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Abstract— Although filter banks have been in use for more
than a decade, only recently have some results emerged, setting
up the theory of general, nonseparable multidimensional filter
banks. At the same time, wavelet theory emerged as a useful
tool in many different fields of pure and applied mathematics as
well as in signal analysis. Recently, it has been shown that the
two theories are closely related. Not only does the filter bank
perform a discrete wavelet transform, but also under certain
conditions it can be used to construct continuous bases of
compactly supported wavelets. For multidimensional filter
banks, using arbitrary sampling lattices, conditions for perfect
reconstruction are given. The orthogonal case is analyzed indi-
cating orthogonality relations between the filters in the bank and
their shifts on the sampling lattice. A linear phase condition
follows, as a tool for testing or building banks containing linear
phase (symmetric) filters. It is shown how, in some cases,
nonseparable filters can be implemented in a separable fashion.
The two-channel case in multiple dimensions is studied in detail:
the form of a general orthogonal solution is given and possible
linear phase solutions are presented, showing that orthogonality
and symmetry are exclusive, independent of the number of
dimensions (assuming real FIR filters). Attractive cascade struc-
tures with specific properties (orthogonality and linear phase)
are proposed. For the four-channel two-dimensional case, filters
being orthogonal and symmetric are obtained, a solution that is
impossible using separable filters. We also discuss methods for
obtaining multidimensional filters from their one-dimensional
counterparts. Next, we make a connection to nonseparable
wavelets through the construction of iterated filter banks. As-
suming the L’ convergence of the scaling function, we show
that as in the one-dimensional case, the scaling function satisfies
a two-scale equation, and the wavelets are orthogonal to each
other and their scales and translates (as well as to the scaling
function). Then, for the scaling function to exist, we show that
it is necessary that the low-pass filter have a zero at aliasing
frequencies. Following the discussion on the choice of the dila-
tion matrix, an interesting ‘‘dragon’’ is constructed for the
hexagonal case. For the two-channel case in multiple dimensions
it is shown that the wavelets defined previously indeed constitute
a basis for L>( #") functions. F ollowing the result on necessity
of a zero, we conjecture that the low-pass filter can be made
regular by putting a zero of sufficiently high order at aliasing
frequencies. Based on this, a small orthonormal low-pass filter is
designed for which we conjecture that it would lead to a contin-
uous scaling function, and thus, wavelet basis. A biorthogonal
example is also given.
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I. INTRODUCTION

SINCE the introduction of digital multirate filter banks for
the compression of speech signals 15 years ago [8], they
have been widely used mainly for subband coding of speech,
still images, and video [2], [37], [43], [47]. The underlying
theory progressed from cancellation of aliasing (or repeated
spectra), to building systems achieving exact reconstruction
of the signal, and from two-channel orthogonal banks [26],
[30], to general multichannel systems [31], [33], [38], [39],
[44]. For implementational reasons all of these efforts con-

centrated on filters having rational transfer functions.

Independent of this work, the theory of wavelets was
developed in applied mathematics [9], [17], [23], [25]. With
the work of Daubechies [9], Mallat [23], and Meyer [25], it
became clear that filter banks and wavelets were closely
related. Filter banks compute the equivalent of a discrete
wavelet transform, and under certain conditions (regularity
of the low-pass filter), they can be used to derive continuous
bases of wavelets [9].

To explain briefly how a subband system works, refer to
Fig. 1, where a general multidimensional N-channel system
is shown. The input signal is fed through N branches,
each one containing a bandpass filter, and subsequently sub-
sampled by N = det D to its new multidimensional Nyquist
frequency (D is a sublattice of the input lattice and has a
sampling density that is N times smaller). Then each channel
signal (subband) is encoded, transmitted, and decoded. To
resynthesize the original signal, one has to upsample all the
subbands back to the original lattice and pass them through a
set of bandpass synthesis filters. Note that the basic blocks in
the system perform filtering, sampling rate change, and
coding /[ transmission [ decoding. In what follows, we will
be concerned only with the former two parts and we will
assume that coding/transmission /decoding is performed in a
lossless fashion. Another assumption will be that the sam-
pling density and the number of channels are the same so as
to preserve the same number of samples through the various
steps of the system. This will be referred to as a critically
sampled filter bank.

Consider the sampling part of the system. While in one
dimension sampling by N can be performed in only one way,
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Fig. 1. An analysis/synthesis n-dimensional filter bank.

in two or more dimensions this is not true any more. Multidi-
mensional sampling is represented by a lattice which can be
separable or nonseparable. In most of the previous work on
two- or three-dimensional multirate processing the sampling
rate changes which are used are separable and can be per-
formed along one dimension at a time. However, when
dealing with multidimensional signals, true multidimensional
processing is more appropriate. Recently, some results have
emerged where nonseparable sampling is used, mostly for
two-dimensional systems (see [2], [20], [21], [22], [37],
[45], [46]). In [48], nonseparable filters were used on a
hexagonally sampled input signal, which was then separably
subsampled, leading to an interesting directional analysis of
images. Aliasing was cancelled, and perfect reconstruction
was well approximated.

As for the filtering part, there are a number of questions of
interest that have to be addressed. They include design
constraints, such as orthogonality, linear phase (symmetry),
and regularity. At the same time, the filters themselves can
be separable or nonseparable regardiess of the sampling
lattice. Obviously, while separable filters offer the advantage
of low-complexity processing, their nonseparable counter-
parts have more degrees of freedom and hence allow better
designs. In multirate filtering, a nonseparable filter can some-
times still be implemented in a separable fashion, and this
will be explored as well. In what follows, unless stated
otherwise, we will assume real finite impulse response (FIR),
or compactly supported, filters.

If we consider the filter bank system as a whole, two issues
of interest arise, namely alias-free reconstruction and perfect
reconstruction. The former means that, from input to out-
put, the system can be regarded as a shift-invariant filter,
while the latter requires the reconstructed signal to be equal
to the input signal (possibly within a delay and a scale
factor).

Finally, we would like to use perfect reconstruction filter
banks in order to derive wavelet bases. The key construction
is the iteration of the filter bank along its low-pass branch. If
the low-pass filter is regular (its iterated version converges to
a well-defined, possibly smooth function), this construction
leads to a wavelet basis, as was first shown in the one-

dimensional case and subsampling by 2 by Daubechies [9].
This was also studied under the framework of multiresolution
analysis in [23], [25]. In one dimension, subsampling by N
in an N-branch filter bank leads, after iteration, to a scaling
function ¢(x) satisfying a two-scale equation of the form

¢(x) = 3 c,6(Nx — n), (1)
n

as well as to (N — 1) wavelets which are also linear combi-

nations of ¢(Nx — n) [41]. The most studied case has been

for N = 2.

In multiple dimensions the situation is more complicated.
From a discrete filtering point of view, subsampling is defined
by a sublattice of the original lattice (which we can assume,
without loss of generality, to be Z"). The sublattice is
represented by a dilation matrix D (the equivalent of the
subsampling, or dilation factor, N in the one-dimensional
case). The indexes of points belonging to the sublattice are
given as weighted integer combinations of the columns of D.
For example, the following matrices are possible representa-
tions of the so-called two-dimensional quincunx sublattice
(2], [7], [15], [37], [43)

1 1 1 -1

b= (1 —1)’ P2 = (1 1)’
2 1

(2 1) )
Its sampling lattice is given in Fig. 2 showing that one out of
two points is retained (this is the only nonseparable sublattice
with |det D| = 2). Thus, using this lattice would result in a
two-dimensional nonseparable two-channel case.

Now, when iterating the filter bank, we iterate the subsam-
pling by D, that is, the overall subsampling corresponds to
an integer power of D. This can be very different for
different matrices D (e.g., D? = 21 while D} will never be
separable).

The scaling function derived from the iterated filter bank
(if it exists) will also obey a two-scale equation (1) which
now depends on D. One necessary requirement on the matrix
D is that it be a dilation in all dimensions (otherwise, an
associated wavelet analysis would not increase resolution in
all dimensions [7]). This is equivalent to requiring that all
eigenvalues of D should have magnitude strictly greater than
1, and so, for example, D, is not a valid dilation matrix (it
dilates by 2 in the [x, 0] direction, but does not dilate at all
in the [ x, — x] direction).

The vastly different behavior of iterated filter banks
depending on the matrix D was most strikingly demonstrated
by Grochenig and Madych [16], as well as Lawton and
Resnikoff [49]. In [16], the authors showed iterations of very
simple filters (essentially Haar filters) that produce fractal,
self-similar tilings of the space for certain matrices, while
giving simple geometric shapes for others.

This interplay of the lattice and the associated dilation
matrix, added to the fact that multidimensional filters are
hard to design because of the absence of factorization
theorems, makes the construction of multidimensional non-
separable regular wavelets much more difficult than in one

D,
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Fig. 2. (a) Quincunx lattice generated using two different matrices. Shaded
regions represent fundamental parallelepipeds for each case. (b) Quincunx
lattice with its Voronoi cell and cosets.

dimension. For example, a particular filter could be regular
with respect to D, but not with respect to D, (see [7] for
examples).

Thus, we see that while discrete signal processing is only
concerned with the lattice, wavelet construction is concerned
with the particular dilation matrix used to represent the
lattice.

The present paper is concerned both with perfect recon-
struction filter banks in multiple dimensions and with wavelets
that can be obtained when iterating such filter banks. There-
fore, we will have to develop the background for both
subjects. While this leads to a few parts in the paper which
are of a review or tutorial nature, it adds the benefit of a
self-contained presentation. We will use both z-transform
and Fourier domain notation, depending on which one is
more appropriate. For example, synthesis of filter banks uses
z-transforms, while discussion on wavelets is done in Fourier
domain. While it is easy to go from one to the other, we
sometimes indicate both next to each other.

Let us indicate below the principal results of the paper,
along with an outline. Section II presents sampling on lat-
tices, as well as sampling rate changes (the fundamental
operations in multirate filter banks). Section III describes
multidimensional multirate filter banks. There, we prove
conditions for shift-invariance (so-called aliasing cancella-
tion) and perfect reconstruction, in particular for the FIR
case. We consider also orthogonal and linear phase
(symmetric /antisymmetric filters) filter banks and their asso-
ciated properties. Finally, separability of filters and of their
polyphase components (the impulse responses on cosets
of a lattice) is considered, showing possible alternatives.
Section IV presents an extensive treatment of the two-channel
case in multiple dimensions. This thorough treatment is done
because it is the most natural generalization of the one-
dimensional case. The form of a general unitary polyphase
matrix is given, as well as an analysis of possible linear

phase solutions. We show that, as in one dimension, orthogo-
nality and linear phase (symmetry) are exclusive for the real
compact support (FIR) case. Section V addresses the synthe-
sis of filter banks and proposes attractive cascade structures
for the two-channel multidimensional case satisfying particu-
lar design constraints (such as orthogonality or linear phase).
A general construction for small size linear phase filters is
given for an arbitrary number of dimensions. For the four-
channel two-dimensional case we show how to obtain cas-
cades leading to filter banks that are orthogonal and have
linear phase [22], a solution which is impossible using sepa-
rable filters. The transformation of one-dimensional filter
banks into multidimensional ones is also described. In partic-
ular, the McClellan transformation, which can be used for
biorthogonal filter banks, is discussed. Section VI develops
the connection to nonseparable wavelet bases. First, the
necessity of zeros at aliasing (or repeat) frequencies in the
filters that are iterated is shown. Then, assuming that the
iterated low-pass filter converges to a limit function in L2, it
is shown that all properties of one-dimensional wavelet bases
generalize to higher dimensions, such as two-scale equations,
orthogonality, and the fact that the wavelets form a basis for
L*(A") functions. Section VII shows some designs of or-
thogonal and biorthogonal wavelet bases, with numerical
experiments indicating the conjectured regularity of the
wavelet. Note that we do not address the regularity issue in
any depth, and refer to the recent manuscript by Cohen and
Daubechies [7] for a thorough treatment of the subject. For
the sake of conciseness of the main text, most of the proofs
are left to the Appendices, together with the definitions and
notations.

