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Performance of Binary Block Codes at Low 
Signal-to-Noise Ratios 

Chi-Chao Chao, Member, IEEE, Robert  J. McEliece, Fellow, IEEE? Laif Swanson, Member, IEEE, 
and Eugene R. Rodemich 

Abstract-The performance of general binary block codes on 
an unquantized additive white Gaussian noise (AWGN) channel 
at low signal-to-noise ratios is considered. Expressions are de- 
rived for both the block-error and the bit-error probabilities 
near the point where the bit signal-to-noise ratio is zero. These 
expressions depend on the global geometric structure of the 
code, although the minimum distance still seems to play a 
crucial role. Examples of codes such as orthogonal codes, 
biorthogonal codes, the (24,121 extended Golay code, and the 
(15,6) expurgated BCH code are discussed. The asymptotic 
coding gain at low signal-to-noise ratios is also studied. 

Index Terms-Block codes, additive white Gaussian noise 
channel, low signal-to-noise ratios, error probabilities, coding 
gain. 

I. INTRODUCTION 

T IS WELL KNOWN that for binary block codes of a I fixed rate using phase-shift keying modulation on an 
AWGN channel, for high signal-to-noise ratios, the de- 
coder error probability is asymptotically controlled by the 
code’s minimum distance: the higher the minimum dis- 
tance, the better the code will perform. However, for 
some applications, for example when the code in question 
is the inner code in a concatenated coding system, it is 
important to know about decoder error probability at low 
signal-to-noise ratios. There is, however, surprisingly little 
published work on this problem. In [l], Posner studied the 
behavior of binary block codes on an AWGN channel at 
low signal-to-noise ratios, but most of his results are for 
“hard-decision’’ decoders, the only exception being his 
“soft-decision” results for orthogonal codes. In this paper, 
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which should be considered as a belated continuation of 
[l], we will study the decoder error probabilities for gen- 
eral binary block codes on an AWGN channel assuming 
maximum-likelihood, i.e., soft-decision, decoding. 

Our approach is to study error probabilities of codes 
near the point where the bit signal-to-noise ratio E,/No 
is zero. One of the results obtained is the following 
approximation to the block-error probability: 

where the binary block code considered has M codewords 
and rate R, and di is the Hamming distance between the 
ith codeword x i  and the transmitted codeword x,. We 
shall see that the numbers Pi in (1) depend in a compli- 
cated way on the global geometric structure of the code, 
so that it is apparently not possible to extract from (1) a 
simply-interpreted quantity that controls the code’s error 
probability at low signal-to-noise ratios. Still, we shall see 
in several special cases, and conjecture in general, that 
the terms in (1) corresponding to codewords at minimum 
distance from xo dominate the expression, so that the 
minimum distance may still play a crucial role, even at low 
signal-to-noise ratios. 

The full derivation of (1) is given in Section 11. In 
Section 111, a similar expression is found for the bit-emor 
probability at low signal-to-noise ratios. The properties of 
P, are further explored in Section IV. Then the results are 
applied to examples such as orthogonal codes, biorthogo- 
nal codes, the (24,121 extended Golay code and the (15,6) 
expurgated BCH code in Section V. In Section VI, we 
study the asymptotic coding gain at low signal-to-noise 
ratios. Finally, discussions and conjectures are given in 
Section VII. 

11. BLOCK-ERROR PROBABILITY 
be a binary block code (with 

components 0 and 1) of length n and rate R = 

(log, M ) / n .  We will evaluate the performance of C on an 
unquantized AWGN channel as a function of the bit 
signal-to-noise ratio Eb/No,  which we denote by A,. Sup- 
pose each codeword is equally likely to be selected for 
transmission. The codes we are interested in are all “sym- 

Let C = {x,, xl,“., x M -  
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metric" in the sense that the error probabilities are inde- 
pendent of which codeword is transmitted (all linear codes 
have this property, for example). Therefore, we assume 
that xo is transmitted. 

