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1 Introduction

This paper describes how to design a Switched Scalar Quantizer for a Hidden Markov
Source. Our goal in studying Switched Scalar Quantizers is to develop efficient waveform
coding systems for nonstationary sources. Unfortunately, the theory for coding nonsta-
tionary sources is not as well developed as for the stationary case; most current approaches
to coding nonstationary signals are rather ad hoc. Therefore, the design and analysis of
waveform coding systems for nonstationary sources remains an important problem.

The class of all nonstationary sources is too broad for analysis. To design and analyze
coding systems,iwe need to make some simplifying assumptions about the time-varying
soufce statistics. One type of nonstationary behavior, observed in speech, is where the
source appears to switch between different short-term modes of stationary behavior [1].
However, the order in which different modes become active, the mode transition times,
and the actual duration of any particular mode all appear to be random. This leads to
the concept of a composite source (2,3,4]. A composite source is a (discrete-parameter)
stochastic ordered-pair process (X;,S;)2,. The process (X,)2, is the source output;
it is this process which is to be transmitted. The process (S:);2, is the switch. The
switch cannot be observed directly, but controls the probability distribution governing the
output. The most popular composite source model, particularly in speech recognition,
is the Hidden Markov Model [5,6], a composite source for which the switch is a Markov
chain [7]. The Hidden Markov Source (HMS) is an extension of the Hidden Markov Model
to sources which produce infinitely long waveforms. The HMS has the advantage of being
(if the parameters are properly chosen) a stationary ordered-pair process whose output
appears to be nonstationary to an observer who is measuring only local statistics.

Most coding systems intended for nonstationary sources use an adaptive quantizer

(AQ). An AQ automatically adjusts its parameters in response to perceived changes in



Abstract

This paper describes a new algorithm for designing Switched Scalar Quantizers for Hidden
Markov sources. The design problem is cast as a nonlinear optimization problem. The op-
timization variables are the thresholds and reproduction levels for each quantizer, and the
parameters defining the next-quantizer map. The cost function is the average distortion
incurred by the system, allowing for a different distortion measure for each subsource. The
next-quantizer map is treated as a stochastic map so that all of the optimization variables
are continuous-valued, allowing the use of a gradient-based optimization procedure. This
approach solves a major problem in the design of switched scalar quantizing systems, that
of determining an optimal next-quantizer decision rule. Details are given for computing
the cost function and its gradient for weighted-squared-error distortion. Simulation re-
sults are presented which compare the new system to current systems, where we see that
our system performs better. It is also observed that the optimal system can in fact have
a next-quantizer map with stochastic components.



spect to the system parameters. These quantities are needed for a gradient-based descent
approach to solving the design problem. Details are worked out for the weighted-squared-
error distortion measure, allowing for different weights for each subsource. Section 6 gives
a lower bound on the distortion achievable by any switched quantizer when the number
of quantization levels is specified. This is followed by Section 7, where the design algo-
rithm is applied to several examples. Comparisons are made against other adaptive and
nonadaptive encoding systems. Finally, a summary and ideas for further research are

provided in Section 8.

2 The Hidden Markov Source

As mentioned in the Introduction, we will restrict attention to the following type of
composite source, which is a special case of a Hidden Markov Source (HMS). An HMS
is a composite source for which the switch is a Markov chain. Let S be the number of
subsources in the HMS. We assume that each subsource is a memoryless source, i.e., an
independent and identically distributed sequence of real-valued random variables. Each
subsource is assumed to have an absolutely continuous first-order probability distribution
function. The probability density function (pdf) of the observation when the switch is
pointing to the j-th subsource will be denoted by g;(z).

We assume that the switch is time-homogenous, irreducible, and aperiodic. Thus, a

stationary probability distribution exists for the Markov chain, (py, p3,...,ps), where
pi = P[S. = j]. (1)
The switch transition probability from state j to state k will be denoted by Ay;:
Ajj = P[Sesr = kS, = ). | (2)

We also assume that the Markov chain is started in its stationary distribution because

then the observation process (X,)2, is stationary, although this will not appear to be



the source probability distribution in an effort to reduce the effects of source-quantizer
mismatch. AQ schemes differ in how and how often these adjustments are made. Many
approaches for designing AQ’s have been studied (8], mostly for the case where only the
variance of the source is changing.

The major drawback of current approaches to AQ is that they do not assume any
model for the nonstationary source. Usually, the only assumption is that fluctuations in
signal power are completely arbitrary. This is clearly a worst-case approach. A model-
based design approach should yield a system which performs significantly better than these
worst-case approaches when the nonstationary behavior has some structure, as it does for
composite sources. A second drawback is that the design of current AQ systems is rather
ad hoc. A third drawback, as we will see later, is that any AQ system with a variable-
scale-fixed-shape quantizer is inherently suboptimal for the type of source considered in
thie paper.

