exception €

exception handler H1

role 1
Thread 1

abnormal control flow
return to normal

suspended control flow y .

cooperation

-l >

exception handler H2 o
exit with success

between roles

role 2

abnormal control flow

return to normal

»

suspended control flow

Thread 2 e

-

: @ accesses
|

@ repairs :
|

External Objects
start transaction

commit transaction

Fig. 1. Example of a CA action.

CA action; objects that are external to the CA action and so
can be shared with other actions and threads must provide
their own error coordination mechanisms. These external
objects, which are in effect being competed for, must behave
atomically with respect to other CA actions and threads so
that they cannot be used as an implicit means of “smug-
gling” information [7] into or out of a CA action.

Fig. 1 shows an example in which two concurrent
threads enter a CA action in order to play the correspond-
ing roles. Within the CA action, the two concurrent roles
communicate with each other and manipulate the external
objects cooperatively in pursuit of some common goal.
However, during the execution of the CA action, an
exception e is raised by one of the roles. The other role is
then informed of the exception and both roles transfer
control to their respective exception handlers, H1 and H2 for
this particular exception, which then attempt to perform
forward error recovery. (When multiple exceptions are
raised within an action, a resolution algorithm based on an
exception resolution graph [1], [20] is used to identify the
appropriate exception and, hence, the set of exception
handlers to be used.) The effects of erroneous operations on
external objects are repaired, if possible, by putting the
objects into new correct states so that the CA action is able
to exit with an acceptable outcome. The two threads leave
the CA action synchronously at the end of the action. (As an
alternative to performing forward error recovery, the two
participating threads could undo the effects of operations
on the external objects, roll back, and then try again. This
would, in general, require the use of diversely designed
software alternates if the aim was to tolerate residual design
faults, though a simple “retry” strategy can be effective
when the fault is in effect transient [6].)

In general, the desired effect of performing a CA action is
specified by an acceptance test. The effect only becomes
visible if the test is passed. The acceptance test allows both a
normal outcome and one or more exceptional (or degraded)
outcomes, with each exceptional outcome signaling a
specified exception to the surrounding environment. The
CA action is considered to have failed if the action failed to
pass the test or roles of the action failed to agree about the
outcome. In this case, it is necessary to try to undo the
potentially visible effects of the CA action and signal an
abort exception to the surrounding environment. If the CA

» Time

action is unable to satisfy the “all-or-nothing” property
(e.g., because the undo fails), then a failure exception
must be signaled to the surrounding environment (in
general, an enclosing CA action). This failure exception
indicates that the CA action has not passed its acceptance
test and its effects have not been undone so that the system
has probably been left in an erroneous state, which it is now
the responsibility of the environment to deal with. Thus,
ideally, execution of a CA action will only produce one of
the following four forms of outputs: a normal outcome, an
exceptional outcome, an abort exception, or a failure
exception.

If an exception is raised during the normal execution of a
CA action, then control is passed to the corresponding
exception handler for each role. If two or more exceptions
are raised at the same time, then a process of exception
resolution must take place first [23]. However, if an
exception is raised during the execution of an exception
handler, then the underlying CA action support mechanism
will attempt to abort the action or else signal a failure
exception to the enclosing action. Once exception handling
begins within a CA action, it is not possible to resume
normal execution of the CA action, but it is possible for the
exception handlers to terminate normally or exceptionally,
depending on the extent to which error recovery is
successful. Again, all roles must still agree about the
outcome.

A role may signal abort or failure at any time. For
the purposes of determining the outcome, failure takes
precedence over abort, which takes precedence over every
other exception that can be raised internally. In fact, for a
given action, exception handlers can only be provided for
exceptions that are raised internally within that action.
Exceptions that are signaled by an action, including abort
and failure, will be handled at the level of the enclosing
action.

2.2 The Fault-Tolerant Production Cell

The Fault-Tolerant Production Cell consists of six devices:
two conveyor belts (a feed belt and a deposit belt), an
elevating rotary table, two presses, and a rotary robot that
has two orthogonal extendible arms equipped with electro-
magnets (see Fig. 2). These devices are associated with a set
of sensors that provide useful information to a controller
and a set of actuators via which the controller can exercise

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

XU ET AL.: RIGOROUS DEVELOPMENT OF AN EMBEDDED FAULT-TOLERANT SYSTEM BASED ON COORDINATED ATOMIC ACTIONS 167

€ sensor deposit belt
n o =2]
v
i
1. L [1
o 2 fic i i
o . traffic light for deposit —
m
€ robot H
n
)
blank = [B] 2
\\Q traffic light for insertion press
—~—— arm.1 —
= O | - .
5]
d belt . O
Jeed be elevating 4
rotary press 1
@ table

system clock alarm signal

Fig. 2. The fault-tolerant production cell (top view).

control over the whole system. The task of the cell is to get a
metal blank from its “environment” via the feed belt,
transform it into a forged plate by using a press, and then
return it to the environment via the deposit belt. More
precisely, the production cycle for each blank is:

1. If the traffic light for insertion shows green, a blank
may be added, e.g., by the blank supplier, to the feed
belt from the environment,

2. The feed belt conveys the blank to the table,

3. The table rotates and rises to the position where the
magnets of the robot are able to grip the blank,

4. Arm 1 of the robot picks the blank up and places it
into an unoccupied press, either press 1 or press 2,

5. The chosen press forges the blank,

6. Arm 2 of the robot removes the forged plate from the
press and places it on the deposit belt, and

7. If the traffic light for deposit is green, the plate may
be forwarded further and carried to the environment
where a container may be used, e.g., by the blank
consumer, to store the forged pieces.

(Normally, both presses are used and a certain amount of
interleaving of two such production cycles, one for each
press, is possible.)

Note that the controller can be implemented in hardware
and/or software. In the following, we will investigate a
software-implemented controller only. Our design and
control program will support a varying, adaptive operating
sequence of robot actions in order to achieve high flexibility.

2.2.1 Basic System Requirements

A correct control program must satisfy certain requirements
specified by the Production Cell II model, namely:

Safety:

1. Device mobility must be restricted,
Device collisions must be prevented,

3. Blanks must not be dropped outside safe areas (i.e.,
feed belt, table, press, and deposit belt), and

4. Sufficient distance must be maintained between
blanks.

Liveness: Any blank put into the cell via the feed belt
must eventually leave the cell via the deposit belt and must
have been forged by one of the presses. In addition, this
property must still hold if one of the two presses fails.

Failure Detection and Continuous Service: When any of a
large number of defined failures occurs, it must be detected
and, unless it just concerns one of the presses, the system
must be stopped in a safe state. After recovery from the
failure, which typically would require action by the user of
the production cell, the system should be able to resume
operations starting from this safe state. Similarly, after a
failed press has been repaired, it should be able to resume
its contributions to the production process. (Certain safety
requirements can no longer be met if some special failures
occur, e.g., a blank is dropped outside safe areas, but other
safety properties must still be guaranteed, e.g., restricted
device mobility.)

Other requirements, such as flexibility and efficiency,
may be taken into account, but must not conflict with the
above requirements.

2.2.2 System Clock, Stop Watches, and Alarm Signals

The Production Cell I model provides a global system clock
that gives the current time at any instant. Based on this
system clock, a control program can implement several stop
watches supervising individual processes, e.g., the move-
ment of the feed belt. The Production Cell II model also
provides an alarm signal mechanism for reporting compo-
nent failures to the user of the production cell. The control
program is required to switch on the alarm signal whenever
a failure is detected—it is switched off by the operator when
the failed device has been repaired.

3 FAILURE DEFINITIONS AND ANALYSIS

Before defining and analyzing various possible failures, we
state the major assumptions made in the Fault-Tolerant
Production Cell model, as defined by FZI [8], [10]:

Assumption 1: The system clock, two traffic lights, and the
alarm signal mechanism are fault-free and do not fail.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

168

Assumption 2: Values of sensors, actuators, and clocks are
always transmitted correctly without any loss or error.