Throughout the paper we will be dealing with a general
multidimensional case. But at the end of each section the
quincunx case will be used as an example to summarize all
the important results of that section. Thus, the reader might
go through this case study (Sections II-A, III-E, IV-C, V-C,
VI-E, as well as Section VII on design) and get an overall
idea of the basic concepts and results.

II. SAMPLING IN MULTIPLE DIMENSIONS

In this section, some concepts and notions from the theory
of lattices [5], [13] that will be used in the remainder of the
paper are reviewed. Consider an analysis/synthesis filter
bank as shown in Fig. 1. As pointed out in the Introduction,
the two basic operations performed are filtering and sam-
pling. The sampling process in n dimensions can be repre-
sented by a laftice defined as the set of all linear combina-
tions of n basis vectors a,, a,," -, a, with integer coeffi-
cients [5], [13], i.e., a lattice is the set of all vectors
generated by Dk, ke %", where D is the matrix character-
izing the sampling process (its columns are the basis vectors
a,, a,, -, a,). Since the elements of D belong to Z which
is a principal ideal ring, then unimodular matrices would be
all those with determinant equal to + 1 [27]. Note that D is
not unique for a given sampling pattern and that two matrices
representing the same sampling process are related by a
linear transformation represented by a unimodular matrix [5].
A separable lattice is a lattice that can be represented by a
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diagonal matrix; it will appear when one-dimensional systems
are used in a separable fashion along each dimension. The
number of input lattice samples contained in the unit cell (the
set of points such that disjoint union of its copies shifted to all
of the lattice points yields the input lattice) represents the
reciprocal of the sampling density and is givenby N = det D.
An important unit cell is the fundamental parallelepiped
% (the parallelepiped formed by n basis vectors). In what
follows, %! will denote the fundamental parallelepiped of
the transposed lattice. Shifting the origin of the output lattice
to any of the points of the input lattice yields a so-called
coser. Clearly, there are exactly N distinct cosets obtained
by shifting the origin of the output lattice to all of the points
of the fundamental parallelepiped. The union of all cosets for
a given lattice yields the input lattice.

Another important notion is that of the reciprocal lattice
[5], [13]. This lattice is actually the Fourier transform of the
original lattice and its points represent the points of replicated
spectra in the frequency domain. If the matrix corresponding
to the reciprocal lattice is denoted by D, , then D/ D=4
I and det D - det D, = A”. Now observe that the determi-
nant of the matrix D represents the hypervolume of any unit
cell of the corresponding lattice, as well as the reciprocal of
the sampling density. One of the possible unit cells is the
Voronoi cell which is actually the set of points closer to
the origin than to any other lattice point. The meaning of the
unit cell in the frequency domain is extremely important
since if the signal to be sampled is bandlimited to that cell, no
overlapping of spectra will occur and the signal can be
reconstructed from its samples.

To conclude the discussion on multidimensional sampling
let us examine some operations involving sampling that are
going to be used later. First, downsampling will mean that
the points on the sampling lattice are kept while all the others
are discarded. The time, Fourier, and z-domain expressions
for the output of a downsampler are given by [13], [46]

y(n) = x(Dn),
Y(w) = ]%kZ,X((D’)I “(w - 27rk)),
V) = 5 X X(Wo@ek) ) )

where N = detD, w is an n-dimensional real vector, z is an
n-dimensional complex vector, and n, k are n-dimensional
integer vectors (the details of the notation are defined in
Appendix A). Next, consider upsampling, i.e., the process
that maps a signal on the input lattice to another one that is
nonzero only at the points of the sampling lattice

n) = | x(D7'n) if n = Dk
y ) { 0 otherwise,
f/(w) = X’(D’w),

Y(z) = X(z?).

4)

Finally, combining (3) and (4), one obtains the expression for

the output of a downsampler followed by an upsampler (that
is, replacing by zeros all the samples that are not on the
sublattice)

if n = Dk

otherwise,

- 1
Y(w) = Ek -,
V()= < X X(W, (k)er). (5)

A. Quincunx Case

The reason the quincunx case is examined in detail is
because it uses the simplest multidimensional sampling struc-
ture that is nonseparable. This is obvious from Fig. 2(a)
where the same lattice is generated using two sets of basis
vectors (corresponding to matrices D, and D, given in (2)).
Since the determinant of either one of them equals 2, the
corresponding critically sampled filter bank will have two
channels. The same figure shows the fundamental paral-
lelepipeds for both cases as well as the Voronoi cell. Since
the reciprocal lattice for this case is again quincunx, its
Voronoi cell will have the same diamond shape. This fact has
been used in some image and video coding schemes [2], [43]
since if restricted to this region; i) the spectra of the signal
and its repeated occurrences that appear due to sampling will
not overlap; and ii) due to the fact that the human eye is less
sensitive to resolution along diagonals it is more appropriate
for the low-pass filter to have diagonal cutoff. Note that the
two vectors belonging to the unit cell are in both cases

) melll e

and are the same for the unit cell of the transposed lattice, a
fact that is going to be used throughout the paper. Shifting
the origin of the quincunx lattice to points determined by the
unit cell vectors yields the two cosets for this lattice (see Fig.
2(b)). Obviously, their union gives back the original lattice.

Finally, let us state here some facts that are going to be
used later. First, following the notation in Appendix A, one
can express z 21 as

()

D':z(: _:}=(z(:),z ))=(2122721z2])' (7)

Then, using (4) one can write the expressions for the output
of an upsampler in Fourier and z-domains

2

I}'(“’1"'-’2) = ";(wl + oy, 0 — w,),
Y(zl’zz) =X(zlzz’zlzfl)- (8)

Similarly, using (5), the output of a downsampler followed
by an upsampler can be expressed as

AY(wl’wZ) = %()A((“’l’wz) + X(w) + T, w, + 7)),
Y(zl’ZZ):%(X(ZI’ZZ)+X(_ZI’_ZZ))' )
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IIT. MULTIDIMENSIONAL PERFECT RECONSTRUCTION
FILTER BANKS

A. Polyphase and Modulation Domain Analysis

Consider a simple system consisting of a filter with the
impulse response h(0) = 1, hA(1) =2, A(2) =1, 0 other-
wise, and of a downsampler by 2 (see Fig. 3). Then the
impulse at time O (x(n) = 6(n)) will produce the output
y(© =1, y(1) = 1, O otherwise, while an impulse at time 1
(x(n) = 6(n — 1)) will produce the output y(1) = 2, 0 oth-
erwise. It is then obvious that the system, due to downsam-
pling, is periodically shift-variant and for it to be completely
specified one needs two impulse responses. It is this shift-
variance that leads to aliased versions (or overlapping repeated
spectra) of the input signal in the output. A convenient way
to take care of the shift-variance of such a multidimensional
multirate system is to decompose both signals and filters into
so-called polyphase components, each one corresponding
to one of the cosets of the output lattice.

Then define the polyphase decomposition of the input
signal as

X(2) = 2 *X,(2”) = pi(2) - x,(27),

Xi(z) = 2 x(Dn—k)- 2"

ne "

(10)

where p,(z) = {z%},. y: 15 a so-called vector of the inverse
polyphase transform and x,(z) is the vector containing
the polyphase components of the input signal x p(2) =
{ X(2)} ke 42 Note that the vector p,(z) is noncausal and its
causal version will be denoted by p,.z). Similarly, define
the polyphase components of the filter H(z) as

H(z) = > 2 *H(z"”) = pj(z) - h,(z"),

ke !

H(z)= > h(Dn+k)-z7"

nes"

(11)

where p,(z) = {z7%},.,¢ is the vector of the for-
ward polyphase transform and h p(2) is the vector contain-
ing the polyphase components of the filter, & o2) =
{ H(2)} ke 4:- Note that the polyphase components of signals
and filters are defined in a reverse fashion so as to account
for the action of convolution. Therefore, a single-input linear
periodically shift-variant system can be expressed as a multi-
input linear shift-invariant system (for an example, see
Fig. 3). To summarize, signals at the output of the analysis
bank can be represented in terms of the input signal, forward
polyphase transform P(2), and the analysis polyphase
matrix H,(z) (that is, the matrix containing the poly-
phase components of the analysis filters), while the output
signal can be represented in terms of the input chan-
nel signals, the synthesis polyphase matrix G,(z) (that
is, the matrix containing the polyphase components of the
synthesis filters, defined in a reverse order from the analysis
polyphase matrix) and the inverse polyphase transform p,(z)
(see Fig. 4). Then, the output of the synthesis bank is

x(n) -

@Y(n)
2 -1 0 1 2 3 4 L

Fig. 3.

Equivalent representations of a filter.
Y(z) = pi(2) - G,(z") - H,(z") - x,(2").

(12)

= pic(2) - T,(27) " x,(z")

where T,(z) = G,(z)H,(z) is a so-called transfer
polyphase matrix. The last equation yields easily results on
alias cancellation and perfect reconstruction.

Lemma 3.1: 1) Aliasing is cancelled if and only if the
inverse polyphase transform vector p; is the left eigenvector
of the transfer polyphase matrix in the upsampled domain
T,(zP), i.e., if and only if p/! - T,(z”) = T(z) - p}, where
T(z) is the corresponding eigenvalue.

2) Perfect reconstruction is achieved if and only if the
eigenvalue T°(z) associated with the eigenvector p! in 1) is a
monomial, i.e., if and only if T(z) = ¢ -z~ %.

3) Perfect reconstruction with FIR filters is achieved if and
only if the determinant of the analysis polyphase matrix is a
monomial, i.e., if and only if det H,(z) = z7%.

Proof: See Appendix B. Similar results have already
appeared in [21], [45], [46].

The approach taken until now was to decompose signals
and filters in such a way so that one can analyze the system
as if it were shift-invariant. Here we proceed in a different
manner, namely modulated versions of signals and filters are
going to be used. Which approach is going to be applied to
which problem depends on the nature of the problem itself.
In the following sections both polyphase and modulation
analysis will be employed intermittently.

The input signal and its modulated versions are given by

X(w) = {f((m - 27r(D’)_|k)}kEWC,,
(13)

xn(2) = { X (Wp-1(27k)  2) } e o

with notation as defined in Appendix A. Thus, the output of
the system after upsampling and filtering in the synthesis
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Fig. 4. Analysis/synthesis filter bank in the polyphase domain.

bank can be written as

Y(0) = 5(6o(0) G (@) - Fpls) - £(0),
V(@) = 5 (Gal2) Oy y(2)) - Hol2) - 50(2) (19)

where flm(w), H, (z) contain the modulated versions of all
the filters, that is

ﬁm(w) = {ﬁ,-(w - ZW(D’)ilk)},
H,(z) = {H(W),(27k) - z)},

ke %!, ief{0,---,N—1}. (15)
Let us note at this point that the relationship between
polyphase and modulation domain analysis is in a way like
“‘time-Fourier’” domain relation; hence the two representa-
tions are related by Fourier transforms. For more details, see
[39].