AQ systems are specific instances of Switched Scalar Quantizers. An optimal design
approach, however, should make as few a priori assumptions about the individual quan-
tizers and the switching strategy as possible. The problem that arises is how to select
the best parameters and switching strategy. This is the problem addressed in this paper.
Our solution is to formulate the design problem as a constrained optimization problem.
To do this, we first show how to parameterize the next-quantizer decision rule. We then
show how to calculate the average distortion and its gradient.

The paper is organized as follows. The HMS model is described in Section 2. We
restrict ourselves to a specific type of HMS, one having memoryless subsources. The
mechanics of the Switched Scalar Quantizer are described in Section 3. The design prob-
lem is formally stated in Section 4. There, we briefly discuss why finding an optimal
next-quantizer decision rule is difficult, and then describe our solution to this problem.

In Section 5, we show how to calculate the average distortion and its gradient with re-



In general, the transmitter state can be updated in one of two ways: as a function
of the current transmitter state and the input to the transmitter (i.e., the source out-
put), or as a function of the current transmitter state and the output of the transmitter
(i.e., the selected channel symbol). When the next transmitter state is a function of the
current transmitter state and the transmitter output, a correctly initialized receiver with
sufficient memory that receives the channel symbols without error can track the sequence
of transmitter states and hence the quantizers used by the transmitter without the need
for side-information: “overhead” information about which quantizer is currently in use.
A transmitter with such a next-transmitter-state map is called trackable [9]. If, however,
the next transmitter state is a function of the current transmitter state and the input to
the transmitter, then side-information is essential. In this paper, we assume that we do
not want to transmit side-information, so the next transmitter state will be selected on
the basis of the current transmitter state and the observed quantizer cell.

We have outlined the operation of a general finite-state switched quantizer transmitter.
The system that will be considered in this paper is simpler, however, in that we identify
the transmitter state at time ¢ with the quantizer being used at time ¢; that is, we assume
that there is a one-to-one correspondence between transmitter states and quantizers.
Therefore, we will usually refer to the next-transmitter-state map as the nezt-quantizer
map. There are two reasons for this simplification. First, the proposed system is more
tractable. Second, the examples in Section 7 will show that the simplified system often
performs close to theoretically derived bounds that also apply to the more general system,
demonstrating that there is usually little loss in performance by making this simplification.

If each of the T quantizers has C cells, then the transmitter needs to store T(C — 1)

parameters, namely, the decision thresholds

g, i=12,...,T, I=12,...,C -1,



the case to an observer who doesn’t know about the HMS structure in the sense that the

locally measured statistics will change with time.

3 Switched Scalar Quantizers

3.1 Finite-State Switched Quantizer Transmitters

In a switched quantizer transmitter, a scalar quantizer is used to encode each source
sample. The quantizer to be used at a particular time instant is selected from a predeter-
mined set of quantizers on the basis of the transmitter’s history. In a finite-state switched
quantizer transmitter, this set of quantizers is finite.

For a set of T quantizers each having C cells, storing the full history of the trans-
mitter’s operation for the past K time instants requires K log,(T'C) bits. Obviously, this
quantity grows with K. In a finite-state switched quantizer transmitter, the history of
the transmitter’s operation is condensed to one of a finite (and preferably small) num-
ber of possibilities. Therefore, the transmitter’s history is summarized by a finite-valued
variable called the transmitter state. The transmitter state at time ¢ uniquely determines
which quantizer will be used on the source sample X,. In general, it is not necessary that
there be a one-to-one pairing between transmitter states and quantizers; different states
may use the same quantizer. However, the number of transmitter states is not less than
the number of quantizers.

Denote the transmitter state at time ¢ by 7;. Let the number of allowable states be
T. Without loss of generality, we take T, € {1,2,...,T} Vt. Applying the quantizer
assigned to T; to the source output X, results in a channel symbol C;, which is the index
of the observed cell. After transmitting the selected channel symbol, the system updates
the transmitter state, which in turn causes the selection of a quantizer for the next time

instant.



where the superscript indexes the reproduction set (i.e., the receiver state) and the sub-
script indexes the received channel symbol (i.e., the index of the cell observed by the
transmitter’s quantizer). Observe that the number of distinct reproduction values is not
greater than RC. Thus, a system with a finite-state switched-reproduction-set receiver
cannot outperform an optimally designed fixed scalar quantizer having RC levels [9, The-
orem 2].