If 3, is the counterpart of x, with its components 0 
changed to -1, then the output of the channel becomes 

y = 6 3 ,  + z, 

where the quantity 6= A V % ?  and the vector z = 
(zl, z2, . - - ,  z,) has all components i.i.d. standard normal 
random variables (normal random variables with mean 
zero and variance 1). The maximum-likelihood decoder 
outputs the codeword with the minimum Euclidean dis- 
tance from the received vector y. This will be the correct 
decision, if and only if the decoded codeword was actually 
transmitted, or equivalently, 

1z12 < Iy - JSi i l2 ,  for i = 1 , 2 ; . . , ~  - 1.  

This inequality can be rewritten as 

where (z ,  6 < 3 ,  - io)) denotes the inner product of z 
and 6 ( 2 ,  -2,). Let d, be the Hamming distance be- 
tween x, and x, and let U ,  be the vector in the direction 
of 3, - 3, with magnitude fi. (Actually U ,  is just x, if 
x, = 0.) Then 6 ( 2 ,  - io) = 2 A m u , .  If we define the 
normal random variables 

T, = ( z , ~ , ) ,  for i = 1,2;..,M - 1 ,  ( 2 )  

then Pc, the probability of correct decoding, is given by 

Pc = Pr {T, < A m d , ,  for i = 1,2,..., M - 1) .  

If the cumulative distribution function of T I ,  T,;.., TM- , 
is denoted by F(x,, x 2 , - * - ,  x,_,>, then Pc can be written 
as 

Pc = F ( A m d 1 ,  A f i d , , . . . ,  AV%?dM-l).  (3) 
Note that T I ,  T,;.., T,- are M - 1 normal random vari- 
ables with mean zero and covariances 

U,, = (U, ,U]) .  

If U ] ,  u2 ; .* ,  u M -  , are independent, then the covariance 
matrix Y is nonsingular and the density function of 
T l , T 2 ; ~ - , T M - ,  is given by 

1 

We can therefore write Pc as an M - 1-fold integral: 

However, if U , ,  U,;.., U,,,- are not independent, then V 
is singular and T,, T,;.., TM- are "degenerate" in the 
sense of [2, p. 871, and we cannot convert Pc to an 
integral. This is true for most practical codes because 

usually M >> n. For example, the (24,121 extended Golay 
code has M = 4096 and n = 24. 

The approach we take is to view Pc in (3) as a function 
of A and approximate Pc by Pio) + Apt.'), the first two 
terms in a power series expansion of Pc(A), in the neigh- 
borhood of A = 0. The following two theorems are essen- 
tial to our derivation. Their proofs are given in Appendix 
A. 

be M - 1 mean zero 
jointly normal random variables (possibly degenerate),with 
covariances a,, and with cumulative distribution function 
F ( x l ,  x2,..., x,- with every pair X,, XI  linearly inde- 
pendent (nondegenerate). Let a,, a,,-**, a M -  be nonneg- 
ative real numbers. Then, for x > 0, 

Theorem 1: Let XI, X,;.., XM_ 

F (  ~ I x ,  u ~ x , * * * ,  u M -  1 ~ )  = F ( 0 7  O,..., 0 )  

where 

pi = Pr {xj < o for j z i 1 xi = 01 
def 
= lim 

h - 0  

Pr{Xj < Ofor j # i,O <Xi  I h }  
Pr (0 < X i  s h ]  

The next theorem establishes that the limit Pi previously 
defined exists, and indeed establishes the rate at which 
the limit is approached. 

Theorem 2: Define, for k 2 0, 

P i ( h )  = Pr {Xi < 0, for j # i IO < Xi I h } .  

Also define the random variables T ,  for j # i, by 
y = ViiX. - u..x 

I ' I  1 .  

Then, 

lim P i ( k )  = Pi = Pr {T I 0, for j # i}. 
h - 0  

Also, 
J P i ( h )  - P i ]  = O ( h ) .  