Assumption 3: No failure can cause devices to exceed certain
limiting positions; in the worst case, devices are stopped
automatically.

Assumption 4: All sensor failures are indicated by sensor
values. Boolean sensors return a zero value and
enumeration type sensors return a specified value that
represents a failure.

Assumption 5: All actuator failures cause devices to stop.

Now we can define and analyze various failures with
respect to each of the six devices in the cell. For a given
device, we classify possible failures into: 1) sensor failures,
2) actuator failures, and 3) lost or stuck blanks. We also
show how a given failure can be detected by sensors,
actuators, and stopwatches, singly or in combination. It is
important to note that, in many cases, certain different
types of failure cannot be distinguished using just the
online information available. We therefore discuss failure
detection only and assume that fault diagnosis and
subsequent device repair are performed offline. Due to
limitations of space, our discussion just treats the case of
a single failure of either the robot or a press; for a
complete treatment, see [21].

3.1 Failures of the Robot

Sensor Failures: There are three sensors associated with the
robot—each sensor returns one of several predefined values
about the position of one of the robot’s arms or the robot’s
rotary position. Three electric motors are responsible for
rotating the robot or extending/retracting its arms. Sensor
failure or electric motor failure is indicated automatically by
a special sensor value, but these two types of failure cannot
be distinguished using this value alone.

Actuator Failures: There are three kinds of actuator
associated with the robot and each has its own failure
modes: 1) Failure modes of actuators that retract an arm of
the robot include: no response (i.e., cannot move) and
unexpected stopping of a moving arm, which can be
detected by checking values of robot sensors; 2) failure
modes of actuators that switch an arm magnet on or off
include: no response (e.g., the arm cannot pick up or cannot
drop a blank) and unexpected picking or dropping, which
can be detected only by checking values of other devices
interacting with the robot; and 3) failure modes of the
actuator that rotates the robot that include: no response (i.e.,
cannot rotate) and unexpected stopping of the rotating
robot, which can be detected immediately by checking
values of the sensor that indicates the robot’s rotary
positions.

Lost Blank: This type of failure can be detected only by
checking a group of sensor values from various devices
interacting with the robot.

3.2 Failures of a Press

Sensor Failures: There are four sensors associated with each
press, one reporting whether a blank is in the press (called
blank sensor) and others reporting press positions. The
failure of the blank sensor can be detected by checking

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 2, FEBRUARY 2002

whether a robot arm has transferred a blank to or from the
press. The failure of a sensor that reports press positions can
be detected by using a stop watch to measure the moving
time of the press and by checking other sensor values on
press positions.

Actuator Failures: Failure modes for the actuators that
move the lower part of a press include: no response (ie.,
cannot move) and a moving press unexpectedly stopping,
which can be detected by checking values of the press
position sensors and values of stop watches.

Stuck or Lost Blank: This failure can be detected only by
checking the value of the sensor that reports whether a
blank is in a press.

3.3 Failure Detection Measures

In order to detect various failures of sensors and actuators,
as well as lost blanks, appropriate detection measures must
be incorporated into the control software. Assertion state-
ments are a common form of failure detection measure. For
example, after the control program has sent a control
command to the robot and asked the robot to drop a blank
into press 1, the value of the sensor that reports a blank in
the press must be checked by an assertion statement. If the
sensor returns 0, indicating that no blank is in press 1, then
an appropriate exception must be raised.

There are several possibilities that could have caused this
exception: 1) The blank might have been lost, 2) arm 1 of the
robot might have failed to drop the blank, and 3) the sensor
of press 1 might have failed to report that the blank has
been dropped into the press. If a powerful online diagnosis
algorithm could identify this failure as the sensor failure,
exception handling and error recovery would be quite
straightforward—just report the exception to the user and
continue normal operations of the cell. However, our
analysis shows that distinguishing these failures from each
other at runtime is extremely difficult, if not impossible. In
most cases, if a failure occurs and, thus, an exception is
raised, the cell will simply have to be stopped in a safe state,
if at all possible, for the user to deal with. (Certain safety
requirements cannot be met if a blank is dropped outside
the safe areas, but the others must still be maintained.)

Failures of sensors that report press positions and
failures of the press actuator can be detected by assertion
statements and identified unambiguously with the aid of
stopwatches. Such failures must be reported to the user
through the alarm. However, because the Fault-Tolerant
Production Cell has two presses, normal operations can be
maintained using a single press, albeit with some perfor-
mance degradation.

A fault-tolerant program should have the ability to
confine damage and failures. For the production cycle of the
cell, a device or sensor failure should not affect normal
operations of other devices. For example, when a failure of
the robot occurs and is handled by the control program, the
deposit belt should still deliver an already forged blank, if
there is one, to the blank consumer. In the following, we
will demonstrate how CA actions can confine damage and
failures effectively and minimize the impact of component
failures on the entire cell.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

XU ET AL.: RIGOROUS DEVELOPMENT OF AN EMBEDDED FAULT-TOLERANT SYSTEM BASED ON COORDINATED ATOMIC ACTIONS 169
TransportBlank LoadDepositBelt
deposit belt
1 O 1
[lblank
1 UnloadPress2

€
3 r-IJ_,l'\ arm 2 [ng
. UnloadTable obot ‘ALl | |
L UnloadDepositBelt H] press 2 :|
r G/
(0] N
n
ol 5 LoadTable FofgaBlank2
€ o LoadPress2
n C—]
t [| blank table — =

o 1. O —— ress 1

— el \g A
Jeed be UnloadPress1 \ /
LoadFeedBelt @ @ LoadPress! ForgeBlank
system clock alarm signal

Fig. 3. CA actions that control Production Cell II.

4 DESIGN OF A ConNTROL PROGRAM UsING CA
ACTIONS

The main characteristics of our design are the way it
separates safety, functionality, and efficiency concerns
among a set of CA actions, which thus can be designed,
and validated, independently of each other and of the set of
device/sensor-controllers that dynamically determine the
order in which the CA actions are executed at runtime. In
particular, the safety requirements are satisfied at the level
of CA actions, while the other requirements are met by the
device/sensor-controllers. There is a detailed discussion in
[24] as to how these design decisions were made and why
we used certain actions to enclose the interaction between
certain devices in our control program for Production Cell I.
Our design for Production Cell II follows a similar strategy.
It includes 12 main CA actions; each action controls one step
of the blank processing and typically involves passing a
blank between two devices. Any device can move only
within a CA action. (An action can contain further nested
actions—see Fig. 4 for an example.)

There are six concurrent execution threads in the control
program, corresponding to the six devices: FeedBelt,
Table, Robot, Pressl, Press2, and DepositBelt, each
of which essentially performs a simple endless loop.
(Details of the controllers are given in Section 4.4.) All
device movements are performed within CA actions and
the devices involved in each action are switched off before
the action is left so that, when not under the control of an
action, each device is stationary. Two additional threads
model activities in the environment: BlankSupplier and
BlankConsumer. Note that FeedBelt is responsible for
controlling the traffic light that indicates when another
blank can be inserted, while BlankConsumer is respon-
sible for controlling the light that indicates when a
processed blank can be deposited. A blank is designed as
an external object with respect to the top-level CA actions.
Usually, one role of a CA action takes the blank as an input

argument and the device corresponding to this role passes it
to another role which returns it as an output argument.
Fig. 3 portrays the 12 related CA actions as overlays on the
FZI simulator diagram [10].