After having achieved the goal of obtaining perfect recon-
struction one might impose some other requirements on the
filter bank, some of the important ones being that the bank be
orthogonal and/or linear phase. Note that when compared to
the one-dimensional case the linear phase requirement is less
constrained since linear phase in multiple dimensions means
Just centro-symmetry of the filter’s impulse response [14].

B. Orthogonal Case

A filter with a rational transfer function is called alipass if
it satisfies

H(z) - H(z) =1 (16)
while a square matrix with rational entries is called
paraunitary if it satisfies

H(z) H(z)=H(z) -H(z) =c- 1. (17)
On the unit hypercircles (z;, = e/*/, i = 1,-- -, n) this matrix
becomes orthogonal, and for the sake of simplicity it will be
referred to as such throughout the paper. Now suppose that
the analysis polyphase matrix is orthogonal. Then by choos-
ing G,(z) = z”‘Hp(z), a perfect reconstruction system is
obtained as can be seen from (12). This solution has impor-
tant advantages both from the theoretical point of view (the
filter bank calculates projections on orthogonal subspaces)
and from the point of view of implementation (the synthesis
filters are within shift-reversal the same as the analysis ones).

Suppose now that the modulation matrix defined in (15) is
orthogonal. Then using (17) (with ¢ = N)

Y. H(W,(2nk)ez)H(Wp-(27k) > z) = N+ §,,.
ken!
(18)

It is obvious that by choosing (Gy(z) -+ Gy_,(2)) as the
first row of ﬁm(z), perfect reconstruction is achieved as
can be seen from (14). Now observe that assuming real
coefficients, H,-(z)FIj(z) is the z-transform of the cross-
correlation sequence r;(n) = (h,(k), h,(k + n)). Also note
that Hy(a,z,,---, a,z,)H(a,z,,"* ", a,z,) is the z-
transform of a; ™ - -+ - a," - r;(n,, -+, n,). Using these
facts one can see that (18) is the z-transform of

r,-j(n) . Z ejzw,(lD?I" =N" 6,‘j5”.
kei/r’

(19)

Analogously to the one-dimensional case, it can be shown
that the sum in the previous equation is nonzero only at
lattice points [34]
{N
0

Using this fact, one can finally write (19) as

ri(Dn) = (h(k), h;,(k + Dn))

if n = Dn,

Z 27k’ D™ _
otherwise.

kew]

(20)

=6;;0

ij¥%n

ey

showing that each filter is orthogonal to its translates with
respect to the lattice in question, and pairs of filters are
orthogonal to each other and their shifts with respect to the
lattice, that is, the set S = {h(k + Dn)|i=0,---,
N —1,k,ne Z"} is an orthonormal set. This is the lattice
extension of the well-known orthogonality relations with
respect to shifts in the one-dimensional case [9], [41].

C. Linear Phase Case

Let us begin this section by introducing some notation.
Suppose we circumscribe a parallelepiped around a polyno-
mial represented in the space of its exponents. To facilitate
the discussion (since we are interested in z-transform), a
point (m, n) in this space will denote the polynomial term
z;Mz3 ", i.e., the exponents will be taken with a minus
sign. Then define P = (p,,p,,---,p,) and Q = (q,,
4>, *, q,) as the corners on the main hyperdiagonal of the
parallelepiped. The size of the polynomial in the ith direction
is /; = q; — p; + 1. When dealing with more than one poly-
nomial at a time, their P’s and Q’s will be distinguished by a
superscript. For example, P" is P of the first polynomial,
while pS is the second coordinate of P of the first polyno-
mial. Fig. 5 shows the above notation on an example in two
dimensions.

The aim here is to derive a condition in terms of the
analysis polyphase matrix that can be used to test linear phase
of all the filters in the bank simultaneously. If a real filter is
linear phase then it can be written as

H(z)=a-D(z) - H(z) (22)
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Fig. 5. Notation used for polynomials. P and Q denote the corners of the

parallelogram circumscribed around the polynomial. It is represented in
the space of its exponents. /; denotes the length of the polynomial in the ith
direction.

where a@ denotes the symmetry of the filter (1 for symmet-
ric, — 1 for antisymmetric) and

D(z) = z—(P+Q) = ﬁ z;(Pf*'q,')

i=1

with P and Q as defined above. A similar relation can be
defined for the analysis polyphase matrix. Following the
discussion in Section III-A one has that the vector containing
the analysis filters can be written as

h(z) = (Hy(z) -+ Hy_,(z))" = H,(z?) - p,(2).

Suppose now that all of the filters are linear phase. Then each
one can be expressed as in (22), and thus,

H,(z?

p

) ps(2)

ay* Do( z) H(z)

I

Hy_ 1(z

an_y Dy l(z) HN 1(2)

ﬁo(z)

( Do(z)
Dy_y(z)

o= a-A(z) -Hy(2%) -Bj(2).
(23)

Hi(z”)-p

This can be used as a linear phase testing condition for the
whole filter bank. Note that j7(z) = p,(z). Basically (23)
allows 1) to check linear phase of an already designed filter
bank; or 2) if one wishes to design a filter bank containing
linear phase filters, one can impose constraints on the
polyphase matrix in such a way that (23) is satisfied. Another
linear phase testing condition appeared in [21].

D. Separability Versus Nonseparability

As already noted in Section II, sampling lattices that are
used can be both separable and nonseparable ones. In both
cases an interesting question is whether it is possible to have
all combinations separable/nonseparable sampling/filters/
polyphase components.

To analyze separable sampling, let us first try to determine
the number of free variables when the filters and polyphase
components are separable /nonseparable. If a filter is separa-
ble it has FV, = ¥7_, ({; — 1) free variables where /,,
i =1,---, nis the size of the filter in the ith dimension. The
reason that 1 is subtracted in each term is because of scaling.
If, on the other hand, the filter is nonseparable, the number
of free variables it possesses is FV, = II_,/, — 1. Now,
what happens if the polyphase components are separable?
First note that if the sampling factor in the ith dimension is
N, then the size of the polyphase component H,; ..;,
i;=1,---,N; in the ith dimension can be expressed
as I; ..; ;= (;+ N;—1i;) mod N, Thus, the number of
free variables if the polyphase components are separable
is FVy=%,. (X ..;; —n+1) — 1 which after
some manipulations can be written as FV; = H;’=,
1\’1-(2:;1(1,-/1\’,-) — (n — 1)) — 1. This number is in general
different from FV, and FV, and satisfies the following:

FV, < FV; < FV,. (24)
In the above, equality holds just for very small filter sizes
(basically when all polyphase components are either constants
or one-dimensional polynomials since in that case there is no
distinction between separable and nonseparable polyphase
components). Thus, one may conclude that in general separa-
ble polyphase components would yield a nonseparable filter
(in other words to get a separable filter assuming separable
polyphase components one would have to reduce the number
of free variables). Note that the assumed size of the filter in
each dimension is at least two. Finally, if polyphase compo-
nents are nonseparable the number of free variables is FV,
=Y, H" ,1,l -1 —H 3 ((1 + N, — i;)mod
Ny - 1=1II.. il - 1 = FV,, that is, if the polyphase com-
ponents are nonseparable then the total number of free vari-
ables is the same as when the filter itself is nonseparable

FV, = FV,. (25)

Fact 3.1: For separable sampling, the following holds:

1) separable filter implies separable polyphase components;
2) nonseparable polyphase components will always yield a
nonseparable filter.
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Proof:
1) A separable filter can be expressed as follows:

H(z,, ", z,)

=HY(z,) - H"(z,),

N1 N,—1
— Z zl—h]{’_‘ll)(lel) e Z Z,I'"H,-("")(z,’,v"),
i =0 in=0
N1 N,—1
= Z Z z;'l..-z;’n-Hl(ll)(zllVl) -“H,-(""’(z,ﬁv”)
i =0 in=0
where  H("(z)) - -++ - H{"(z,), corresponding to the
polyphase components of the filter, are clearly separable.
2) Due to (25). O

For nonseparable sampling, things become more compli-
cated. Consider, for example, what happens if the filter is
separable. Writing it in terms of its polyphase components it
is obvious that to get separable polyphase components one
would have to reduce the number of degrees of freedom. It
follows similarly for the nonseparable filter. Thus, in general
both separable and nonseparable filters would have nonsepa-
rable polyphase components. On the other hand, if the
polyphase components are separable, after upsampling they
would in general become nonseparable, yielding in turn a
nonseparable filter. For nonseparable polyphase components
this is even more obvious. Therefore, starting from either
separable or nonseparable polyphase components one would
obtain a nonseparable filter. Since in this case, there are no
implications as for separable sampling one can find examples
for any combination separable /nonseparable filter /polyphase
components. However, in general (that is, except for particu-
lar values of coefficients) one has that separable polyphase
components do not yield separable filters and separable filters
do not yield separable polyphase components.

E. Quincunx Case Revisited

Let us continue our analysis of the quincunx case. As we
said in Section III-A, polyphase domain analysis is used to
help overcome problems that arise when dealing with shift-
variant systems. Thus, in this case polyphase decomposition
would correspond to considering the system “‘living’* on the
two cosets of the quincunx lattice (see Fig. 2(b)). For exam-
ple, if a filter’s impulse response is denoted by h(n) =
h(n,, n,) its two polyphase components can be written as
(matrix D, from (2) is used)

ho(ny, ny) = h(Dn) = h(n, + ny, ny

- nz)’ (26)

hy(ny,n,) = h(Dn+n) =h(n +n, +1, ny, —n,),
(27)

where n; (see (6)) belongs to the unit cell (in this case to the
unit cell of the transposed lattice as well) and is the represen-
tative vector of one of the cosets. From (8), (26), and 27) it

is obvious that the z-transform expression of a filter is then
H(zy, 2,) = Hy(2”) + 27 'H,(2”)

= HO(ZIZZ, zlz;l) + zl_lHl(lez’ legl)-
(28)

The vectors of forward and inverse polyphase trans-
forms (causal versions) being Pz, Z,)"'=(z") and
Pi21, 25)" = (27" 1), respectively (see Section III-A), one
gets (12) for the quincunx case

Y(z,, 2,) = (z," I)Gp(z,zz, 2,23 ")
'Hp(zlzz:zlzz_l)xp(zlzzvzlz;]) (29)

where the analysis polyphase matrix can be written as (H,;
denotes the jth polyphase component of the ith filter)

Hy(z,, 2,)
Ho(z, 2,)

HOI(ZI’ zz)
Hll(zl!z2)

H,(z., 2;) = ( ) (30)

To give a gist of the modulation domain analysis let us first
find the modulated versions of the input signal as given in

)G A ()

{X(zl’zz)’X(—zH—zZ)}' (31)

x,,(2;, 2,)

Then (14) for the output of the system is

Fo0) = 5 (Galsy, ) 6oy, )
.(ﬁo("-’l""z)
I:Il(wl""z)
. X(wl"")Z)
)A((wl + 7, w, + 7r) ’
Y(z,2,) = %(GO(‘ZI’ 2,) Gi(z1, )

. Hy(z,, 2,) H0(~z,,—z2))
H\(zy, 2,) H\(-z,, - 2,)

I-Alo(wl + 7,0, + 7r)
)'?,(w1 + 7,0, + 7r)

( X(lezz) ) (32)

X(-z,-2)

Note the resemblance between this expression and its
one-dimensional two-channel counterpart (see, for example,
[91, [40]). This striking similarity that appears when analyz-
ing the quincunx case time and again is basically due to the
fact that a number of results depend heavily on the overall
sampling density (number of channels for the critically sam-
pled filter bank). Thus, as will be seen in Section IV, some of
the results obtained for the classical one-dimensional two-
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channel filter bank will extend easily to the n-dimensional
two-channel case.