Since no two r ' s  are linearly independent because no 
two ui's are, we can now use Theorems 1 and 2 to 
estimate Pc. Note that since the codes we consider are 
"symmetric," 

1 
F(O,O;.*,O) = - M '  (4) 

which follows from the fact that each codeword is equally 
likely to be decoded if there is no signal at all. Also note 
that a,, = E ( T 2 )  = ( u i ,  u i )  = d i .  Hence, we have (com- 
bining (3) and Theorem 1) 

where Pi is the conditional probability that T ,  < 
O,-..,T,-, I 0, Ti+, I O,..., TM- ,  s 0, given that T, = 0. 
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The block-error probability PE = 1 - Pc, and hence, for 
very small A, 

which is the result of (1). 

111. BIT-ERROR PROBABILITY 
Maximum-likelihood decoding of binary linear block 

codes on an unquantized AWGN channel is now consid- 
ered. We define Pb, the bit-error probability, to be the 
ratio of the expected number of information bits in error 
to the number of information bits. Let C = {xo, 
xl;--, x M -  1} be a binary linear block code of length n and 
rate R = k / n ,  where M = 2k.  Assume xo = 0 is transmit- 
ted, and then 

y = J S f o + z  

is the received vector. If the decoder chooses to output x,, 
then it will make w, bit errors, where w, is the number of 
1's in the information sequence corresponding to x,. The 
expected number of information bits in error is hence 

M -  1 

b = w, Pr {The decoder outputs x, .} , 
r = l  

and the bit-error probability is Pb = b / k .  
It remains to find the probability that the output code- 

word is x,. The maximum-likelihood decoder will output 
x I ,  if and only if the Euclidean distance between the 
received vector y and -6, is the smallest among all code- 
words, i.e., 

Iy - 6 2 , I  < Iy - JSi,I, f o r j  z i, 

which is equivalent to 

( z ,  -6, - 2,) < &(-6,, -6, - -6,), for j # i. (6) 

If we define d,, to be the Hamming distance between x, 
and x, and U,, to be the vector in the direction of 2, - 2, 
with magnitude Jd7;, then (z,  -6, - 2 , )  = 2(z, U,,). Also 
a<;,, -6, - -6,) = 2Ad%?(d, - d,) .  Hence, (6) is equiva- 
lent to 

( z ,u i j )  < A&%(dj - d i ) ,  for j # i. 

For i # j ,  we define the normal random variables T j  = 

( z , u i j ) ,  which have mean zero and variances d i j .  Then, 
the bit-error probability is 

1 M-1 

Now we view Pb as a function of A and approximate Pb 
by Pio) + APf ' ,  the first two terms in a power series 
expansion of Pb(A) near A = 0. Proceeding as in the last 

section, we obtain 
1 M - l  

p p  = - c wiF~(O,O;-,O),  
k ; = I  

where F' is the cumulative distribution function of 
T,,,***,T, i - 1 ,  T, , i+,,-**,T,,M-l.  Also, 

where PI, (i # j )  is the conditional probability that T,,. 5 
0, for j '  # i and j '  # j, given that Ti, = 0. The linearity of 
the code is now used to simplify both the expressions of 
Pjo) and Pi'). For every pair of codewords x L ,  x,, there 
always exists another codeword x, such that x, @ x, = x l ,  
where @ is the modulo-2 addition. Since the normal 
distribution is symmetric about the origin, up to a permu- 
tation of the parameters, F',  for i = 1,2,..., M - 1 are 
equivalent to F in the last section, and PI, = P,, where 
x, = x, @ x,. By (4), it follows that 

as expected, since each information bit is correct with 
probability 1/2 when there is no signal. Now using the 
fact that d i j  = d ,  if x i  @ x, = x,, we obtain 

x,ex,=x, 

The previous approximation applies to all binary linear 
block codes. Further simplifications can be obtained if 
more assumptions are made. Now suppose C is systematic 
and has the symmetry property such that each bit in the 
codeword is " permutationally equivalent" to each other 
bit, e.g., C is cyclic, or more generally, its automorphism 
group (see definition in Section IV) contains a transitive 
permutation group. Then the bit-error probability can be 
found, alternatively, by dividing the expected number of 
codeword bits in error by the block length n. All the 
derivations remain the same as before except that k and 
w, will now be replaced by n and d , ,  respectively. Then, 

x, ex, = X I  

Algebraic manipulations show that 

M- 1 ( d , - d j )  M - l  P M - l  

1=1 fi i = o  
C d i C  ~ 

i = l  j+i fl P I =  d i ( d i - d ( x i @ x ! ) ) ,  

X,@X, 
= X I  

where d ( x ,  @ x,) denotes the Hamming distance between 
x, @ x, and xo. If we further assume that C contains no 
repeated columns, Le,. there are no two positions in the 
block where the corresponding bits are the same for all 
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codewords, then from Appendix B, 