The control program interacts with the environ-
ment through two CA actions: LoadFeedBelt and
UnloadDepositBelt. Within these CA actions, the en-
vironment plays the roles of supplier and consumer,
respectively. It is the environment that adds a blank to or
takes a blank from the production cell when the need arises.
Note that an intersection between CA actions in Fig. 3, e.g.,
between TransportBlank and LoadDepositBelt, re-
presents the fact that those CA actions cannot be executed
in parallel. The mutual exclusion feature of CA actions
guarantees that a blank or a device cannot be involved in
more than one action at a time so that neither blanks nor
devices can collide. Furthermore, even if the actions that
devices participate in are invoked in the wrong order
because of a control program design fault, then the result
will be at worst a safe deadlock.

As mentioned previously, each hardware device is
associated with a device/sensor-controller (i.e., an execu-
tion thread) which is responsible for dynamically specifying
the sequence of actions in which the device will participate.
For example, without compromising safety and function-
ality requirements, the robot thread can skip all the
CA actions related to one of the presses if this press has
failed and, so, tolerate this fault.

4.1 Design of CA Actions

Our design assumes that an action will begin only if its
preconditions are valid and that, if no exception is raised
during the execution of an action, then its postconditions
will hold (though this could, if we so wished, be checked
using an acceptance test). In this section, we first address
the normal pre and postconditions for actions that control
the entire cell. For a given action, these conditions are used
to ensure that the execution of that action will not violate, in

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

170 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.2, FEBRUARY 2002

TABLE 1
CA Action LoadPressl
Pre-conditions Post-conditions
robot off Robot off
Blank on arm 1| no blank on arm 1
Both arms retracted Both arms retracted
robot at one of the defined angles Robot angle: arm 1 towards press |
press 1 off Press 1 off
no blank in press 1 Blank in press 1
press 1 in bottom position press 1 in middle position
any way, the system requirements given in Section 3, Action LoadPressl is described below using the

especially those related to safety and fault tolerance. Due to COALA notation, which was developed for the formal
limitations of space, we take just the action LoadPress1 as

an example (see Table 1).
Values of the related sensors or states of the related

specification of CA actions [18]. Our Java implementation of
the control program is based on a set of predefined

actuators that can be used to check these conditions are templates for CA actions that can be used to implement

identified in our detailed design to facilitate the actual CA action designs specified in COALA.
implementation of a control program (see [21]). For (CAA LoadPressi;
example, to check whether the robot is off, we can check

o Interface
that all three related actuators are in the stop state. To make yg¢
sure that arm 1 and arm 2 are retracted (a safe state)., 'we can MetalBlank;
check values from the sensors that report arm positions. Roles

The robot has six defined rotary positions or angles, so
the robot-related CA actions could specify a defined angle
as one of their preconditions. However, this would affect
the flexibility of the robot and limit the possible execution
sequences of CA actions. The weaker precondition “robot at
one of the defined angles” permits more possible execution
sequences, thereby improving system performance.

Robot: blankType, robotActuator;
Pressl: blankType, presslActuator;
RobotSensor: armlExtensionSensor,
robotAngleSensor;

PresslSensor: blankSensor,
lowPositionSensor, midPositionSensor;

We will now show how CA actions can deal with ~ EXceptions .
various types of failures in a well-controlled manner by PresslFailure, ArmlFailurel, seed .
specifying the exceptional postconditions for a given i jexceptions to signal
action. Consider the action LoadPressl again. Fig. 4 Body
illustrates the interactions (themselves involving nested Use CAA »specify nested actions
CA actions) between the participating threads within the RotateRobot, MovePressltoMiddle,
LoadPressl action. This action has four roles, Robot, ExtendArml, RetractArml;
Pressl, RobotSensor, and PresslSensor, and repre- Object
sents the cooperation that arranges for arm 1 of the robot to robotPresslChannel: Channel;
drop a blank into press 1. ; ishared local objects
concurrent threads CA action LoadPress1
RobotSensor _
retract o
Robot(Arml) rotate robot extend arm 1 arm 1
PresslSensor synchronizing drop blank
move press | >
to the middle \
Pressl position / >
Rl @
Blank i I

Fig. 4. CA action LoadPress1.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

XU ET AL.: RIGOROUS DEVELOPMENT OF AN EMBEDDED FAULT-TOLERANT SYSTEM BASED ON COORDINATED ATOMIC ACTIONS 171

TABLE 2
Exceptional Outcome when Press 1 Fails

Exception to signal

Exceptional post-conditions

Press 1 failure

Robot off

Blank on arm 1

both arms retracted

Robot angle: arm 1 towards press 2

Press 1 off

no blank in press 1

Exceptions
pressl_failure, blank sensor_failure, ...;
; ;internal exceptions
Handlers
pressl_handler, blank_sensor_handler, ...;
Resolution
pressl_failure -> pressl_handler, ...;
; ;exception resolution graph
Role Robot (...);

Role Pressl(...);

End LoadPressl;

The exceptions declared in the Interface part of an
action are those that can be signaled to the enclosing action.
The roles of an action can signal an exception directly, but
must guarantee that the exception that is signaled has been
agreed upon by all the roles of that action. In the case of
abortion or failure, the CA action support mechanism
(which can be assumed by the application programmer to
be fault-free) will enforce the abortion and signal the
appropriate exception, either abort or failure, to the
enclosing action. Exceptions declared within the Body of a
CA action can be raised by roles. When multiple exceptions
are raised within an action, the CA action support
mechanism controls the execution of a resolution algorithm
based on an exception resolution graph declared in the
Resolution part. After a resolving exception is identified,
the corresponding handler declared in the Handlers part
will be invoked (see Section 4.3).

An exception handler will attempt to bring the system
back to normal. If it is successful, the CA action will end
with a normal outcome. However, in most situations, the
handler can only provide some degraded service, i.e., an
exceptional outcome, and must signal the corresponding
exception. Again, in the case of abortion or failure, the
CA action support mechanism will take control. If a further
exception is raised during the execution of an exception
handler, control is transferred to the CA action support
mechanism immediately and the action must either abort or
signal a failure exception.

4.2 Dealing with Component Failures

We first investigate situations involving single faults, i.e.,
we assume that only one component failure can occur before the
system is brought, if necessary, to a safe stop and the component is
repaired. During the execution of a CA action, if a failure (of
a component involved in this CA action) occurs and is
detected by an assertion statement or an acceptance test, a

corresponding exception will be raised within the action by
one of its roles. The exception is propagated immediately to
the other roles of the action and all roles then transfer
control to their exception handlers for this exception so that
they can attempt to perform appropriate error recovery. In
most cases, when a component failure takes place in the cell,
it is not possible to recover completely from the error and
the normal postconditions of the action can no longer be
satisfied. Thus, exceptional postconditions with respect to
various given failures must be defined to specify the
exceptional outcomes of an action.

By way of example, we outline the basic requirements for
the handlers of two different exceptions:

Handler for the Press 1 Failure: The LoadPressl action
performs forward error recovery by moving the robot to
an appropriate position so that it will be able to put the
unforged blank, which is still on arm 1, into press 2 once
the press is available.

Handler for the Rotary Sensor or Motor Failure: (In this case,
action LoadPressl fails to rotate the robot to the
intended position.) The action will simply use backward
error recovery to attempt to move the robot back to its
initial position and rotate it again. If the failure persists,
the action will produce an exceptional outcome, as
defined below.

For the LoadPressl action, we identify seven excep-
tional outcomes and corresponding exceptional postcondi-
tions [21]. By way of example, the Table 2 illustrates the
exceptional outcome when press 1 fails. It is important to
notice that different exceptional outcomes may lead to
different states of the production cell. For example, the
exceptional outcome caused by just the press 1 failure
corresponds to the situation where the production cell
continues with only one operational press. On the other
hand, since the blank sensor is a redundant component of
the cell, if both presses are still operational, its failure
merely requires a report to be made to the user of the cell.
However, the other five outcomes will have to stop the
entire cell in a safe state.