To illustrate the statement that the polyphase and modula-
tion domain representations are related through Fourier trans-
form, consider the following relation between polyphase and
modulation domain matrices:

. 1
Hp(wl + w,y, w, —

i 3

Next, one can examine the relation between the two filters in
the analysis bank if the system is orthogonal. Without going
through the whole analysis from Section III-B just write (21)
for the quincunx case (D represents quincunx sampling)

2 ) (33)

<h0(k), ho(k + Dn)) =90, (34)
(h(k), hy(k + Dn)) =5, (35)
(ho(K), hy(k + Dn)) = 0. (36)

Equations (34) and (35) show that each filter is orthogonal to
its shifts on the quincunx lattice, while (36) states that filters
hy and h, are orthogonal to each other as well as their shifts
on the quincunx lattice. These facts are going to be used
when constructing orthonormal bases of wavelets for the
quincunx case in Section VI.

Finally, let us show the linear phase testing condition given
by (23) for the quincunx case

1

7!

{4 O Dy(z,, 2,) 0
o a, 0 D\(z,, z)

1
-Hp(zf'zz',zl"lzz)( )
Z

Hp(ZIZZ’ 2135])(

(37)

Here a, and a, demonstrate what kind of a symmetry filters
hy and h, possess (1 for symmetric and — 1 for antisymmet-
ric) and D,, D, are monomials related to the size of the
filter defined in Section III-C.

IV. Two-CHANNEL CASE IN MULTIPLE DIMENSIONS

Let us first point out that the two-channel case we are
going to deal with in this section is the only true nonseparable

one in terms of the sampling used. Among others, it can be
characterized by one of the following sampling matrices:

10 - 0 1
11 - 0 0
0 1 - 0 0
D= |: @ = : ; ,
0 0 1 0
0 0 1 (-n"!
2 1 0 0
0 1 1 0
0 0 1 0
D=, . . : (38)
00 0 - 1
0 0 0 - 1

Since the overall sampling density is 2, the equivalent sam-
pling factor per dimension would be 2}/”. In two dimensions
the corresponding lattice is the quincunx lattice and in three
dimensions the FCO or face centered orthorhombic lat-
tice. Since they are natural extensions of the one-dimensional
two-channel case they already found application in image and
video processing [13], [19], [43].

Refer to the discussion on the modulation domain analysis
in Section III-A. For the two-channel case the output of the
system given by (14) can be written as

Ho(z)

Hy(-2z)
H\(z)

H(-2z)

( X(z)

X(-z)

Y(2) = 2 (Gy(2) G,(2)) (

) (39)

which, as already pointed out for the quincunx case in
Section III-E, (32), bears striking resemblance to the one-
dimensional case. Then it is easy to see that the result on
alias cancellation (or no overlapping of spectra) obtained for
the one-dimensional case [8] holds for an arbitrary number of
dimensions:

Proposition 4.1: The classical QMF solution holds for
the n-dimensional filter bank, i.e., the following choice of
filters will yield alias cancellation-

Hy(z) = H(z)
Gy(z) = H(z)

H\(z) = H(-z)
G(z) = —H(-z).

and
and

As already pointed out in Section III additional constraints
can be imposed upon the filters in the bank beside requiring
perfect reconstruction. In what follows two cases of interest
are investigated, the first one yielding orthogonal filters and
the second linear phase ones. Note that in the two-channel
real FIR case these requirements are mutually exclusive as
will be shown later.

A. Orthogonal Case

If the filter bank is orthogonal it can be shown that the
filters involved have some important structural properties,
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namely that a single filter specifies completely the most
general orthogonal system. Here we just state the theorem
and its corollaries, for the proofs refer to Appendix C.

Theorem 4.1: The most general 2 X 2 real FIR orthogo-
nal polyphase matrix H,, can be written in the following
form:

(1 o ' Hy(z) Hy,(z)
Hp(z)_(o z—") (cﬁm(z) ~cHy(2) “

where ¢ is +1, k is large enough so as to make the entries
in the second row causal, and Hy, and H,, satisfy the PC
property.

Corollary 4.1: The polyphase components of each filter
are of the same size.

Corollary 4.2: The second filter is completely specified
by modulating and reversing the first one, i.e.,

Hy(z) = =27% - Hy(-z)

where

sz, _ zl_(k1+k"+l)z2—(kl+k2)
- _ _ 31
o gy etk = (ke + (- D"k

B. Linear Phase Solutions

Which solutions are possible if one wants a perfect recon-
struction system where both filters are linear phase? The first
polyphase component of each filter will be denoted by H,,
and the second one by H,,, i = 1,2. The whole analysis will
be performed in the upsampled domain and thus the filters
can be expressed as (see Section III-A and (28))

Hy(z) = H,(2?) + zl_lHil(zD) =a; - D(z) - ﬁi(z)

where @; and D,(z) characterize a linear phase filter as
defined in (22). The determinant of the polyphase matrix in
the upsampled domain is then

det H,(z?)
= T(z")
= Hyo(2°) H,,(2°) = H,o(2”) Hyy(z")

and the aim here is to force it to be a monomial in order to
achieve perfect reconstruction.

The sizes of the filter H, will be denoted by P, Qv
(where P and Q are as introduced in Section III-C). Then
for the filters’ polyphase components in the upsampled domain
the following holds: Hy, is of size P®), Q" and H, is of
size P - (1,0,--+,0), 0¥ — (1,0,---,0). The determi-
nant 7(z?) is of size PP and 0D, where P =
PO + P@ _ 1,0, --, 0), Q(T) — Q(l) + Q(2) - q,
0,---,0)and /{7 = IV + [P — 1.

Here, we will just state some facts on the structure of
linear phase solutions. For explicit proofs, refer to [19]. Note
that i(n)is +1 if n is even/odd, respectively.

Proposition 4.2: For a symmetric/antisymmetric filter
the following holds:

D (i1l = (=1)" & Hy(z") = a;D(2) Ho(z)
and H,(z") = a;D(z)z}H,(z?),

2) (i L) = (=D e Hy(zP) =
4;D(2)z, H;(z7)

where a; and D,(z) are associated with the filter as defined
in (22).

This proposition basically states how the polyphase compo-
nents of a symmetric/antisymmetric filter are related
depending upon the size of the filter. For example, in one
dimension it is easy to see that an odd length filter (case 1))
will have each polyphase component as a symmetric /
antisymmetric filter, while if the length is even (case 2)) one
can get the second polyphase component by shift-reversing
the first one. To obtain perfect reconstruction with FIR filters
the determinant 7" has to be a monomial (following Lemma
3.1). Now observe that taking all possible combinations
of the two filters one can obtain T being symmetric/
antisymmetric or T that does not have any specific symme-
try. In what follows just the former case will be considered
since all useful solutions found until now belong to that
category.

Proposition 4.3: For perfect reconstruction with a
symmetric /antisymmetric determinant 7, T has to satisfy the
following:

D i) = -1, T is of odd size in all
directions;
2) ar=1,i.e., T has to be symmetric;
3) iCio (b + q7)/2) = 1, ie., the degree of the
center coefficient is even.
Proposition 4.4: For perfect reconstruction with a
symmetric /antisymmetric 7 and linear phase filters, there
are two possible cases:

Vk, ie.,

1) both filters are as in Proposition 4.2, case 1) and they
have the same symmetry, i.e., ¢,a, = 1; or
2) both filters are as in Proposition 4.2, case 2) and they
have different symmetry, i.e., a,a, = ~1.
Proposition 4.5 For a perfect reconstruction linear phase
filter pair the following holds:

1) it is not possible to have the filters of the same symmetry
and the same size;

2) It is possible to have the filters of opposite symmetry
and the same size.

As an example consider the one-dimensional case. There, it
has been shown that assuming a symmetric /antisymmetric T
either both filters are of odd length and the same symmetry or
they are of even length and opposite symmetry (the uninter-
esting case has not been considered) [42].

Proposition 4.6: In the two-channel real FIR case linear
phase and orthogonality requirements are mutually exclusive
(except for the trivial two-tap filters).



KOVACEVIC AND VETTERLI: NONSEPARABLE MULTIDIMENSIONAL PERFECT RECONSTRUCTION 543

Proof: To prove this, it will be shown that it is not
possible to have a linear phase filter whose polyphase compo-
nents satisfy the PC property as required by Theorem 4.1.
Since by Corollary 4.1 the polyphase components of each
filter are of the same size, i.e., the filters are of the same
size, then they have to have opposite symmetry and they
belong to case 2) of Proposition 4.2 (by the previous discus-
sion). Thus, substituting polyphase components into (90) one
obtains

Hio(zD)ﬁio(zD)+Hi1(zu)ﬁi1(zD)

= io(zb)ﬁio(zb) +a;D;(z) 2, Hy(2”)

: ai[)i(z)zl-]HiO(zD) (41)

=2 Ho(2%) Hy(2") = 1 (42)
which is possible only if H,, and H,, are constants, i.e., if
the filters are two-tap.

C. Another Visit to the Quincunx Case

To summarize the important results of this section first
note how in two dimensions matrices given in (38) reduce to
those for the quincunx lattice introduced in (2). The
input /output relation given in (39) for this case reduces to the
expression already given in (32). The result from Theorem
4.1 for the quincunx case first appeared in [43]. Since it is
going to be used later we state here how the two filters in the
analysis bank are related (follows from Corollary 4.2)

H (., 0,) = —e ikitkat Do+t —kney)
CHy(—w, + 7, = w, + ),
H\(z,,2,) = —z; kitkat Vg thi—kn
“Hy(-z7' - 2,") (43)

where the vector k = (k,, k,) is as stated in Section IV-A
large enough to make the entries in the second row of the
matrix in (40) causal.

The linear phase case was studied extensively in
[43] where similar analysis on possible linear phase sol-
utions was performed but in polyphase domain and for
diamond shaped filters. Here we want to see how the
Propositions 4.2-4.6 translate for this case. For example,
case 1) of Proposition 4.2 would tell us that if i(/; + /,) = 1,
i.e., if the sizes of the filter in two dimensions are either both
odd or both even, then both polyphase components will have
the same kind of symmetry as the filter itself has. If, on the
other hand, in one dimension filter length is even and in
the other one odd, polyphase components do not necessarily
have any kind of symmetry but instead one can obtain the
second polyphase component by shift-reversing the first one.
Next, Proposition 4.4 states that to have a perfect reconstruc-
tion pair both filters have either the same symmetry and their
sizes are as in case 1) of Proposition 4.2 or they are of

opposite symmetry and each is of odd length in one dimen-
sion and of even length in the other. The fact that in the
two-channel case having linear phase and orthogonal filters is
not possible (see Proposition 4.6) is as was said earlier due to
the fact that the algebraic structure of the modulation/
polyphase matrices is basically the same regardless of the
number of dimensions. Similar reasoning can be used when
constructing solutions for the four-channel two-dimensional
case that are at the same time orthogonal and have linear
phase, namely achieving both at the same time is feasible
since it is feasible in the four-channel one-dimensional case
as well (see Section V-A-2).