For finite-state switched-reproduction-set receivers, the number of receiver states R is
finite, but need not be the same as the number of states T' in the transmitter. For example,
the two numbers may differ when the receiver implements some additional filtering [9].
However, if the transmitter is trackable, one (not necessarily optimal) option is to take the
next-receiver-state map to be the same as the next-transmitter-state map. In this case,
the receiver only uses its memory to track the the sequence of transmitter states, and the
receiver is then called a tracking receiver [9]. In the absence of channel errors, we have
T, = R, Vt for a tracking receiver. For this paper, we assume a tracking receiver. Since the
transmitter is a finite-state switched quantizer transmitter, the reproduction map 7 simply
implements the inverse quantizer characteristic. That is, Y; = n(R;, C,) = n(Tt, C;) is just
the reproduction level assigned to cell C, of the quantizer associated with transmitter
state T,.

A finite-state switched reproduction set receiver is time-invartant if the next-receiver-
state map and the reproduction levels do not depend on ¢. We assume that our receiver
is time-invariant.

In summary, our receiver will be a tracking, time-invariant, finite-state switched re-
production set receiver. Since the receiver is a tracking receiver, the number of receiver
states is equal to the number of transmitter states, and the next-receiver-state map is

identical to the next-transmitter-state map.



where the superscript indexes the quantizer and the subscript indexes the threshold.

A finite-state switched quantizer transmitter is time-invariant if the next-quantizer
map and the decision thresholds do not depend on ¢t. We assume that our transmitter is
time-invariant.

In summary, our transmitter will be a trackable, time-invariant, finite-state switched
quantizer. The quantizers are in one-to-one correspondence with the transmitter states.
The number of quantizers will be denoted by T. For convenience, it is assumed that all
of the quantizers have the same number of cells, this number being denoted by C. We

will use 7 to denote the next-quantizer map: T,;, = (T, Cy).

3.2 Finite-State Switched Reproduction Set Receivers

In general, the receiver implements a reproduction map 7 which depends on the received
channel symbol C; and the current receiver state H, to obtain the receiver output Y,,
which is the reproduction of the source output X,. If Y; is intended to be a reproduction
of the source output X,_a, then the receiver has a delay A. In this paper, we assume
that there is to be no receiver delay (A = 0).

After producing Y;, the receiver updates its state according to the nezt-receiver-state
map.

In a finite-state switched reproduction set receiver, there are a finite number of sets of
reproduction levels, each having C elements. The receiver state at time ¢, denoted by R;,
determines from which of these sets the receiver output Y, will come. The received channel
symbol C, determines which element of the selected set will be the receiver output. If we
denote the number of receiver states by R, the receiver needs to store RC parameters,

namely, the reproduction levels

n, 1=12,...,R, 1=12,...,C,



By convention, £ = —oo and ¢ = +oo for each quantizer. The average distortion D for

the SSQ is given by

S T
D =) % =Dy, (4)
j=1i=1
where
w5 = P[Sy = 5, T, = i] (5)

is the probability of using the i-th quantizer to encode an output generated by the j-th
| subsource at time ¢.}

The SSQ design problem is to select the quantizer thresholds, the reproduction lev-
els, and the neit-qua.ntizer map so as to minimize D. The reproduction levels_ are not
truly independent variables, however.? For a given set of distortion measures, thresh-.
olds, and next-quantizer map, the optimal reproduction levels are completely determined.
Therefore, of the quantizer thresholds and reproduction levels, only the thresholds will be
adjusted directly by the design algorithm.

The major problem in designing a SSQ is the determination of an optimal next-
quantizer map. To see this, let Z); C Jc be the set of cell indices for the k-th quantizer
that cause the transmitter to select the i-th quantizer for use at the next time instant. To
characterize the optimal set of Z;’s, we can proceed in a manner similar to the derivation
of the Bayes decision rule for multiple hypotheses [14]. It turns out that to minimize D

for a fixed set of quantizers, the l-th cell of the k-th quantizer should be assigned to Zj;

1The use of ¢ in all of the equations that follow is only to help distinguish between the values of
variables at the current time instant and the next or past time instants. Because the coding system is
time-invariant and the source is stationary, the terms in these equations do not really depend on the
actual value of ¢.

2 Alternatively, the reproduction levels could be taken as the independent variables and the thresholds
could be dependent. This is, in fact, the approach we used in [13] where we showed how to design a
single quantiser system. However, now the distortion depends on the next-quantiser decision rule, which
depends on the thresholds but not on the reproduction levels. Hence, it seems more logical to choose the
thresholds as the independent variables.