By means of such analyses, given the way in which
CA actions enable the different failure situations to be
treated independently of each other, the design of the actual
set of handlers for the various exceptional outcomes of each
of the 12 top-level CA actions becomes rather straightfor-
ward— full details can be found in [21].

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

172

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 51, NO. 2, FEBRUARY 2002

TABLE 3
Postconditions for a Pair of Concurrent Failures

Exception to signal

exceptional post-conditions

(rotary sensor or motor failure) &

Press 1 failure

robot of T

blank on arm 1

both arms retracted

press | oft

no blank in press 1

4.3 Dealing with Concurrent Failures

Now, let us address the problem of possible concurrent
failures. In the interests of simplicity, we assume that only
two failures may occur within the same time interval before the
system is stopped and the related components repaired. Some
concurrent failures can be covered implicitly by the
corresponding single failure situation. Others may need
different handling and require separate postconditions.
Table 3 shows postconditions for an example pair of
concurrent failures.

The failure of the robot’s rotary sensor or motor can be
detected automatically and indicated by a special sensor
value. However, the returned sensor value does not indicate
which component, i.e., the sensor or the motor, actually
failed. This causes difficulty in performing effective error
recovery. Very often, despite a failure having been detected,
it is not possible to determine from the available sensor
readings which of several possible failures has actually
occurred. In such circumstances, the control program is
designed simply to bring the system to a stop in a safe state
so that offline diagnosis can be performed.

For each (enclosing or nested) action, various excep-
tions are defined based on failure analysis and an
exception graph for resolving concurrent exceptions is
defined [23]. For example, the LoadPressl action may
give rise to exceptions such as prl_failure (press 1
failure), b_sensor_failure (blank sensor failure),
arml_failurel (blank lost), arml_failure2 (cannot
drop the blank), rs_m_failure (rotary sensor or motor
failure), as_m_failurel (arm 1 sensor or motor failure
while the blank on arm 1), as_m_failure2 (arm 1 sensor

or motor failure while the blank is in press 1), cs_failure
(control software failure(s)), and rt_except (runtime
exceptions such as overflow).

An exception graph for this action is shown in Fig. 5,
again assuming that no more than two exceptions are raised
concurrently. For example, if both press 1 and the robot
rotation motor fail simultaneously, this exception graph will
be searched and the resolving exception rs_m_failure &
prl_failure will be raised instead of the individual
exceptions rs_m_failure and prl_failure so that a
suitable handler for this particular situation can be invoked.
Any undefined exception pairs will not be resolved and will
simply lead to the raising of the universal exception. (The
handler for the universal exception is responsible for
stopping the system and leaving the production cell in a
predefined safe state, if possible.)

4.4 Design of Device-Controllers

Given a set of CA actions to control the interaction of devices
in the production cell, device/sensor-controllers are used to
determine dynamically the order in which the CA actions are
executed. Eight controllers are designed: FeedBelt, Table,
Robot, Pressl, Press2, DepositBelt, Supplier, and
Consumer. Two queue objects are defined in order to
improve the flexibility of operations of both the robot and
the deposit belt: robotQueue and depositBeltQueue.
The Press1 controller is shown below as a simple example:

PresslController:
loop forever{
robotQueue.put (PRESS1_FREE)
— put message in robotQueue

| universal exception |

as_m_failure &
b_sensor_failure

rs m_failure &
prl failure

other undefined
exceptlons

cs_failure &
rt_except

%\

arml_
fallure2

arml_
failurel

prl_ b sensor
failure fallure

rs _m_
fdllure

as m_
fallurel

as_m_

failure2 fallure excepl

Fig. 5. Exception graph for CA action LoadPress1.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

XU ET AL.: RIGOROUS DEVELOPMENT OF AN EMBEDDED FAULT-TOLERANT SYSTEM BASED ON COORDINATED ATOMIC ACTIONS

DepositBelt

UnloadDepositBelt

S

path of message passing
—>

path of blank passing

B
|

/

173

TransportBelt

Robot

UnloadPress2

LoadPress2

UnloadTable

ForgeBlank2

UnloadPress|

LoadTable
@ LoadFeedBelt

Fig. 6. Interaction between controllers and CA actions.

LoadPressl.Press (plate)

— activate action LoadPressl
ForgeBlankl.Press (plate)

— activate action ForgeBlankl
robotQueue.put (FORGED_PLATE_IN_PRESS1)
— put message in robotQueue
UnloadPressl.Press(plate)

- activate action UnloadPressl

}

Fig. 6 shows the interactions between the controllers and
CA actions, where boxes represent CA actions and ovals
represent controllers. A gray line indicates message passing
between controllers, while a black line connects an action to
a controller or vice versa and implies that the controller
plays a role in that action.

5 FORMALIZATION OF CA ACTION-BASED DESIGNS

We had earlier developed a general scheme for formalizing
CA action-based designs of finite systems as state transition
systems specifically for the purpose of checking system
properties such as liveness, safety, and fault tolerance [2].
This general approach assumes that a set of controlling
processes is defined together with a set of CA actions that
are utilized by the controllers and enables the system
behavior to be formalized in terms of its operations on the
global objects in the system that are external to all
CA actions.

The state transition system corresponding to a CA action-
based design is characterized by its (global) state-space, a
set of initial states, and a next-state relation. The global
state-space is composed from the global objects and the
state-spaces of the CA actions, representing the kind of
outcome—normal or exceptional—produced by each
CA action and encoding whether its roles are idle or
activated. The initial states are supposed to satisfy two
kinds of properties: 1) any application specific requirements
that need to be considered and 2) the requirement that,
initially, all roles should be idle and no exception should
have been signaled.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

LoadPress1

ForgeBlank1

i

The next-state relation defines the computation paths
that are possible in the system. This essentially corresponds
to four kinds of activities that may occur in the system:

1. A controlling process may call and thus invoke a role
from a CA action, thereby activating it,

2. If all roles of a CA action have been activated, the
CA action may be executed according to its interface
specification given in terms of pre and postcondi-
tions for both normal and exceptional outcomes,

3. After a CA action has been executed, a return is
issued from its roles to the corresponding controlling
processes that called them, and

4. A controlling process may execute an (internal)
action in which no CA action is involved.

Due to the atomicity of CA actions and since internal
actions of controlling processes are independent from each
other, it is sufficient to view only interleaving occurrences
of state transitions. Thus, we have modeled the next-
state relation to encode the interleaving semantics. The
state transition system obtained from a CA action-based
design of a finite system can be used to analyze its
properties by model-checking. We have found SMV [13]
particularly useful for this purpose: The state-transition
system can be expressed in SMV and the properties of the
system to be analyzed can be expressed in CTL [5]. The
technical details of representing a CA action-based design
in SMV and the properties of a system in CTL were
described in [2]; in the following, we will illustrate this
formalization and the formal analysis of its properties using
representative parts of our Fault-Tolerant Production Cell
design.

The CA actions that control the production cell are
described according to their interfaces, which consist of
the set of roles they provide, the external objects they
access (as expressed by the parameters of the roles), and
their pre and postconditions. They are formalized, using
SMV derived from our COALA design, according to the
general scheme outlined above, which is exemplified here
for the LoadPressl action. (We use An and Sn to
represent Actuator n and Sensor n.)

174

MODULE LoadPressl(...)