V. SYNTHESIS OF MULTIDIMENSIONAL FILTER BANKS
A. Cascade Structures

When synthesizing filter banks one of the most obvious
approaches is to try to find cascade structures that would
generate filters of the desired form, the reason being that
cascade structures: i) usually have very low complexity; ii)
higher order filters are easily derived from the lower order
ones; and iii) the coefficients can be quantized without
affecting the desired form.

While in the orthogonal case forming a cascade that would
achieve perfect reconstruction is trivial since one has just to
combine orthogonal building blocks (i.e., orthogonal matri-
ces and diagonal delay matrices), in the linear phase case this
is not so simple. There one has to make use of the linear
phase testing condition given in (23) or [21] to obtain possi-
ble cascades. As one of the possible approaches consider the
generalization of the linear phase cascade structure proposed
in [21], [22], [44]. Suppose that a linear phase system has
been already designed and a higher order one is needed.
Then choosing

H)(z) = H)(z) D(z) "R (44)
where D(z) = z7% - Jﬁ(z)] and R is persymmetric (i.e.,
R = JRJ), another linear phase system is obtained where the
filters have the same symmetry as in H,,. This can be easily
verified if substituted into (23). Although this cascade is in no
way complete it can produce very useful filters as will be
seen later (for examples, refer to Section V-A-1). Let us also
point out that while building cascades in the polyphase domain
one must bear in mind that using different sampling matrices
for the same lattice will greatly affect the geometry of the
filters obtained.

1) Cascade Structures for the Two-Channel Case in n
Dimensions:

Lemma 5.1: The following cascade will produce a perfect
reconstruction set containing two filters of the same size:

0
.“)R‘

. 45
iR @)

k n 1
() = & T

For the filters to be orthogonal the matrices R; have to
be unitary, while for them to be linear phase matrices have
to be symmetric. In the latter case the filters obtained will
have opposite symmetry. :
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Proof: For the orthogonal case it is obvious since all
the blocks involved are orthogonal. For the linear phase case
use condition (23). ]

The one-dimensional orthogonal solution obtained by the
above cascade is complete (all orthogonal solutions can be
reached using it) [35]. The linear phase solution in one
dimension generates filters of size 2(k + 1) and was pro-
posed in [28], [44]. The two-dimensional solution generates
filters of sizes 2(k + 1) X (2k + 1) and both orthogonal and
linear phase filters were proposed in [43]. Note that untike in
the one-dimensional orthogonal case, for linear phase and
higher dimensional cascades, completeness results are miss-
ing except for very small cases. In [43], it was shown that the
smallest solutions both for orthogonal and linear phase cas-
cades are general. The same will be shown in the next
lemma, where the smallest size perfect reconstruction filter
pairs are complete in any number of dimensions. Moreover,
higher dimensional solutions will be generated from lower
dimensional ones. In what follows, z( will denote z?”
where z = (z,,- -, z)".

Lemma 5.2: 1) The general solution for the perfect recon-
struction linear phase set where one filter is of size 3 and the
other of size 5 in dimensions (1,- -, ) can be generated
from a general solution for the perfect reconstruction linear
phase set with the same sizes in dimensions (1,-*-, n — 1)
with

Hu(e) = Huog™) + - 27(35 4 2,
Ho\(2") = Hoy(27 "),
Hio(2i") = Hyo(2™ ") + H(207") - 27 (2" + z,)
+c 27z, + 22),
Hy(2,”) = H, (2 ") + d - 7'z, +z,),
where
HO,(ZL"”)) =b,b#0,

d- He(z ") +a-Hy (2" ")
5 .

H,(z0Y) =

a-d=b"c,
t,_,+2ad # 0.

Here ¢,_, is the only nonzero coefficient in the determin-
ant of the polyphase matrix in dimensions (1, -+, n — 1),
ie., det H(z""") =1, ,-z7% The determinant of the
polyphase matrix in dimensions (1, -+, n) is then
det H(2") = (¢, | +2ad)-z;2 =1, -z; 2.

2) The cascade of k polyphase matrices as above will
generate a linear phase perfect reconstruction filter set of the
same shape, where the first filter is of size 2k + 1) and
the second one of size (2 + 3) in all dimensions, and where
all the polyphase components are A4-polynomials.

Proof: For proof and properties of A-polynomials, see
Appendix D.

The one-dimensional solution as in Lemma 5.2 appeared in
[44] while a two-dimensional diamond shaped filter pair was
proposed in [43]. Basically, the previous lemma gives a
possibility to generate n-dimensional filters of the above sizes
from the (7 — 1)-dimensional ones of the same size. It
should be noted that the initial 3/5 solution is completely
general regardless of the number of dimensions. The way
higher dimensional filters are constructed from the lower
dimensional ones is that the lower dimensional solution is
kept and then smaller size filters are stacked upon it. An
example showing how to construct the two-dimensional
(quincunx) solution from the one-dimensional one is given in
Section V-C. Note that the cascade obtained in part 2) of the
lemma produces a linear phase set where both filters are
symmetric. Bearing in mind the fact that they are odd in
all dimensions it becomes obvious that they belong to the
class 1) solution of Proposition 4.4.

2) How to Generate Cascades Being Orthogonal and
Linear Phase: This section will deal with the four-channel
separable two-dimensional case; thus the matrix characteriz-
ing the sampling process is D = 2 + I and the corresponding
sampling density is N = det D = 4.

Let us first present a cascade structure that will generate
four linear phase/orthogonal filters of the same size, where
two of them are symmetric and the other two antisymmetric
[22]

k
Hp(zl,zz) = ml:llD(zl’zz)Ri (46)

where W, is the matrix representing the Walsh-Hadamard
transform of size 4, D is the matrix of delays containing the
vector of the forward polyphase transform along the diago-
nal, and R, are scalar persymmetric matrices of the following
form:

[a,  ap a; a3
a, =*a, =ta; a,
O (@)
a, tap *a, ap
a;3 a; an
The *“ -’ sign in (47) along with the requirement that the R,

be unitary allows one to design filters being both linear phase
and orthogonal. In view of the fact that in the two-channel
one-dimensional case these two requirements are mutually
exclusive (see Proposition 4.6), it becomes obvious that one
cannot design separable filters satisfying both properties in
this four-channel two-dimensional case. This shows how
using a true multidimensional solution offers greater freedom
in design. For an example to the previous discussion, refer to
[21]. At the same time, if a regular low-pass filter can be
found (see Section VI), this cascade would allow one to
generate orthogonal bases of linear phase (symmetric)
wavelets in two dimensions, a construction which is not
possible in current designs based on tensor products of
one-dimensional systems.
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ho (ny, np)
n )

The previous cascade generated filters of the same
size. Now we show how to generate a cascade structure
producing four linear phase filters of sizes 2k + 3) X
Qk+3), Qk+3) x 2k + 1), Qk+ 1) x 2k + 3) and
(Zk + 1) X 2k + 1). The basic building block is obtained
for k =1 and the corresponding filters’ impulse responses
are shown in Fig. 6. The cascade of such building blocks will
produce again a linear phase set of sizes as above and of the
same symmetry.

B. One to Multidimensional Transformations

Because of the difficulty of designing good filters in multi-
ple dimensions, transformations mapping one-dimensional
designs into multidimensional ones have been used for some
time, the most popular being the McClellan transformation
[14], [24].

In the context of filter banks and wavelets, one would
like to transform a one-dimensional filter bank into a
multidimensional one such that:

1) perfect reconstruction is preserved;
2) zeros at aliasing frequencies are preserved.

The first requirement is obvious, while the second one is
necessary to achieve some degree of regularity (see Section
VI-B).

Note that iteration of a one-dimensional filter with respect
to a nonseparable lattice leads to a multidimensional filter
(because upsampling transforms z into z?”; see (4)). This
can be used in order to get multidimensional wavelets, and
Cohen and Daubechies [7] have used this techniques to
construct smooth wavelets from iterated one-dimensional fil-
ters (with respect to the dilation matrix D for the quincunx
lattice). However, from a discrete filtering point of view, this
is of little interest, since the filters are one-dimensional. In
the following, we are going to consider transforms that lead
to multidimensional filters.

1) Separable Polyphase Components: A first possible
transform is obtained by designing a multidimensional filter
having separable polyphase components, given as products of
the polyphase components of a one-dimensional filter [1],
[6]. To be specific, consider the quincunx subsampling case.
Start with a one-dimensional filter having polyphase compo-
nents Hy(z) and H\(z), that is, a filter with a z-transform
H(z) = Hy(z?) + 27 'H(z*). Derive separable polyphase
components

H(z,, z,) = H(z,)H(z,), i=0,1. (48)
Then, the two-dimensional filter with respect to the quincunx
lattice is given as (by upsampling the polyphase components
with respect to D)

H(z,, z,) = HO(ZIZZ)HO(zlz{l)
+ ZI—IHI(ZIZZ)H[(Z‘IZEI)' (49)

It can be verified that an Nth-order zero at 7 in H(e’®)

Fig. 6. The impulse responses of the four filters which form the first block

in the cascade.

maps into an Nth-order zero at (=, ) for H(e/*1, e/*2),
and thus property 2) is achieved. However, an orthogonal
filter bank is mapped into an orthogonal two-dimensional
bank, if and only if the polyphase components of the one-
dimensional filter are all-pass functions (that is,
H(e/*YH/ (e *) = c, see (16)). Perfect reconstruction is
thus not conserved in general. Note that the separable
polyphase components lead to efficient implementations,
reducing the number of operations from O[/?] to O[/] per
output where / is the filter size.

2) McClellan Transformation: The Fourier transform of
a zero phase symmetric filter (4(n) = h(— n)) can be written
as a function of cos (nw)

H(w) = XL: a(n) cos (nw)

n=0

(50)

where a(0) = A(0) and a(n) = 2h(n), n # 0. Using
Tchebycheff polynomials, one can replace cos(nw) by
T, [ cos (w)] where T,[-] is the nth Tchebycheff polynomial,
and thus H(w) can be written as a polynomial of cos (w)

H(w) = éoa(n)T,, [cos (w)] . (51)

The idea of the McClellan transformation is to replace cos (w)
by a zero phase two-dimensional filter F(w,, w,), hence
resulting in an overall zero phase two-dimensional filter [14],
[24]

fl(w) = éoa(n)Tn[ﬁ(wl,wz)]. (52)

In the context of filter banks, this transformation can only be
applied to the biorthogonal case (because of the zero phase
requirement). Typically, in the case of quincunx subsam-
pling, F(w,, w,) is chosen as [3], [7]

Flwy, ;) = 1 (cos (@) + cos (,)). (53)
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That the perfect reconstruction is preserved can be checked
by considering the determinant of the matrix f}m(w) in (15)
which is a monomial in the one-dimensional case since one
starts with a perfect reconstruction filter bank. The transfor-
mation in (53) leads to a determinant of I:Im(w,, w,) which
is also a monomial, and thus, perfect reconstruction is
conserved.

In addition to this, it is easy to see that pairs of zeros at 7
(that is, factors of the form 1 + cos (w)) map into zeros of
order two at (w, 7) in the transformed domain (or factors
of the form 1 + 1/2 cos (w,) + 1/2 cos (w,)).

Therefore, the McClellan transform is a powerful method
to map one-dimensional biorthogonal solutions to multidi-
mensional biorthogonal solutions, and this while conserving
zeros at aliasing frequencies.