M -  1 

and 
M- 1 

d , d ( x ,  fB X I )  = n ( n  + 1)2k-2 - 4 2 k - I .  (10) 
i =  1 

Equation (8) can hence be written as 

Note that (1) and (11) have similar forms, and in particu- 
lar that both involve the mysterious quantities Pi, which 
are the subject of the next section. 

same equivalence class partitioned by permutations in 
Aut(C), then P, = P,. 

Proofi If x, and xl are in the same equivalence class, 
a permutation 4 that maps x, to xI will map all the 
codewords other than x,, and x, to codewords other than 
xg and x,. It is impossible that tow different codewords 
are mapped to the same codeword because 4-l is also in 
Aut ( C ) .  Then, T, will be accordingly mapped to T, and 
{T/: 1 # i} to (TI:  I # j ) ,  which implies that PI = P,. 0 

In the preceding orthogonal code example, the permu- 
tation 4 = (234) maps x, to x,, xg to x2 and x2 to xl, so 
PI = P2 = P3. For some practical codes, all the codewords 
of the same weight are in one equivalence class (but this 
is not generally true), so their corresponding Pi's are 
equal. Thus, the notation Pd is used for all the codewords 
of weight d. For this case, (1) can be simplified to 

IV. PROPERTIES OF P, 
PE - 1 - - - A .  E T A d Q P d >  (12) The probability P, is the conditional probability that M 

TI I O;..,T,- I I 0, T,,, I O;.., TM- I 0, given that T, 
= 0. In order to illustrate the calculation of P,, consider 
the M = 4 orthogonal code (x,, = 0000, x1 = 0101, x2 = 

0011, X, = 0110). By (21, T I  = z 2  + z4, T2 = Z, + z4, T3 = 

z2  + z,, where zl, z 2 ,  z3 ,  z4 are i.i.d. standard normal ran- 
dom variables. Therefore, 

where A ( z )  = C , A d z d  is the weight enumerator. Simi- 
larly, we can simplify (11) to 

1 M R  
pb - - - A ’ - E A d Q P d .  (13) 

2 2n d 

P,  = Pr { T2 5 0, T, 5 0 1 TI = O}, 

P2 = Pr { T I  I 0, T3 I 0 I T2 = O}, 
Recall that the original assumption for (11) is that C is 

linear systematic with no repeated columns and Aut ( C )  
P , = P r { T ,  5 0 , T 2 ~ 0 1 T , = O } .  contains a transitive permutation group.’ 

Since z 2 ,  t3 ,  z4 are i.i.d., it is easy to see that P,  = P2 = P,. 
It remains to find the probability that z3 + z4 I 0, z 2  + 2, 

- < 0, given that z2  + z4 = 0, which is the conditional 
probability that a random point with a normal distribution 
in a three-dimensional space falls in the region described 
by 2, + z4 5 0, z 2  + 2, I 0 given that it is on the plane 
z 2  + z4 = 0. We will see in the next section that P, = P, 
= P, = tan-’ a/,. However, for most practical codes 
with M >> n,  it appears to be very difficult (if not impossi- 
ble) to obtain a closed-form expression for P,. 

Definition I :  The set of coordinate permutations that 
map every codeword in the code C into a (possibly dif- 
ferent) codeword in C is called the automorphism group 
of C ,  denoted by Aut ( C ) .  

It is known that Aut(C) is indeed a group. Automor- 
phism groups of several block codes are discussed in 
[3]-[5]. There are computer search algorithms [61, [7] for 
finding the entire automorphism group of a code. Further- 
more, the entire automorphism groups of all 2,3,4-error 
correcting binary primitive BCH codes have been deter- 
mined algebraically in [SI. Note that the permutations in 
Aut(C) partition the codewords in C into equivalence 
classes. Codewords x, and xI are in the same equivalence 
class if there exists a permutation in Aut ( C )  that maps x, 

Theorem 3: Assume xg = 0. If x, and x, are in the 

to x,. 