DEFINE
pre := A6 = stop & A7 = stop & A10 = stop &
— robot off
A8 =on &

- blank on arm 1
S15 = pos_ret & S16 = pos_ret &
- arms retracted
(S17=R2 | S17 =R5) &
— robot rotation
Ad = stop &
- pressl off
(1821 ->187) &
— no blank in pressl
S8 & 189 & 1S10;
— pressl at lower position
enabled := roleRobot = activated & rolePressl
= activated & pre;
mv_cond := enabled & next (signal) in { normal,
N
drop_cond := enabled & next (signal) in
{ lost_blank };

VAR
roleRobot : { nonactive, activated,
returning };
rolePressl: ...
signal : { normal, pressl_failure,
lost_blank, ... };

mvblank : MoveBlank (mv_cond, drop_cond,

blank_on_arml, blank_in_pressl);
ASSIGN

init (roleRobot)

next (roleRobot)

nonactive;

case

enabled : returning;
1l : state;

esac;

init (signal) := normal;
next (signal) :=case
enabled: { normal,
pressl_failure, ... };
OTHERWISE: signal;
esac;
next (A8) := case
enabled & next (signal) =
normal: off;
enabled & next (signal) =
pressl_failure: on;
... { values for other
exceptional postconditions }
OTHERWISE: AS8;
esac;

The SMV module of the CA action is parameterized with
the external objects that it can access. The pre part defines
the precondition for the CA action; the CA action is enabled
when all of its roles are activated and the precondition is

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 2, FEBRUARY 2002

true. The roles are represented by their states (being
nonactive, activated, or returning). Initially, roles are
nonactive. When the CA action is enabled, it may be
executed and, in this case, the role changes its state to
returning. The main participants in this particular
CA action are the controllers of press 1 and the robot.
Thus, LoadPressl provides roles for both of them.

The signal variable represents the exception that is
signaled by the CA action LoadPress1. It is initialized to
normal, encoding to indicate that no exception has been
signaled. When the CA action is executed, then any of the
normal or exceptional outcomes is possible; this is
expressed with the nondeterministic choice in the next-
state assignment for the signal variable.

The next-state assignments for the external objects
are obtained from the postcondition of the CA action
LoadPressl:

post_normal == ... & A8 =off & ...

- no blank on arm 1

post_pressl_failure==... &A8=o0on& ...
— blank on arm 1
post == (signal = normal & post_normal)

or (signal = pressl_failure &
post_pressl_failure)

or ...

— other except. outcomes

The SMV formalization of LoadPress1 illustrates this
for actuator A8 (i.e., arm 1’s magnet). When the CA action is
executed, then, in normal conditions and also in certain
exceptional conditions, a blank is moved from arm 1 to
press 1. This is expressed with the condition mv_cond and
the corresponding instance of the SMV-module MoveBlank
which encodes in SMV the actions for moving the blank; for
details, see [2].

The pre and postconditions of the CA actions are
designed to be compatible with the intended ordering on
the execution of the CA actions: After a CA action is
executed, the precondition of the next appropriate CA action
should be satisfied. Activating the next appropriate
CA action is the main task of the device-controllers. The
activation of a CA action is performed by calling its roles.
Calling a role consists of two parts: invoking the role and
finishing the call on termination of the CA action. The
formalization of controllers in SMV is exemplified below
using the PresslController:

MODULE PresslController (loadpressl,
forgeblankl, unloadpressl)

DEFINE
continue := loadpressl.signal =
b_sensor_failure
— blank sensor failure
| loadpressl.signal = normal;
- no failure
at_load := !blank_in_pressl.present

& forgeblankl.Pressl.nonactive &
unloadpressl.Pressl.nonactive
& continue;

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

XU ET AL.: RIGOROUS DEVELOPMENT OF AN EMBEDDED FAULT-TOLERANT SYSTEM BASED ON COORDINATED ATOMIC ACTIONS 175

at_forge : blank_in_pressl.present &
blank_in_pressl.state = plain
& loadpressl.Pressl.nonactive &
unloadpressl.Pressl.nonactive
& continue;
at_unload:= Dblank_in_pressl.present &
blank_in_pressl.state = forged
& loadpressl.Pressl.nonactive &
forgeblankl.Pressl.nonactive

& continue;

VAR
A4 : { up, down, stop }; — Ad: move pressl

S7 : boolean; - S7: blank in pressl
S8 : Dboolean; — S88: in lower position
S9 : Dboolean; - 89: inmiddle position
S10 : boolean; - 810: in upper position
blank_in_pressl : Blank (void) ;
ASSIGN
init (87) :=0;
init(S8) :=1;
init (89) :=0;
init (S10):=0;
init (A4) := stop;
next (loadpressl.rolePressl) :=
case
loadpressl.rolePressl = nonactive
& at_load : activated;
loadpressl.rolePressl = returning :
nonactive;
OTHERWISE : loadpressl.rolePressl;
esac;

next (forgepressl.rolePressl) := ...
next (unloadpressl.rolePressl):= ...

This controller process has access to CA actions
LoadPressl, ForgeBlankl, and UnloadPressl. It
iterates calling its roles in these CA actions. For example,
it activates its role in CA action LoadPressl if at_load is
true and the role is not yet activated. When the role is in the
returning state, the call is finished by setting its state to
nonactive. The roles of press 1 in the other CA actions are
treated similarly. The actuators and sensors are modeled as
objects of (the controllers of) the devices and must be
initialized appropriately.

Blanks are the main objects of interest in the Production
Cell case study as far as the application’s functionality is
concerned; they are passed on from one device to the next.
The blank currently being held by a device is represented in
the corresponding controlling process by a variable that
models blanks as records of two entries: a name for
identifying the blank and a component expressing whether
a blank has already been forged:

MODULE Blank (name)

DEFINE
present := ! (id = void);
VAR
id : { void, anon, idl };
state : { plain, forged };
ASSIGN

init (id) name;
init (state) :=plain;

Initially, a blank is not forged (i.e., is plain). The name
component id is assigned value void if there is currently
no blank at the position represented by the variable, 1d1 if a
blank with name 1d1l is present at the position represented
by the variable, and anon if a blank with a name different
from idl is present at the position represented by the
variable. The instances defined for the controllers are all
initialized with void, indicating that, initially, no device
holds a blank.

An unlimited supply of identifiers would be necessary
for observing each blank individually. The distinction
between id1l and anon is made so as to observe a specific
blank named 1d1l on its way through the cell. This is done
in order to abstract from a nonfinite system to a finite state
representation; it is sufficient to formalize the requirements
for the system in this way since each requirement needs at
most one blank to be identified. Our formalization is such
that, at any time, there is at most one blank named id1l in
the system.

The other CA actions and controllers of the production
cell were encoded in SMV analogously; the combination of
all the actions and the controllers provides the state
transition system that was used for checking the properties
of the Production Cell.

6 FORMALIZING PROPERTIES OF THE
FAULT-TOLERANT PRODUCTION CELL

We have formalized and model-checked a significant
proportion of the safety, liveness, and fault tolerance
requirements for the Production Cell II case study. The
properties are expressed in terms of CTL formulae over the
transition system for the CA action-based design formalized
in SMV. CTL allows several temporal modalities to be used
for expressing properties over the behavior of a system; we
have mainly used the AG (“henceforth”) operator for
expressing properties that are to hold in all reachable states
and the AF (“eventually”) operator for expressing proper-
ties that are expected to eventually hold in some reachable
state.

We are mainly concerned with fault tolerance require-
ments which express properties over the behavior of a
system despite the occurrence of a failure. These may
include safety and liveness properties. If tolerable is a
formula describing states where there are no faults or only
those faults that are supposed to be tolerated by the system
and if P expresses some desired property, then formula

AG (tolerable -> P)

expresses that, along each execution path property, P is
valid if and only if faults that occur are tolerable ones, i.e., P
is treated as a (conditional) safety property. Similarly, for
liveness: The formula

AF (tolerable -> P)

expresses that, along each execution path, either a state
satisfying P will be reached or a nontolerable fault will
occur. This means that P will eventually become true along

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

176

each path where at most tolerable faults occur, i.e., P is
treated as a (conditional) liveness property.

If we set tolerable equal to true, then we express that
any (modeled) failure should be tolerable. In this case, the
conditional safety and liveness properties reduce to the
nonconditional forms AG P and AF P. Properties that are
only expected to hold in the case that no fault occurs now
need to be written in the conditional form where formula
tolerable characterizes the fault-free cases.