C. Cascade Structure for the Quincunx Case

As an illustration to Section V-A-1, the 3/5 set from
Lemma 5.2 for the two-dimensional (quincunx) case will
be constructed. That solution, in turn, is used in [19] for
constructing filters for the FCO case (three-dimensional
nonseparable two-channel case). We start from the one-
dimensional solution for a general polyphase matrix in the
upsampled domain [44] Hyo(27) = 1 + 272, Hy(z2) = a,,
H\o(zf) = 1 + a,272 + 274, H,\(22) = a,(1 + z7%). To
construct the two-dimensional solution one needs to evaluate
the polynomial

d-(1+2z7%) +a-a(l +z?)

a,

H(z7)

d
a+ —

1 -2
a (1+27?)

(54)

and also to express one of the variables a, ¢, and d using the
two other ones. Thus, writing ¢ = ad/a, the following is
obtained (note that ( Zy, 2;) in the upsampled domain
is (2,2,, 2,25 ") as given in (8))

Hy(2,2, 2125 ) = 1 + 272 + a-zi'(z;' + z,),

HOI(ZIZZ’ zlzz_]) =a,

d
a+ —
a,

Ho(212;,2,23") = 1+ az72 + 274 +

(1+27%) 77 (25" + 2,)

+fE 27 (237 + 23)
1 2 2)>»
a,

H (2,25, 225 ") = a(1+2z7%) + d-zi'(z3' + z,)
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which yields the following impulse responses of the filters:

a
ho(ny, ny) = ( Lo 1 )
\ a
ad
a
d d
a+ — d a+ —
a a,
hy(ny, ny) = | 1 a4 @ a, 1 (55)
d d
a+— d a+ —
a, a;
ad
a,

which is the same solution as obtained in [43]. Using the
result of Lemma 5.2 one can see that the cascades of
the building blocks from (55) would generate diamond
shaped filters of sizes 2k + 1) X 2k + 1) and 2k + 3) X
(2k + 3) conserving the perfect reconstruction property.
Fig. 7 shows how the smallest size filters are obtained. Note
that if one would give up some freedom in design and impose
additional circular symmetry, this solution would become the
same as the one obtained by using McClellan transformation
as explained in Section V-B-2. As will be seen in Section
VII, this example will allow us to obtain a filter bank where
the analysis low-pass can be made highly regular.

VI. CONNECTION TO NONSEPARABLE WAVELET BASES
A. Constructing Wavelet Bases from Iterated Filter Banks

Let us first recall the one-dimensional case. There it is
obvious that an orthogonal perfect reconstruction filter bank
computes the discrete-time wavelet transform when the branch
with the low-pass filter is iterated. Also, under certain condi-
tions the same filter bank can be used to obtain a continuous-
time wavelet transform [9], [23], [41], [42]. In multiple
dimensions the basic ideas are the same, the only difference
being that instead of dealing with dilation factors we deal
with a dilation matrix.

Thus, consider Fig. 8. The equivalent low branch after i
steps of filtering and sampling by D will contain the following
filter and sampling by D':

i-1 .
H%w) = T Hy((D")'w) i=1,2,--+ (56)
k=0
where H@(w) = 1 and the fact that sampling by D followed
by filtering by H(w) is equivalent to filtering by H(D'w)
followed by sampling by D was used. The aim is to con-
struct a continuous-time function corresponding to A% (n),
the latter being the impulse response of the iterated filter
H“(w). Consequently, we define

SP(x) =N72-nD(n)  Dixen +[=-4. )" (57)

Obviously, f@(x) is just the indicator function over the
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Fig. 7. The process of obtaining two-dimensional linear phase set from the

one-dimensional one.

D
Ho_®_

X(z) Hy.y _®_
Hy.p ’@‘

N = det (D)

Fig. 8. Computation of the discrete wavelet transform using a filter bank.

1 1\n

hypercube [— 3, 3)". The function in (57) is constant over
regions of hypervolume 1/N' and normalization by N/? is
chosen so that if ||A(n)|, = 1, then | fP(x)||, =1 as
well. Note that the shape of the hyperregions defined in (57)
is not rectangular, rather it is determined by the shape of the
unit cell belonging to the lattice D~'. As in the one-
dimensional case we are interested in the limiting behavior of
the iterated function. Thus, we conjecture that the iterated
filter can be made regular (i.e., the iterated function continu-
ous) by putting a sufficient number of zeros at the points in
frequency domain where the repeated spectra occur, i.e., at
the points belonging to the reciprocal lattice of D (see the
discussion in Section II).

In what follows, except for the necessity of having a zero
at aliasing frequencies (see Section VI-B), we will not deal
with the problem of achieving the continuous limit of f(x).
This is discussed in detail in [7] for the quincunx case. We
will instead start by assuming that the limit of f”(x) exists
and is in L? and will call it the scaling function associated
with the discrete filter hy(n)

p(x) = tim fO(x),
1— oo

d(x)el?. (58)

Morever, we will assume for simplicity, that this limit func-
tion is continuous. We want to show now that the scaling
function satisfies the so-called two-scale equation 9], [11],
[32], [41]. Following (56) we can write the equivalent filter
after i steps in terms of the equivalent filter after (i — 1)
steps as

KO (n) = > hy(k)R" "V (n — D'~ 'k). (59)
k

Using (57) we want to express the previous equation in terms

of iterated functions and thus

h(i)(n) = N2 -f(i)(x), (60)
ROD(n — D'~ 'k) = N-U=D2 . f0=D(Dx — k) (61)

both for Dixen + [— %, )" Substituting equations (60)
and (61) into (59) yields
fOx) = VN ho(k)fe-"(Dx — k). (62)
k
Recall that the assumption is that the iterated function f(x)
converges to the scaling function. Hence, we can take the
limits of both sides of (62) to obtain
o(x) = VN Y_ hy(k)¢(Dx — k) (63)
k
showing that indeed the scaling function satisfies the two-scale
equation. Note that in the multidimensional case the change
of scale involves the dilation matrix D. Until now we have
been concerned only with the iterated low-pass filter. But
what happens with other branches in the last stage of itera-
tion? Following the same arguments as before, each one of
them can be expressed as the iterated low-pass filter #(n)

followed by one filter h,(n). Since the former one tends to
@(x), (N — 1) wavelets can be defined, each one satisfying

Vi(x) = VN 3 hi(k)9(Dx — k)

i=1,2,---,N-1. (64)
Refer to Section III-B. There the orthogonality relations
between filters and their translates with respect to the sam-
pling lattice were shown (see (21)). We want to use those
results to obtain the same kind of relationships for the scaling
function and the (N — 1) wavelets. Here, we just state the
facts and outline the proof for the first one, the others would

follow similarly:

1) (¢(x), d(x — I)) = §,, that is, the scaling function is
orthogonal to its integer translates;

2) (¢(D'x = D), (D'x — k)), = N™'5,,, i.e., the previ-
ous fact holds for all scales;

3) (Y (D'x — D),y (D'x — k)) = N7%5,,,8,,, wavelets
are orthogonal to each other and their integer translates;

4) (¢(x), ¥,(x — I)) = 0, the scaling function is ortho-
gonal to each of the wavelets; and

5) <¢’m(Dlx - D, ‘»(/n(DJx - k)> = Nﬁlamna,‘jalka
wavelets are orthogonal across scales.
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To prove the first fact we use induction on the function f”
and then take the limit (which exists by assumption). The first
step (fV(x), fO(x - k)) = &, is obvious since by defini-
tion fO(x) is just the indicator function on the hypercube
xe[— 3,3)" For the inductive step we can write

<f(i+1)(x)’f_(i+1)(x _ l)>
[V X ho(k)(Dx - k),

VNS ho(m) £O(Dx - DI - m) )
= NS 5 hy(k)ho(m)

(SO(Dx ~ k), fO(Dx - DI — m)),

> ho(m)ho(DI + m),

(ho(m), ho(DI + m)) = ¢,

where we used (21). Taking the limit of both sides of the
previous equation we get exactly the first fact. O
We have thus verified that

S={N"2y(D"x —n)[i=1,--,N-1,me %,

neZ",. xe®"} (65)

is an orthonormal set. The only thing left to do is to show
that the members of the set S constitute an orthonormal basis
for L*(Z"). The way to do it is to verify that § is a tight
frame with framebound equal to one [9]. In Section VI-D we
will show that this is indeed true for the two-channel case in
any number of dimensions.

B. Necessity of Zeros at Aliasing Frequencies

In this section we want to extend Rioul’s one-dimensional
result on the necessity of a zero at = [29]. This result then
makes it plausible why one would try to impose a zero of a
sufficiently high order at aliasing frequencies (or points of
repeated spectra).

Theorem 6.1: If the scaling function ¢(x) exists for some
x€ A", then

1

> h(Dk+k)=——\, ke ., 66
X n(Dk+ k) = — (66)
or in other words
Hw=0)= VN, Hw-= 27(D")"'n) = o,

ne " (67)

where 27(D)~'n are the aliasing frequencies or the points
of repeated spectra.

Proof: Here we give just an outline of the proof; for
more details refer to [18]. Note first that we can write (59) as

HO(n) = 32 KO D(k) hof(n — DE) (68)

and thus

K(Dn) = 3" ho(Dk)Yh"=V(n — k). (69)
k

Using the same approach as in derivation (60)-(63), express

A and A in terms of £~ and £ and then take the

limits (we are allowed to do so by assumption)

8(Dx) = VN X hy(DK)6(Dx).  (70)
K

Writing (69) for all the clements of the unit cell, i.e.,

W(Dn + n;), n,e %,, and following the same path as

for A2 Dn) we finally obtain

&(Dx) = VN 3 ho(Dk + k;)¢(Dx),  Vk,e ..
k

(71)

Equating (71) for all the various coset representatives results
in (66). 1

C. Choice of the Dilation Matrix

In the Introduction we mentioned that the dilation matrix
D must satisfy the following conditions:

1) |N| > 1, vi, and
2y Dx"c ¥

where A; denote the cigenvalues of the matrix D. The first
condition ensures that there is indeed a dilation in each
dimension [7], [16]. Such a matrix will be called a well-
behaved matrix. From the discrete filtering point of view,
we would also like to use matrices that lead to separable
sampling after a small number of iterations. That is the
reason why we use the matrix D, rather than D, when
dealing with the quincunx case (see Sections VI-E and VII).
By the same token we would use the following matrices for
the hexagonal and FCO lattices

2 1
Dypy = (0 —2)’

10 1 2.0 0
-1 -1 1], Dio=10 2 0.

0 -1 0

4
D]2-IEX =

Dgco =

(73)

At the same time, the examples discovered by Grochenig and
Madych in [16], as well as Lawton and Resnikoff [49], that
use equivalents of Haar bases for filters and by construction
their iterates are self-similar and tile the space, show that
vastly different behavior is obtained when using different
matrices for the same lattice. For example, the matrix D,
(“‘twin dragon’’ in the Haar case) would lead to fractal
support while D would lead to parallelepiped support.