Definition 2: Let U and v be binary vectors. If U has a 1 
in every position that v has a 1, then we say that U covers 

Theorem 4: Assume x,, = 0. For a binary linear block 
code, if the codeword x, covers a different nonzero code- 
word x], then PI = 0. 

Proofi Let x I  = x, fB x,. Then, x1 is covered by x, and 
T, = T, + TI.  The only case that both T, and TI are less 
than or equal to 0 given that T, = 0 is when T, = 0 and 
TI = 0. The theorem follows from the fact that all T,’s are 
continuous random variables. 0 

For most practical codes, M >> n, which means that 
there are many more random variables T, in the definition 
of the P,’s than the code dimension n. Hence, it is 
desirable to eliminate some redundant random variables 
T, to reduce the complexity of computing PI. One simple 
result is that the condition TI I 0 can be eliminated from 
P, if the codeword xl covers another nonzero codeword x, 
with 5 0. This is proved by letting x, = x I  @ x,, and 
then the conditions TI = T, + T, and T < 0, T, I 0 
guarantee that TI I 0. The next theorem, which is proved 
in Appendix C by using the Farkas Alternative [9, p. 561 
tells us in general how we can eliminate redundant T,’s. In 

V. 

I :  

’ A permutation group C is transitive if, for any two symbols i and j ,  
there is a permutation 6 E G such that i6 = j .  
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the theorem, A is a matrix and x , y ,  d , b  are column 
vectors, and we say a vector x I 0 if all of its components 
- < 0. 

Theorem 5: Let the set d = (x: AX I 0 and dTx = O} 
be nonempty. The inequality bTx I 0 holds for all x E&, 

if and only if b = ATy + a d ,  for some y 2 0 and a E R. 

To interpret this theorem, we view each T, I 0 as an 
inequality in zl, z 2 , - . .  , 2,. The theorem implies that given 
T, I 0, for j # i, and T, = 0, the particular Tl I 0 is 
redundant and can be eliminated, if and only if TI = 

EI+,, , /aJ? + aT,, where a, 2 0 and a E R. Note that 
setting a = 0 reduces to the case stated previously. On 
the other hand, if we somehow want to create another 
redundant inequality TI I 0, then TI must be in the form 
of Cf”;,’a,T, + aT, with a, L 0 and a E R .  

Note that all = (U,, U,) = d, ,  and for codes with x, = 0, 
‘T~, is the number of positions where x, and xl are both 1. 
As previously mentioned, for most practical codes of 
interest, M >> n; even after the redundant T, < 0 are 
eliminated by Theorem 5 ,  the number of remaining condi- 
tions is still very large compared with the code dimension 
n. Hence, it may be necessary to resort to Monte Carlo 
simulations to find approximate values for the P,. Condi- 
tional probabilities are relatively difficult to work with, 
but Theorem 2 gives an alternate, unconditional, formula 
for the P,’s, which lends itself more easily to simulation: 

(12) near A = 0, the block-error probability can be ap- 
proximated by 

1 
PE N 1 - 7 2 - A * ( 2 k  - 1 )  

where P2k-1 is for codewords of weight 2 k - l .  By using 
Pb = (2k-’PE)/(2k - 1) [lo, p. 1001 or (7), then 

1 
Pb - - - A . 2 k - ’  - P2k-i. 

2 J 2: 
We now want to compute the value of P2k-I, which is 

the conditional probability that TI I 0, T2 5 O;.., T2t-2 
I 0, given that T 2 k -  = 0. By the structure of orthogonal 
codes, T,, for i = 1,2;.., 2k  - 1, are normal random vari- 
ables with mean zero and covariances 

, i f i = j ;  
= 2k-2, if i + j .  i”-’ 

An easy calculation verifies that the random variable T,, 
for i = 1,2,...,2k - 1, can be modeled by 

T, = W ( X C  + X 0 ) ,  

where X,, X I ; - - ,  X2k-1 are i.i.d. standard normal random 
variables. Hence, 

P, = Pr (a,,? - a,,T I 0, for j # i).‘First n i.i.d. standard 
normal random variables z,, for i = 1,2;.., n ,  are gener- 
ated; then all necessary (nonredundant) conditions u,,T, 
- a,,T, I O  are tested. If all are satisfied, we record this 
event as a “success.” If any one of the conditions fails, we 
record this event as a “failure.” The procedure is re- 

quency of “success” will be an approximate value for P,. 