We will now illustrate this scheme for formalizing
properties with the main fault tolerance requirement, i.e.,
the “continuous service requirement,” which states that the
system will continue to operate in a degraded manner, even
if one of the presses (here, press 1) fails. Failures of press 1
are signaled by the CA action LoadPressl with the
exceptions pressl_failure or b_sensor_failure.
The property encoding the continuous service requirement
should express that if, during execution of the cell, a
pressl_failure or a b_sensor_failure occurs, then
any blank in other devices of the Production Cell or blanks
inserted afterward will be processed and arrive on the
deposit belt unless another failure occurs later. This is
formalized here for a blank with name id1 on the feed belt:

“If a pressl related failure occurs ...”

AG (loadpressl.signal in { pressl_failure,
b_sensor_failure } ->

“... then a blank (named id1) on the feed belt ...”

AG (blank_on_feed_belt.id = idl ->

.. will eventually, if only tolerable failures occur, ...”

AF ((loadpressl.signal in { normal,
pressl_failure, b_sensor_failure })

.. arrive on the deposit belt”

->blank_on_end_deposit_belt.id = idl)))

7 DESIGN FOR VALIDATION

The analysis of properties of the Fault-Tolerant Production
Cell was carried out in parallel with the development of its
CA action-based design. Model-checking helped us to find
several flaws in early versions of the design. By analyzing
the causes for failed proofs of the required properties, we
have been able to derive corresponding solutions. This
shows the usefulness of model-checking for developing and
improving the CA action-based design of the Fault-Tolerant
Production Cell. The flaws we found affected both the fault
tolerance and the coordination aspects of the CA action
design of the cell. The results from the formal analysis have
directly contributed to refining and improving our design.

To take just an example, we identified a problem that
affected the order in which the robot interacts with the
devices around it. The problem does not occur in the single
blank instance of our model and, thus, it is hard to detect by
just reviewing the specification text. If two blanks are in the
system, then the robot could maneuver itself into a situation
from which no further activities were possible. Such
“critical” sequences of actions can be derived from counter-
example paths generated by the model-checker. The

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 2, FEBRUARY 2002

counterexample also helps in finding solutions to the
detected problem: We dealt with this particular problem
by enabling the occurrence of the next appropriate actions
after such critical sequences. This was done by appro-
priately weakening the preconditions of the actions to be
executed next (see also the related discussion in Section 4.1).

Another problem that we discovered was connected to
the traffic light and the way in which the controller of the
deposit belt interacts with the environment (i.e., the
consumer). The interaction was originally organized by
means of messages sent between the consumer and the feed
belt controller and by checking the traffic light. The solution
suggested from the formal analysis led to an improved and
simpler design in which the feed belt controller interacts
with the consumer only by means of the traffic light.

Two SMV specifications for our CA action-based design
were produced: a full model and an abstraction of the full
model. The full model contains 1,251 lines of SMV code; the
abstracted model has 1,079 lines of the code. The potential
state space of the full model is about 10%*; the size of the
abstracted one is reduced to about 10%. Two models were
instantiated with the number of blanks to be put into the
production cell and the actual model checking was
performed on a SUN Sparc Ultra-II platform. The full
model produced no result for three or more blanks after one
week of computation. However, the abstracted model
responded in all possible situations, including the possible
maximum number of blanks, within about 15 hours. Further
efficiency and timing results can be found in [2].

8 AN IMPLEMENTATION

We have implemented the design of the control program
that was discussed in the previous sections using a Java
implementation of a distributed CA action support scheme
[21]. (This scheme makes use of the nested multithreaded
transaction facilities provided by the Arjuna transaction
support system [14].)

Fig. 7 shows a screen dump of the FZI Fault-Tolerant
Production Cell simulator controlled by our implementa-
tion. Outlines of 12 top-level CA actions are displayed on
the simulator diagram. During system execution, these
outlines are colored in gradually to show the progress of a
CA action execution dynamically. In the figure, there are
three CA actions that are active and being executed:
LoadTable, LoadPressl, and ForgeBlank2. If an
exception, or two concurrent exceptions, are raised in an
action, the color within the outline will change to indicate
the dynamic process of exception handling.

Fig. 8 shows a slightly modified version of the device and
sensor failure injection panel provided by FZI. By using this
panel, failures can be easily injected into the Production Cell
simulator. For example, a rotary motor failure or a rotary
sensor failure of the robot can be injected by pressing the
corresponding buttons in the panel. We have extended the
original FZI panel to permit the injection of concurrent
failures: A pair of failures can be injected into the simulator
if the failure mode selection is set to “double.” In this mode,
two different failure buttons may be pressed sequentially,
but only the second press will stimulate the actual injection
of the two concurrent failures. After one or more failures are

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

XU ET AL.: RIGOROUS DEVELOPMENT OF AN EMBEDDED FAULT-TOLERANT SYSTEM BASED ON COORDINATED ATOMIC ACTIONS

UnloasFress2
T Tancportdiank - { s

-
UnipadTable |

Fig. 7. The Fault-Tolerant Production Cell simulator.

injected into the simulator, the error detection measures
embedded in our control program should be able to detect
them promptly. One or more corresponding exceptions will
thus be raised. The simulator will then portray how such
exceptions are handled within the CA action framework, in
particular how the system is, if necessary, brought to a stop
in a safe state.

During the testing phase and the demonstration of our
implementation, all injected device or sensor failures were
caught successfully and handled immediately by our
control program. Even a previously unknown software
bug in the original FZI simulator was also detected by the
acceptance test of a CA action and recovered by the retry
operation associated with the action. We are now in the
stage of collecting experimental data for further depend-
ability and performance-related evaluation.

9 CONCLUSIONS

Unlike the first Production Cell model, in the “Fault-
Tolerant Production Cell,” failures of electro-mechanical
components are of major concern. This requires a control
program that is much more complex than the program
developed for the original cell, though it follows the same
general strategy, i.e.,, using CA actions where there are
safety-critical interactions involving multiple moving me-
chanical components. In order to develop the required
control program, we have conducted an analysis of possible
component failures and identified the various ways of
detecting these failures. We have used the results of this
analysis to guide the design of a system employing what is,
in fact, a very sophisticated exception handling scheme,
capable of dealing appropriately even with concurrent
occurrences of any of the wide variety of possible failures
defined in the FZI specification of Production Cell II.

177

As a result of the experience we have gained during the
process of formalizing and designing this control software,
we feel that we now have a much fuller understanding of
CA actions and the design issues involved in their
implementation. It was very pleasing to confirm that the
much more complex requirements of Production Cell II
could be satisfied by what was, in fact, a straightforward,
though very large, extension of the approach we had used
in Production Cell I [24]. This again enabled all the
dependability (and especially the safety) related aspects of
the problem to be solved very directly using just the CA
action mechanism, despite the need to add very extensive
exception handling strategies. It was also pleasing to
confirm that the CA action structuring greatly aided not
just the design, but also the validation of the control
program, in this case, by means of model-checking.

In light of the fact that the original Production Cell was
the subject of extensive studies using various formal
approaches, we should emphasize that, to the best of our
knowledge, our work represents the first and, so far, only
complete formal analysis and validation of a design for the
much more complex and realistic Production Cell II. Matos
and White [12] describe a system design for Production
Cell II that focuses just on a dynamic and transparent
reconfiguration scheme that preserves safety properties.
Our design is essentially different and focuses mainly on
cooperation between devices during both normal execution
and the process of exception handling; safety-related
requirements are addressed by both proper synchronization
inside CA actions and necessary mutual exclusion of the
action execution whenever the concurrent execution of two
CA actions is unsafe. Liggesmeyer and Rothfelder [9]
developed a Formal Risk Analysis approach for analyzing
the runtime behavior of Production Cell II and studied how
various sensor and actuator faults could affect both system
reliability and safety. However, their analysis is not
complete and only uses the elevating rotary table of the
Production Cell as an example. In contrast, our analysis is
much more comprehensive and complete, including the
classification of various failures and the identification of
possible failures related to every device in the cell (for the
complete treatment, see [21], [22]).