Fig. 9 gives an interesting example of a *‘dragon’’ for the
hexagonal lattice. It has been generated using the lattice
given in (72) with the following filter H(z,z,)=1+
z7' + 27 'z, + 27 'z, The plot gives the sixth iteration
(plotted on the rectangular grid since the sixth itera-
tion corresponds to separable sampling). When the unit cell
of this lattice is used as a basic filter, one obtains the patterns
similar to those in [16] with the dilation matrix (2 1),



KOVACEVIC AND VETTERLI: NONSEPARABLE MULTIDIMENSIONAL PERFECT RECONSTRUCTION 549

Fig. 9. A dragon obtained when iterating H(z,, 2,) =1+ 27! +
27 'z5 " + 2z 'z, with the dilation matrix as in (72). Sixth iteration is given
plotted on the rectangular grid.

D. Two-Channel Orthonormal Bases

Assume that we are dealing with the n-dimensional two-
channel case characterized by a matrix D, with |det D| = 2
and D is a well-behaved matrix (see Section VI-C). Suppose
now the following for hy(n), h(n), #(x), and Y(x)
where n and x are n-dimensional integer and real vectors,
respectively.

If:

1) filters h, and A, are orthogonal to each other and their
translates (as given in (21));

2) the low-pass filter has a zero at aliasing frequencies
(see (67));

3) the filters are FIR;

4) h, is specified from 4, by the statement of Corollary
4.2;

5) the scaling function is the limit of the iterated functions
as given by (58);

6) the wavelet is a linear combination of the scaling
function and its shifts (see (64)); and

7) the scaling function and the wavelet are orthogonal to
each other and their integer translates across scales (see
the enumerated properties that appear after (64));

then (note that 4) follows from 1) and 7) follows from 5)).
Theorem 6.2: The orthonormal set of functions S =

{Yunlme ¥, ne ", xe "} where y,, = 2°"/?

“Y(D~"x — n)is abasis for L2(# "), i.e., forvfe (A"

S W N = 1112

me ¥ ne#"

(74)

Proof: The proof of the theorem is the n-dimensional
version of the proof given in [9] with appropriate modifica-
tions pertaining to #s-dimensional Fourier transform, and
with the dilation matrix D instead of the dilation factor 2.
For more details, we refer the reader to [18].

E. Final Visit to the Quincunx Case

For the purpose of the following analysis we will use the
matrix D, as given by (2) in the Introduction, the reason
being that when iterated this matrix would lead to separable
sampling in every other step. Thus, this gives us an opportu-
nity to check all of our results in the case that is very well
understood, namely two dimensions with dilation factors of 2
in each one of them. As noted earlier, the quincunx case
corresponds to a two-channel filter bank. Consequently, we
will have a scaling function and one wavelet. To be consis-
tent with our previous notation the low-pass filter is denoted
by #, and the high-pass by A,.

Let us first see how the ‘‘graphical’’ function defined in
(57) looks like

fOxy, x,) = 212 KP(ny, ny)

(1 ) e(m) -8 x[-50. 09

As we said, the regions as defined above are not in gene-
ral rectangular. To see that, consider what happens for
(ny, ny) = (0,0) and the first few iterations. Fig. 10 shows
these regions for i = 1,2,3. For i = 0O the basic support is
just the square [— 3,3) X [— 3,3) as can be seen from
(75). In the first and the third iteration the regions are
diamonds (tilted squares), while in the second one it is a
square as we expected because that case (second iteration)
corresponds to separable sampling. We conjecture that to
make this graphical function continuous we have to place a
zero of a sufficiently high order at the points of repeated
spectra, i.e., at (7, w) (following the discussion in Section
VI-B we know that at least one zero is necessary). For a
design example using this criterion see the next section and
Fig. 11 where the tenth iteration is given (the regions over
which the function is plotted are square). The limit function
as obtained in (63)

6(x) = VX (K)s(Dix k) (16)

thus satisfies a two-scale equation with respect to scale
change given by D, and is orthogonal to its integer shifts.
Similarly, the wavelet obtained in (64)

Y(x) = »/Ezkj h(k)o(D,x — k) (77)

together with its integer shifts and scales by D, will form an
orthonormal set.

VII. DEsiGN oF COMPACTLY SUPPORTED WAVELETS

The design of multidimensional filters is a difficult task
from a signal processing point of view, but it becomes all the
more involved by introducing the requirement that the low-
pass filter be regular. To design a filter having a number of
vanishing moments at a particular location in one dimension
is made possible by the existence of the factorization theo-
rem. Following our conjecture, we would like to do the same
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Iteration 1

Iteration 2

Iteration 3

Fig. 10. Shaded regions show the basic supports obtained when iterating
the continuous function as given in (75) for the quincunx case.

Fig. 11. Tenth iteration of a filter in (78) with coefficients as in (79). The
dilation matrix used is D, from (2). The plot is given on the rectangular
grid.

for the multidimensional case, but unfortunately factorization
theorems are lacking. Thus solving the problem, except for
very small cases, has to be done numerically. If one wants an
orthogonal solution the equivalent system of equations
becomes nonlinear. Therefore, here we show a very small
orthogonal design example that was obtained algebraically
solving a system of nonlinear equations. First note that the
filler bank is obtained using the cascade structure from
Lemma 5.1 where matrices R j, are unitary and the sampling
matrix used is again D, from (2). Here we use the smallest
(4 x 3) filer pair, since it was shown in [43], that it is
general and thus we know that the search space is complete.
The impulse response of the low-pass filter is

-q ~— %4,
ho(ni,my) = | —a, —aga, -a, 1 (78)
ayaa, —aa,

Following our conjecture (see Section VI) the approach would
be to try to impose as high as possible an order of a zero at
(7w, 7). An mth-order zero means that all the partial deriva-
tives (3% 'H (w,, w,)/d', a""—lwz)](,,_,,) =0, k=
lL»+,m—-1,1=0,--+,k — 1. Upon imposing a second-
order zero, the following solutions are obtained:

aG=FV3 a,=FV3 a,=2+ V3, (79)
+vV3 g, =0 a, =2+ V3. (80)

Il

a

The solution obtained in (80) is the one-dimensional
Daubechies’ D4 filter [9]. Hence, we conjecture that the first
solution (actually there are two of them but they are related
by reversal) would be the smallest ‘regular’’ two-dimensional
filter. Fig. 11 shows the tenth iteration of the filter in (78)
with coefficients as in (79) plotted using matrix D, from (2).
The plot is given on the rectangular grid. As can be seen
from the figure the obtained function looks continuous
although not differentiable at some points. As one simple
check of continuity we computed the largest first-order dif-
ferences in the first seven iterations on the rectangular (or 14
on the quincunx) grid. They are given in Table I. As can be
seen from the table the largest difference decreases with an
almost constant rate which is a good indicator of a function
being continuous. For the purpose of this calculation the filter
was normalized so that its /> norm is 1, and the differences
were computed for the iterated function as given in (75).
Using the result of the Theorem 6.2 one can then conjecture
that the above filter would lead to an orthonormal basis of a
compactly supported wavelet. Let us note that Daubechies
and Cohen discovered with the same example [7].

For larger size filters problems start to arise. First, the
cascade structure given by Lemma 5.1 not being complete we
are not even sure we are searching over the whole space of
possible solutions. Next, even for the first larger size, namely
a filter of size (6 X 5), the system of nonlinear equations
could not be solved analytically. Thus, already for this case
having five free variables one would have to resort to
numerical solutions.

Turning to the linear phase case, we used the cascade
structure given by Lemma 5.2, the reason being that the
diamond-shaped structure allows us to have a highly regular
low-pass obtained when convolving the filter Ay(n,, n,) from
(55) (with @ = 1 and @, = 4)

1
ho(nymy) =11 4 1
1

a number of times with itself. Writing the Fourier-domain
expression for (81) one obtains

Hy(w;, w,) = 1 + e77291 4 gmftorta

4+ e J(@1—w) + 4eJon

(81)

(82)

showing that it possesses a second-order zero at (w, 7).
Although not differentiable, it is continuous [12] (see Fig.
12). However, since the filter bank is not orthogonal, the
synthesis low-pass is not equal to the analysis low-pass, but
rather to the analysis high-pass modulated by (—1)"*"2
Thus, taking the synthesis low-pass from the cascade given in
Lemma 5.2 we imposed a second-order zero at (r, ) along
with some additional symmetry resulting in the following
impulse response:

2 —4 2
go(”x’nz)= 1 -4 -28 -4 1]. (83)
2 -4 2
1
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Fig. 12.  Sixth iteration of the filter in (81). The dilation matrix used is D,

from (2). The plot is given on the rectangular grid.

TABLE 1
THE SuccEssIVE LARGEST FIRsT-ORDER DIFFERENCES FOR THE FILTER
GIVEN IN (78) wiTH COEFFICIENTS AS IN (79) COMPUTED ON THE
RECTANGULAR GRID

Iteration Largest first Rate of
Number Order Difference Convergence
2 1.25163960
4 0.91034730 1.3749
6 0.62581208 1.4547
8 0.55111247 1.1355
10 0.51048814 1.0796
12 0.46069373 1.1081
14 0.40993778 1.1238

Unfortunately, it turns out that the above filter leads to a
fractal iterated function (see Fig. 13(a) and (b)). Daubechies
and Cohen in [7] show that a regular synthesis low-pass
corresponding to the analysis low-pass as given in (81) would
be a diamond of size 57, that is, impractical.

As we mentioned earlier, the filter given in (81) allows one
to obtain filters with arbitrarily high regularity. When con-
volved just once (H¢(w,, w,)) it already yields a continuous
and differentiable iterated filter [7] as can be seen from
Fig. 14 (sixth iteration is shown).

VIII. CoNCLUSION

This paper presented new results on multidimensional filter
banks and their connection to multidimensional nonseparable
wavelets. :

Many results are similar to their one-dimensional counter-
parts, but with the dilation factor replaced by a dilation
matrix D. This matrix plays a central role: its nonuniqueness
for a given lattice becomes important because iterated filter
banks (which are the key to our construction of wavelets
following [9]) lead to taking powers of D. Thus, very unlike
the one-dimensional case, a given filter can lead to vastly
different scaling functions depending on D.

Design techniques for filters leading to regular wavelets do
not carry over to the multidimensional case easily, as
expected. Therefore, the design of regular wavelets in multi-

2 v v

(b)

(a) Sixth iteration of the filter in (83). (b) The same as (a) with a
different viewpoint.

Fig. 13.

Fig. 14. Sixth iteration of a filter obtained when convolving (81) with
itself. The plot is given on the rectangular grid.

ple dimensions still poses a number of challenges. Some
initial results and conjectures on regularity were given, indi-
cating the directions for future work.

APPENDIX A

NOTATION AND DEFINITIONS

This appendix establishes the notation used in the paper. Most of
the definitions involving multidimensional z-transform and sampling
are taken from [46].

1) Boldface lower fupper case letters will denote vectors and
matrices, respectively. Raising an n-dimensional complex

vector £ = (z;,"**, Z,) to an n-dimensional integer vec-
tor k = (ky," -+, k,) yields
zk = Z]I‘sz’(? e zf'n_ (84)
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2) The z-transform of a discrete sequence h(k) =
h(k,, -, k,) is defined as

H(z) = 3 h(k)z™* (85)

kez"

while its Fourier transform is given by

H(w) = Y h(k)er (86)
keZ"
where (w, k) denotes the inner product of the two vectors.
Note that the Fourier transform of a sequence is its
z-transform evaluated on the unit hypercircles.
3) Raising z to a matrix power D denotes the following:

P = (2%, g%, -+, %) (87)

where d; is the ith column of the matrix D.
4) As an equivalent to the powers of the Nth root of unity,
Viscito and Allebach in [46] define

WD("’) = (e*ﬂw»d))’. .. e—j(w,d,,)) (88)

with d; as given previously.
5) The Schur product of two vectors is given by the follow-
ing:

nek=(nky, -, n,k,. (89)

6) H(z) will mean transposition of the matrix, conjugation
of coefficients and substitution of z = (z;," -, z,) by
(zy .-, z;l), or equivalently substitution of « =
(wp," ", w,) by (—w,,"**, — w,), that is, complex con-
jugation on the unit circle. Note that we will assume real
filter coefficients throughout.