3.3 Switched Scalar Quantizers

The combination of a trackable, time-invariant, finite-state switched quantizer transmit-
ter and a tracking, time-invariant, finite-state reproduction set receiver will be called a
switched scalar quantizer (SSQ). This paper is concerned with the design of SSQ’s for
HMS’s having memoryless subsources.

The idea of switching between a finite number of quantizers is not new [10,11,12).
However, our design approach is new and offers the possibility for significant improve-
ment in the performance of such systems because we make use of an HMS model for
the nonstationary behavior. Our approach also solves a problem not solved b‘y other
switched-quantizer design algorithms: the design of an optimal next-quantizer decision
rule.

In what follows, we assume that the channel is noiseless, for otherwise the receiver
could lose track of the sequence of transmitter states and hence the quantizer sequence
being used by the transmitter. The effects of channel noise on SSQ performance will be

studied in a later paper.

4 The Design Problem

Let R denote the real numbers and R, the nonnegative real numbers. Define J, =
{1,2,...,k}. Let d; : R xR — Ry, j € Js, be S scalar distortion measures, one for
each subsource. These distortion measures need not be different. The first argument of
d; is the source output, while the second argument is the receiver output.

Let Dj; be the average distortion incurred when the i-th quantizer is used to encode

a source output generated by the j-th subsource, with respect to the distortion measure

dj. Then
C e;’ ;
Di=Y [ di(z,ni)gi(z)d. (3)
=1 *Ci-s



and the inequality constraints
Tilkl 20, 1€ JT, ke JT, le Je. (8)

The next-quantizer decision rule is deterministic whenever Tin 18 1 for exactly one
i € Jr and 0 for the remaining t’s, for all pairs (k,l) € Jr x Je.
It turns out to be more convenient to replace rrjy by 1 — Y7} Tilxl, and replace the

equality constraints of (7) by the inequality constraints

T-1
1- Y ru >0, keJdr, lele. (9)

i=1

The number of design variables is now 72C —T. The number of such inequality constraints

is TC. The inequality constraints of (8) are now replaced by (T — 1)T'C “box” constraints:
0<mu<1l, i€Jr, k€Jr, le€Jc. (10)

The best system with a deterministic next-quantizer map can also be found using
this approach by solving a similar optimization problem with the (T — 1)T'C additional

equality constraints
Tae(l —Tyu) =0, i€ Jry, k€ Jr, L€ Jg. (11)

These new constraints force the 7’s to be either one or zero. This approach works best
with an optimization algorithm that does not require feasibility during the intermediate
stages.

To conclude this section, we note that a stochastic next-quantizer map can be imple-
mented as follows. Suppose that both the transmitter and the receiver have access to a
pseudo-random sequence started from the same seed at the same time instant, as might be
done in spread-spectrum systems [16]. The elements of this sequence are used whenever
a stochastic decision is required, and because the transmitter and receiver sequences are
identical, the receiver always knows what decision was made by the transmitter (provided

that there are no channel errors).
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only if [15]

s ) s i

JZ;P[Ct =1|S; = 3,T. = k]mjuDy < ,z—:x P[Cy = US: = j, T, = klrjxDjq
for all ¢ € Jr, where Dj; is the average distortion incurred when the i-th quantizer is
used and the switch at the previous time instant was pointing to the j-th subsource. Note
that the determination of the optimum Z;’s, and hence the optimum next-quantizer
map, depends on knowing P[S; = j,T; = k| for all k € Jr and j € Js. However, these
quantities themselves depend on the next-quantizer map. This intertwining relationship
between the next-quantizer map and the probabilities P[S, = j,T, = k] is the source of
the difficulty in finding the optimal switching rule. Therefore, this problem will have to
be solved using an iterative optimization algorithm. This requires that we parameterize
the next-quantizer map.

There are two possible approaches. One is to require that = be deterministic, resulting
in an integer programming problem. The other is to treat = as a stochastic map, allowing
us to work with continuous-valued variables. We take the stochastic approach because it
leads to a gradient-based descent algorithm and is more general in that it includes the
deterministic case.* This idea was first proposed in (9, Section VI| as a suggestion for
further research.

Let 7 be the probability that observing the I-th level of the k-th quantizer causes

the transmitter to choose the i-th quantizer for use at the next time instant:
T = P[Teyr = i|Te = k,Ce = ). (6)
For these to be probabilities, they must satisfy the equality constraints

T
Ynm=1, keJr lel, (7)
=1

3We will later see that oftentimes the optimum next-quantiser decision rule is in fact a stochastic
decision rule.
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