Production Cells I and II do not involve any considera-
tion of timing deadlines. We have extended our ideas on
exception handling and resolution to deal with such
complications as possibly concurrent timing and value
faults [16]—these being situations that can arise in Produc-
tion Cell ITI, the “Real-Time Production Cell” model [11], for
which several control programs have been developed.

T ositbolt |- Freast. (0
LT B2 B _ereast [o
EoerT Right. LED' = o
—lom ok |[®ok |||®ok [lleok ||[#ok | |x red

0
%lvm|lvwmr| wemor ||| ermor ||| emor |

j
[iochaviss | _
@ ok ||# ok

ok |[®ok [[|[#ak [l& ok |

- orvor ”V omw[”v ermor |

”\, error || o uvmr|“,, oror || armvjl ~ emor || eror|

Fig. 8. Revised failure injection panel.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

178

The design style we have been using was one that we
arrived at through very specific consideration of the
problems raised by the Production Cell examples. We
now realize that a more methodical and general means of
arriving at the design of CA action-based programs is
possible, as well as being highly desirable [4]. Ideally, of
course, such an approach would be allied to a formal means
of validating the system design as it is developed—
something that could, we believe, take advantage of the
formal treatment of CA actions, as shown in this paper and
[2], [17], and the formal language for specifying CA actions,
COALA [18].

ACKNOWLEDGMENTS

This work was supported by the ESPRIT Long Term
Research Project 20072 on Design for Validation (DeVa),
the IST Programme RTD Project 1999-11585 on Dependable
Systems of Systems (DSoS), the EPSRC Flexx Project on
Dependable and Flexible Software, and the EPSRC IBHIS
Project on Diverse Information Integration for Large-Scale
Distributed Applications. A.F. Zorzo was also supported by
CNPq/Brazil under grant number 520503/00.7.

REFERENCES

[1] R.H. Campbell and B. Randell, “Error Recovery in Asynchronous
Systems,” IEEE Trans. Software Eng., vol. 12, no. 8, pp. 811-826,
Aug. 1986.

[2] E. Canver, D. Schwier, A. Romanovsky, and J. Xu, “Formal
Verification of CAA-Based Designs: The Fault-Tolerant Produc-
tion Cell,” third year report, ESPRIT Long Term Research Project
20072 on Design for Validation, pp. 229-258, Nov. 1998.

[3] S.J. Caughey, M.C. Little, and S.K. Shrivastava, “Checked
Transactions in an Asynchronous Message Passing Environment,”
Proc. First IEEE Int’l Symp. Object-Oriented Real-Time Distributed
Computing, pp. 222-229, Apr. 1998.

[4] R. DeLemos and A. Romanovsky, “Co-Ordinated Atomic Actions
in Modelling Object Co-Operation,” Proc. First IEEE Int’l Symp.
Object-Oriented Real-Time Distributed Computing, pp. 152-161, Apr.
1998.

[S] E.A. Emerson, “Temporal and Modal Logic,” Handbook of
Theoretical Computer Science,]J. van Leeuwen, ed., vol. B, chapter
16, pp. 995-1072, Elsevier Science Publishers, 1990.

[6] J.N. Gray, “A Census of Tandem System Availability between
1985 and 1990,” IEEE Trans. Reliability, vol. 39, no. 4, pp. 409-418,
1990.

[71 KH. Kim, “Approaches to Mechanization of the Conversation
Scheme Based on Monitors,” IEEE Trans. Software Eng., vol. 8,
no. 3, pp. 189-197, 1982.

[8] C. Lewerentz and T. Lindner, Formal Development of Reactive
Systems: Case Study “Production Cell”. Springer, Jan. 1995.

[9] P.Liggesmeyer and M. Rothfelder, “Improving System Reliability

with Automatic Fault Tree Generation,” Proc. 28th Int’l Symp.

Fault-Tolerant Computing, pp. 90-99, June 1998.

A. Lotzbeyer, “Task Description of a Fault-Tolerant Production

Cell,” version 1.6, available from http://www.fzi.de/prost/

projects/korsys/korsys.html, 1996.

A. Lotzbeyer and R. Miihlfeld, “Task Description of a Flexible

Production Cell with Real Time Properties,” FZI Technical Report,

(ftp://ftp.fzi.de/pub/PROST/projects/korsys/task_descr_

flex_2_2.ps), 1996.

G. Matos and E. White, “Application of Dynamic Reconfiguration

in the Design of Fault-Tolerant Production Cell,” Proc. Fourth Int’l

Conf. Configurable Distributed Systems, pp. 2-9, 1998.

K.L. McMillan, “Symbolic Model Checking,” revised version of

PhD thesis, Carnegie Mellon Univ., Kluwer Academic Publishers,

1993.

G.D. Parrington, S.K. Shrivastava, S.M. Wheater, and M.C. Little,

“The Design and Implementation of Arjuna,” USENIX Computing

Systems ., vol. 8, no. 3, 1995.

(10]

(1]

[12]

(13]

[14]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 2, FEBRUARY 2002
[15] B. Randell, “System Structure for Software Fault Tolerance,” IEEE
Trans. Software Eng., vol. 1, no. 2, pp. 220-232, 1975.

A. Romanovsky, J. Xu, and B. Randell, “Coordinated Exception
Handling in Real-Time Distributed Object Systems,” Int’l].
Computer Systems Science & Eng., vol. 14, no. 4, pp. 197-207, July
1999.

D. Schwier, F. von Henke, J. Xu, R]J. Stroud, A. Romanovsky, and
B. Randell, “Formalization of the CA Action Concept Based on
Temporal Logic,” second year report, ESPRIT Long Term
Research Project 20072 on Design for Validation, pp. 3-15, Dec.
1997.

J. Vachon, D. Buchs, M. Buffo, G.D.M. Serugendo, B. Randell, A.
Romanovsky, R.J. Stroud, and J. Xu, “COALA—A Formal
Language for Co-Ordinated Atomic Actions,” third year report,
ESPRIT Long Term Research Project 20072 on Design for
Validation, pp. 43-86, Nov. 1998.

J. Xu, B. Randell, A. Romanovsky, C. Rubira, R.J. Stroud, and Z.
Wu, “Fault Tolerance in Concurrent Object-Oriented Software
through Co-Ordinated Error Recovery,” Proc. 25th Int'l Symp.
Fault-Tolerant Computing, pp. 499-508, June 1995.

J. Xu, A. Romanovsky, and B. Randell, “Co-Ordinated Exception
Handling in Distributed Object Systems: From Model to System
Implementation,” Proc. 18th IEEE Int’l Conf. Distributed Computing
Systems, pp. 12-21, May 1998.

J. Xu, A. Romanovsky, A. Zorzo, B. Randell, R.J. Stroud, and E.
Canver, “Developing Control Software for Production Cell II:
Failure Analysis and System Design Using CA Actions,” third
year report, ESPRIT Long Term Research Project 20072 on Design
for Validation, pp. 167-188, Nov. 1998.

J. Xu, B. Randell, A. Romanovsky, RJ. Stroud, A.F. Zorzo, E.
Canver, and F. von Henke, “Rigorous Development of a Safety-
Critical System Based on Coordinated Atomic Actions,” Proc. 29th
Int’l Symp. Fault-Tolerant Computing, pp. 68-75, June 1999.