Since X2k-1 + X ,  is normal with mean zero and variance 
2, Pr (0 < x 2 k -  + X ,  I h} = h/  & + O(h2) as h -+ 0. 
We also have 

iFo Pr -x0,.’.7 x 2 k - 2  -xo 9 -xo 

peated a large number of times; then the relative fre- < X 2 k - ’  I -xo i- h} 

= lim /z h . Z(  - t ) [  P (  --t)l2“-”2(t) dt + O( h 2 )  

= lim -1 Z ( & t ) [ P ( t ) ] 2 k - 2  dt + O ( h 2 ) ,  

h+O - -m  

V. EXAMPLES h x  

We now apply the results in previous sections to orthog- h - 0  6 --oc 

onal codes, biorthogonal codes, the (24,121 extended Go- 
lay code, and the (15,6) expurgated BCH code. where Z ( x )  = 

nally, we obtain 
& and P ( x )  = /“Z(t)dt .  Fi- 

A. Orthogonal Codes P2k-i = &jX Z(&f t ) [P( t ) ] ’” - ’d t .  (16 )  
-cc 

We consider orthogonal codes with M = 2k codewords, 
which are obtained from rows of 2k x 2k normalized The same result was obtained in [ l ]  by directly expanding 
Hadamard matrices via the mapping that the + 1’s are into a power series the expressions of the error probabili- 
changed to 0’s and the - 1’s to 1’s. Such Hadamard ties for orthogonal codes from [ll] .  Our P2k-I is equal to 
matrices can be constructed by the Sylvester method [3, p. &A2k-1 in the notation of [l]. In particular, for k = 2, 
451. All the nonzero codewords have weights 2k-’  and it is A ,  was shown to be tan-’ a/(&); it follows that 
easy to see that they are in the same equivalence class. By P2 = tan-’ & f / n - .  Since it was shown that A ,  = 
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2 
P2k-I ~ d m ,  for large k .  

(2k - 1)* 

Equation (16) has been integrated numerically for k = 2 
to 10, and the results are listed in Table I, and so are 
the quantities ( z k  - l ) , / k / ( 2 7 ~ )  P2k-I and 2 k - 1  
J m P Z k - 1 ,  which are the key elements of (14) and 
(151, respectively. Note that, for orthogonal codes at very 
low signal-to-noise ratios, the bit-error probability in- 
creases with k, or the number of codewords M .  

TABLE I 
P 2 k - I  for Orthogonal Codes 

k 

2 
3 
4 
5 
6 
7 
8 
9 

10 

3.0409e-1 
9.0117e-2 
2.6084e-2 
7.3959e-3 
2.0606e-3 
5.6580e-4 
1.5351e-4 
4.1242 e-5 
1.0991e-5 

5.1469e-1 
4.3589e-1 
3.1219e-1 
2.0453e-1 
1.2686e-1 
7.5845e-2 

2.5222e-2 
1.4185e-2 

4.4170~-2 

3.4312e-1 
2.4908e-1 
1.6650e-1 
1.0556e-1 
6.4436e-2 
3.8221e-2 
2.2171e-2 
1.2636e-2 
7.0995~-3 

TABLE I1 
P,t-2 FOR BIORTHOGONAL CODES 

k P z k - 2  (2k - 2 ) \ / i 7 p 5 P 2 k - 2  
B. Biorthogonal Codes 

3 1.0817e-1 4.4848e-1 
A biorthogonal code defined here consists of the code- 4 2.8223e-2 3.1526e-1 

words of an orthogonal code and their complements. We 
consider biorthogonal codes with M = 2k, k 2 2, code- 
words. The biorthogonal code is the first-order 
Reed-Muller code if the corresponding orthogonal code 
is obtained by the Sylvester construction [3, p. 3731. All 
the codewords except the all-zero and all-one codewords 
have weights 2k-2 .  