7) Kronecker delta with vector subscripts 8,,, will be 1 only
if the vector (n — k) is a zero vector.

8) FIR will stand for finite impulse response or compact
support. The term orthogonal will be used in different
contexts, among others to denote paraunitary (or lossless)
matrices (see Section II-B). If we say that a filter is
linear phase it will mean that the angle in its Fourier
transform is a linear function of w, and this is possible if
and only if the coefficients of its impulse response have
central symmetry, i.e., if the corresponding polynomials
are symmetric or antisymmetric.

If we say that polynomials A; satisfy the power comple-

mentary property it will mean

2 A(2)Ai(z) =1 (90)

9

~

and the abbreviation PC will be used. In particular on the
unit hypercircles (z; = e, j=1,--n) (90) means
that the magnitudes squared of the Fourier transforms of
A and B sum up to one, i.e.,

;l&(«»)lz = 1. (1)

10

=

The identity matrix will be denoted by I, and the matrix
with 1’s along the antidiagonal by J.

APPENDIX B

ProoF oF LEMmMa 3.1
We prove the lemma point by point.

1) Noting that p,-’(z)xp(zD) = X(z) sufficiency is obvious

2

3

~

=~

since by substituting this condition into (12) one obtains
Y(z) = z7%¥-1T(2) X(z) from where it can be seen that
all the aliased versions of the input signal have disappeared.
Here k,_, denotes the vector from %/ which makes the
vector of the inverse polyphase transform causal. To prove
the necessity write p/ * T,(z”) = v'(z). To cancel alias-
ing the output of the bank has to be of the form Y(z) =
A(z) X(z) where A(z) is just a scalar polynomial. Substi-
tuting v(z) into (12) and equating it to A(z) X(2)

Y(2) = ok pi(2) - T,(2P) - x,(zP)
= 2 hw(z) - x,(2P) = A(z) - X(2). (92)

Substituting the expression for X(z) as given above into
the right-hand side of (92) yields

A(z) - X(z) = A(2) - 3 "X, (z")

- T w9 X))
= b(2) ()
St (s) ()

from where it is obvious that since b,(z) = A(2) - ¢ =
z"‘N”uk(z) the vector v(z) can be written as

v'(z)

(A(z)z*v-1250 -+ A(z)zhn-1zko1)
=T(z) - pj (95)

which completes the proof of the first part.

If the system is perfect reconstruction then Y(z) =
¢z "X(z). When compared to Y(z) = z7%¥1T(2) X(2)
as obtained in the proof of the first part it is obvious that
T(z) =c-z "zkv-1 = ¢ z7% On the other hand, if
T(z) = ¢ -z~ % then substituting it into Y(z) =
27k T(2) X(z) results in Y(z) =z *v-1-¢0-z77K.
X(z) =c-z27"-X(z), ie., perfect reconstruction is
achieved.

Sufficiency is obvious since by choosing G,(z) =
Adj (H,(z)) the transfer matrix 7, becomes a diagonal
matrix of delays and

Y(z) =z *-pl(z) -2 % T x,(2P)

27" X(z).

To prove the necessity, use the result of the second part of
the lemma and write 7(z) = ¢ - z~*. Then it can be seen
that Tp(zD) = ¢ - 27*I. Thus, det G, det H,=(c-z7%"
and since filters in both banks are FIR all the polynomial
factors in both det G, and det H,, have to be monomials.

|

AppPENDIX C

PrOOF OF THEOREM 4.1 AND ITS COROLLARIES

This result for a one-dimensional system appeared in filter bank
literature in [36] and in wavelet literature in [9], for a two-dimen-
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sional one in [43] and since the approach here is quite similar, we
just outline the proof, for more details refer to [19].

Let us first prove a fact that will be used in the proof of the main
theorem. Expanding the product in (17) yields

Hyo(2) Hoo(2) + Ho(2) Hyo(2) = 1,
Hyo(2) Ho\(2) + Hyo(2) Hy(z) =0,
Hy(z) Heolz) + H,,(2)Hy(z) =0,
Hy\(z) Hoy(2) + H,(2) H,(z) = 1.

(%)
(97)
(98)
(99)

Proposition C. 1. If the polyphase matrix is orthogonal, then Hyy,
and H,, are relatively prime. Similarly, H,, and H,, are relatively
prime.

Proof: Take the first statement. The second one is proved
similarly. Suppose that H,, and H,, are not coprime. Then using
the fact that a polynomial in n variables which is not identically
zero can be resolved into the product of irreducible factors in only
one way [4], one can take the common factors out and call their
product P(z, z,,"*, 2,,). Substituting this into (96) results in

P(2) P(z) - (Hio(z) Higo(2) + Hip(z) Hip(z)) = 1 (100)

which for all the vanishing points of P(z) goes to zero, contradict-
ing the fact that the right side of (100) identically equals 1. O
Proof of Theorem 4.1: Consider (97). Since by Proposition

C.1 Hy and H\, are relatively prime, one can conclude that
H,(z) must contain all the polynomial factors of I:Im(z) except for
the monomial z* which makes it causal. Thus, H,(z) = c - zk-
Hoo(2). Similarly H,y(z) = ¢, - 2 - Hy,(z). Substituting this into
(98) and cancelling H g z)ﬁon(z) (it is allowed to do so since they
are not identically equal to zero) yields ¢, = —(1/c¢,)and k' = k.
Thus, Hy(2) = ¢ 2% Hy(2), and H,o(z) = —(1/c) - 2% -
Hy,(z). Substituting this into (99) and using (96) it can be seen that
¢ has to be either 1 or —1. This finally gives us the complete
specification of the system as given in the statement of the theorem.
0

Proof of Corollary 4.1: Take the polyphase components of the
first filter (the proof for the second one is analogous). Since they are
causal their corner coefficients are P©® = pM = (0,- - -,0) and
Q9, 0. Consider now the PC condition as given in the statement
of the theorem. The polynomial A(z) = Hm(z)ﬁoo(z) will have
the corner coefficients P = — Q© and Q4 = Q© while the
corner coefficients of B(z) = Hy,(z) Hy (z) will be P(® = -QW
and Q'® = Q. For the PC property to hold the polynomials
A(z) and B(z) must be of the same size for all coefficients (except
the center one) to cancel, and thus both polyphase components have
to be of the same size. [

Proof of Corollary 4.2: Using the matrix D, from (38) write

Hy(-1z) = Hyp(zP1) ~ 2, Hy (z)
where 721 = (2122, 2523, le;_l),,,l). Using the expressions
obtained in the proof of the theorem for the polyphase components
of the second filter write

Hl(z) = Hlo(zD’) + zlell(zDI)»
= z;<k|+kn>z£<k,+k7) z;(k,,,m(—n"“k")
' ﬁm(ZD')’

~ gy gy G kn g Gvk

: I;'oo(zD')’

_ _pyn-l
. Z"(k""+( D" k)

=~z ¥Hy(-2). O

APPENDIX D

PrROOF OF LEMMA 5.2

To prove the lemma a polynomial having a specific structure that
will henceforth be denoted as an A-polynomial is first defined. A
polynomial is an A-polynomial if it satisfies the following recur-
sion:

AP®(z,) = AP®(z, )

k
+ 2 APYT (2, )27 (2, + ) (101)

i=1

where
k M
AP®(z)) = 272%4P®(27') = 3. pizy . (102)
i=0
Here z;=(z),*, z;). Note that in one dimension an A-poly-

nomial is just a symmetric polynomial having only even degree
terms, in two dimensions it is 2 diamond shaped symmetric polyno-
mial having again just even degree terms, a.s.o0. Also note that the
sum of two A-polynomials of the same degree is again an A-poly-
nomial. A prefix ““ A** associated with the name of the polynomial
will indicate that it is an A-polynomial, a superscript indicates its
degree (superscript (0) would mean a constant). By d, the degree of
the center coefficient will be denoted (the degree is the sum of all
the exponents) and by a, the coefficient itself. Here the statements
of some facts that will be used in the proof of the lemma are given.
Since their proofs are just technical they are omitted here (for
details, see [18]).
Proposition D.1: For AP® the following is true:

1) it is of size (2k + 1) in all dimensions;

2) it has just even degree terms;

3) id,) = i(k);

4) AP®(z,) = 27 2*AP® (271, ie., all A-polynomials are
symmetric polynomials;

5) z72mApU = gotk+2m),

6) AP(k)AQ(m) — AR('”"').

For the sake of clarity in the statement of the lemma the prefix ““ A"
was omitted as well as the superscripts associated with the polyno-
mials. For the proof they are reintroduced. Also note that the whole
analysis will be performed in the upsampled domain.

Proof:

1) To prove the lemma let us write the general expression for the
polyphase matrix containing polyphase components of sizes 3 and 5
in n dimensions (recall that z{’ denotes z? where z =
(21,7, 2)")

AHG ()
AHQP (")

AH ()

my _
Hp(zun) = AH.‘]”(zf,”)) ’

(103)

Due to their required size and the fact that they have to be linear
phase it is obvious that the above polyphase components indeed are
A-polynomials. Therefore, we can expand each one using (101).
AH(z{) having a superscript (0) is obviously a constant that will
henceforth be denoted by 5. Note that (101) implies that the first
term can be taken as the corresponding polyphase component in
(n — 1) dimensions. Then the determinant of (103) can be written
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as

det H,(2,") = AHE (2.") AH{P(2") — AH (") b

det H, (2"~ ")
= AHG( ) AR () -

AHP(2 )b + 2adz;?

Tl
(o AR )+ 0 A ) b AHD( ) 5 (e )
TZ
+{ad - be) - 277 (z;2 + 22). (104)
— 7
T;

a) Let us first consider the case when & # 0. Observe that T,
and 75 have to equal zero since they appear in pairs, and

bear in mind that each polyphase component in the 3/5 solution
from the first part of the lemma is an A-polynomial.

thus e n=1
a-d=b-c, (105) AHE D (2])  AHYE?(2})
AH (27 7) AHE() A ()
L AR e AR , AH“’(z%) AR(2})
b HE(<})  AHP(z})
Here;l)wc("stlgl do not know what b, AH{(z{""Y), and AHE(22)  AHYEV(22)
Wg{are(lzeﬁ W’l)thare Substituting (105) and (106) into (104) = AHE() AHD(2)

det Hp(zgl")) = det Hp( z(- l)) + 2adz,‘2 where we used the results on A4-polynomials stated previ-

ously.
which obviously has to have a single nonzero coefficient. e Inductive step: The proof is completely analogous to the
Using Proposition D.1 it can be shown that det H,,(z~ ") first step. O

is again an A-polynomial with index (2) and it possesses a
center term z; 2. Hence, we just have to find a solution
which would make this A-polynomial become a single
term. Note that achieving this is equivalent to finding a
general solution in (n — 1) dimensions, which in turn
yields b, AHE(z™Y), AHP(z¢~D) and finally

AHV (24"~ ). This proves the lemma for the case when b
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