J. Xu, A. Romanovsky, and B. Randell, “Concurrent Exception
Handling and Resolution in Distributed Object Systems,” IEEE
Trans. Parallel and Distributed Systems, vol. 11, no. 10, pp. 1019-
1032, Oct. 2000.

AF. Zorzo, A. Romanovsky, J. Xu, B. Randell, RJ. Stroud, and LS.
Welch, “Using Co-Ordinated Atomic Actions to Design Complex
Safety-Critical Systems: The Production Cell Case Study,” Software
—Practice & Experience, vol. 29, no. 2, pp. 667-697, 1999.

(16]

(7]

(18]

(19]

(20]

(21]

(22]

[23]

[24]

Jie Xu received the PhD degree from the
University of Newcastle upon Tyne on advanced
fault-tolerant software. He is a lecturer in
computer science at the University of Durham,
United Kingdom. From 1990 to 1998, Dr. Xu was
with the Computing Laboratory at Newcastle,
where he was promoted to senior researcher in
1995. He moved to a lectureship at Durham in
1998 and cofounded the Distributed Systems
Engineering Group and the DPART Laboratory
supporting highly dependable distributed computing. Dr. Xu has
published more than 100 book chapters and research papers in areas
of system-level fault diagnosis, exception handling, software fault
tolerance, and large-scale distributed applications. His major work has
been published in leading academic journals, such as the IEEE
Transactions on Computers, IEEE Transactions on Parallel and
Distributed Systems, and IEEE Transactions on Reliability. He has
been involved in several research projects on dependable distributed
computing systems, including two EC-sponsored ESPRIT BRA projects
and one ESPRIT Long Term Research project. He is principal
investigator of the FTNMS project on fault-tolerant mechanisms for
multiprocessors and coleader of the EPSRC Flexx project on highly
dependable and flexible software and the EPSRC IBHIS project on
diverse information integration for large-scale distributed applications.
Dr. Xu is editor of IEEE Distributed Systems, PC cochair of the Seventh
IEEE WORDS on Object-Oriented Real-Time Dependable Systems,
workshop chair of the IEEE SRDS Workshop on Reliable Distributed
Object Systems, and tutorial speaker of the IEEE/IFIP International
Conference on Dependable Systems and Networks. He has given
invited lectures at international colloquiums and served as session chair
and PC member of various international conferences and workshops,
including the IEEE SRDS, IEEE ISOR, EDCC, and ACM SAC-AIMS.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

XU ET AL.: RIGOROUS DEVELOPMENT OF AN EMBEDDED FAULT-TOLERANT SYSTEM BASED ON COORDINATED ATOMIC ACTIONS 179

Brian Randell graduated in mathematics from
Imperial College, London, in 1957 and joined the
English Electric Company, where he led a team
that implemented a number of compilers, includ-
ing the Whetstone KDF9 Algol compiler. From
1964 to 1969, he was with IBM in the United
States, mainly at the IBM T.J. Watson Research
Center, working on operating systems, the
design of ultra-high speed computers, and
computing system design methodology. He then
became a professor of computing science at the University of Newcastle
upon Tyne, where, in 1971, he set up the project that initiated research
into the possibility of software fault tolerance, and introduced the
“recovery block” concept. Subsequent major developments included the
Newcastle Connection and the prototype Distributed Secure System. He
has been principal investigator on a succession of research projects in
reliability and security funded by the Science Research Council (now
Engineering and Physical Sciences Research Council), the Ministry of
Defence, and the European Strategic Programme of Research in
Information Technology (ESPRIT), and now the European Information
Society Technologies (IST) Programme. Most recently, he has had the
role of project director of CaberNet (the IST Network of Excellence on
Distributed Computing Systems Architectures), and of two IST Research
Projects, MAFTIA (Malicious- and Accidental-Fault Tolerance for
Internet Applications) and DSoS (Dependable Systems of Systems).
He has published nearly 200 technical papers and reports and is
coauthor or editor of seven books.

Alexander Romanovsky received the MSc
degree in applied mathematics from Moscow
State University in 1976 and the PhD degree in
computer science from St. Petersburg State
Technical University in 1988. He was with this
university from 1984 to 1996, doing research and
teaching. In 1991, he worked as a visiting
researcher at ABB Ltd. Computer Architecture
Lab Research Center, Switzerland. In 1993, he
was a visiting researcher at the Istituto di
Elaborazione della Informazione, CNR, Pisa, Italy. From 1993 to 1994,
he was a postdoctoral fellow at the Department of Computing Science,
the University of Newcastle upon Tyne, United Kingdom. In 1992-1998,
he was involved in the Predictably Dependable Computing Systems
(PDCS) ESPRIT Basic Research Action and the Design for Validation
(DeVa) ESPRIT Basic Project. In 1998-2000, he worked on the Diversity
in Safety Critical Software (DISCS) EPSRC/UK Project. Now, he is a
senior research associate with the Department of Computing Science,
University of Newcastle upon Tyne, working on the Dependable
Systems of Systems (DSoS) EC IST RTD Project. His research
interests include software fault tolerance, software diversity, concurrent
programming, concurrent object-oriented and object-based languages,
real-time systems, exception handling, operating systems, software
engineering, and distributed systems. He has coauthored more than 120
scientific papers, book chapters, reports, and a patent in these and
related areas.

Robert J. Stroud received a first degree in
mathematics from Cambridge University, fol-
lowed by the MSc degree and then, in 1988,
the PhD degree in computing science from the
University of Newcastle upon Tyne, for a thesis
in the area of distributed systems. He is a reader
in computer science at the University of New-
castle upon Tyne and a member of the
Dependability Research Group. He leads New-
castle’s work on the IST project MAFTIA and is
also involved in two other dependability projects, DSoS and DIRC. His
research interests include security of mobile code, reflection, coordi-
nated exception handling in concurrent/distributed systems, object-
oriented systems, fault tolerance, and Internet technologies. He has
published extensively on distributed systems and fault tolerance.

Avelino F. Zorzo received the BSc and MSc
degrees at UFRGS/Brazil and the PhD degree
from the University of Newcastle upon Tyne,
United Kingdom. Currently, he is a senior
lecturer at the Pontifical Catholic University of
Rio Grande do Sul (PUCRS/Brazil). Since 2000,
he has been a researcher financed by the
Brazilian agencies CNPq (350277/2000-1) and
FAPERGS (99/2049.3). His interests include
fault-tolerant, distributed, and parallel systems.
Since 1990, he has (co)authored more than 50 technical papers on
these subjects.

Ercument Canver received the MSc degree in
computer science from San Diego State Uni-
versity in 1991 and the Diplom in mathematics
from the University of Ulm, Germany, in 1992.
From 1991 to 2000, he worked as a researcher
at the University of Ulm on various national and
international (ESPRIT) research projects on
formal methods for dependable systems, such
as VSE (Verification Support Environment),

: GUARDS (Generic Upgradeable Architecture
for Real-Time Dependable Systems), DeVa (Design for Validation),
and SafeRail (Software Specification Techniques for Safety Critical
Applications in Railway Engineering). Since 2000, he has been working
at Siemens AG, Germany, in the mobile telecommunication sector.

Friedrich von Henke received the diploma and
Dr.rer.nat. degrees from the University of Bonn,
Germany, in 1971 and 1973, respectively. He is
currently a professor of informatics (computer
science) at the University of Ulm, Germany,
where he is the head of the Artificial Intelligence
Department. His main research interests are in
the development and application of formal
methods, theorem proving, and other areas of
artificial intelligence. Before joining the univer-
sity, he held research and management positions in the Computer
Science Laboratory of SRI International, the Artificial Intelligence and
Computer Systems Laboratories of Stanford University, and the German
National Research Center for Information Technology (GMD). He is a
member of the ACM, IEEE Computer Society, and the German
Informatics Society (Gl).

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 13:59:59 UTC from IEEE Xplore. Restrictions apply.