Proposition 1: All the codewords except the all-zero and 
all-one codewords in a biorthogonal code are in one 
equivalence class. 

Proof For a biorthogonal code with M = 2k, k 2 2, 

them begin with 0 because they are codewords of an 
Orthogonal code, and the rest begin with 1. Since all the 
nonzero codewords in an orthogonal code are in one 
equivalence class, it follows that there are at most two 
equivalence classes for codewords of weight 2 k - 2  in a 
biorthogonal code, one for each half. However, since the 
automorphism group of a Reed-Muller code contains the 
general affine group that is triply transitive2 [3, pp. 
398-4001, there exist permutations in the automorphism 
group of a biorthogonal code (which is the first-order 
Reed-Muller code) that map a nonzero codeword begin- 
ning with 0 to a codeword beginning with 1. The proposi- 
tion hence follows. ' U  

there are 2k - 2 codewords of weight 2k-2;  2 k - 1  - 1 of 

5 7.6703e-3 

7 5.7062 e-4 
8 1.5415e-4 
9 4.1327e-5 

10 1.1003e-5 
11 2.9114e-6 

6 2.0968~-3 
2.0527e-1 
1.2704e- 1 
7.5889e-2 
4.4180e-2 
2.5225e-2 
1.4186e-2 
7.8817e-3 

phism group contains a triply transitive group, by (13) for 
A near 0, 

Now, our goal is to find an analytical expression for 
P 2 k - 2 ,  the conditional probability that T2 I 0, T3 I 
O;.., T2k- I 0, given that TI = 0. (Here, we number the 

are codewords of a corresponding orthogonal code and 
xzk-l+', for i = 0, 1,- . . ,2k-1 - I, are the complements of 
x l . )  Since the all-one codeword X2k-1 covers every code- 
word of weight 2k-2,  the condition T,~-I  I 0 is redundant 
and can be discarded. From the structure of biorthogonal 
codes, the covariances between T, and T,, for i ,  j = 

1, ...,2k-' - 1, 2k-1 + l;.., 2k - 1, are given by 

codewords in such a way that x l ,  for i = 0, 1,--., 2k-1 - 1, 

2 k - 2 ,  if i = j ;  
F. .  = if Ii - j l  = 2k-1. The all-one codeword covers every codeword of weight 

2 k -  2, so from Theorem 4 the corresponding Pi is zero. By 
(121, we now have , otherwise. 

T. = d2k-3 (x, + XJ, 
Since a biorthogonal code contains no repeated columns, 
can be encoded as a systematic code, and its automor- and 

T2k-1+, = \/2k-3 (x, - X L ) ,  
* A  permutation group G is t-fold transitive if, given t distinct symbols 

I , ,  I ~ , " ' ,  I , ,  and t distinct symbols j,,!,;.., j , ,  there is a permutation 
q5 E G such that i l +  = jl, i24 = j,;..,i,q5 = j , .  

. .  . 

where i = 1,2,...,2k-1 - 1 and X,, XI;.., X2k-1 are i.i.d. 
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standard normal random variables. Thus, and the bit-error probability can be approximated by 

P2k-2 = lim Pr { X ,  -XI 5 0 and X ,  + Xi I 0, X ,  - Xi I 0, for i = 2,3, . .* ,2k- '  - ( 0  < X, + XI 5 h)  
h - 0  

= lim Pr { X ,  5 0, -X, < X ,  I -X, + h ,  and X, 5 Xi 4 -Xo ,  
h - 0  

for i = 2,3,...,2k-' - l}/Pr (0 < X ,  + X ,  s h }  

j ' O T h * Z ( - t ) [ P ( - t )  - P ( t ) ] 2 k - ' p ' Z ( t ) d t  + O ( h 2 )  
= lim 

h - 0  h /& + O ( h 2 )  

= & / = Z ( f i f ) [ P ( t )  - P( - t ) I zk- ' -*  dt. 
0 

The same result can be obtained if we expand into a 
power series in A the expressions for error probabilities in 
[ 111. We have integrated numerically the expressions for 
P2k-2, k = 3,4;.*, 11, and listed the results in Table 11, 
along with the quantities (2k - 2 1 4 W P 2 k - 2 .  Again 
note that for biorthogonal codes at very low signal-to-noise 
ratios the bit-error probability increases with the number 
of codewords. 

C. The (24,12) Extended Golay Code 
The (24,121 extended Golay code is obtained by adding 

an overall parity check bit to the perfect triple-error- 
correcting (23,121 Golay code. Its weight enumerator is 
A(z1 = 1 + 7 . 5 9 ~ ~  + 2 . 5 7 6 ~ ' ~  + 7 5 9 ~ ' ~  + zZ4. Note that 
the codeword of weight 24 is the all-one codeword, which 
covers all other nonzero codewords. The automorphism 
group of the (24,12) Golay code is the Mathieu group M,, 
which is five-fold transitive [3, pp. 636-6411. 

Proposition 2 (3, p. 6381: All the codewords of weight 8 
are in one equivalence class. 

Proposition 3 (3, p. 64IJ: All the codewords of weight 12 
are in one equivalence class. 

Proposition 4: All the codewords of weight 16 are in 
one equivalence class. 

Proof The permutation that maps one codeword to 
another codeword will do the same to their complements. 
Since the complement of any codeword of weight 8 is a 
codeword of weight 16 and vice versa, the proposition 

Proposition 5: Every codeword of weight 16 covers 
codewords of weight 8. 

Proof.. By Proposition 4, this proposition can be proved 
by finding an instance that a codeword of weight 16 covers 
a codeword of weight 8. This is easily done by inspecting a 
generator matrix for the (24,12) extended Golay code, 

0 

Now, near A = 0 the block-error probability can be 

follows from Proposition 2. 0 

e.g., the one in [3, p. 651. 

approximated by 

Note that the codewords of weight 16 and 24 play no part 
in the approximations for PE and P,,, neither do they in 
Ps and P,2. Unlike the last two examples, we do not 
expect exact analytical expressions for Ps and P12. The 
procedure described in the last section is used to simulate 
Ps and PI,. All the inequalities corresponding to the 
all-one codeword and codewords of weight 16 can be 
discarded because of Theorem 5. The results are Ps = 4.0 
x and E',, = 4 x lo-'. (Since PI ,  is very small, the 
reliability of the value obtained is doubtful but the magni- 
tude should be correct.) Then, 

PE - A .  E ( 8 . 6  X + 3.6 X 
4096 

4095 
4096 

- e- - A .  (3.6 x 10-31, 

and 

(8.6 X l o p 3  + 3.6 X 
3 

1 
2 

P b - - -  

1 

2 
- - _  - A .  (0.30). 

Note that the terms above for codewords of weight 8 
(codewords at the minimum distance) are much larger 
than the terms for PI,, so that in a sense, the behavior of 
the code at low signal-to-noise ratios is controlled by the 
minimum distance. 

D. The (15,6) Expurgated BCH Code 
We now consider the (15,6) expurgated BCH code with 

generator polynomial (x4 + x + 1xx4 + x 3  + x 2  + x + 
1Xx + 1) = x9 + x6 + x 5  + x4  + x + 1. Its weight enu- 
merator is A ( z )  = 1 + 30z6 + 15.2' + 1 8 ~ " .  It is known 
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[71, [81 that the complete automorphism group of the 
(15,7) BCH code with dpin = 5 is the group {bx” + 
also know that the automorphism group of an expurgated 
code contains that of the original code. By examining the 
codewords of the (15,6) expurgated BCH code, it can then 
be shown that all the codewords of equal weight are in the 
same equivalence classes. Therefore, the error probabili- 
ties near A = 0 are approximately 

bfX2’+’. . b, 6’ E GF(24>, b2 +’ # br22+1  and i = 0,l) .  We 

and 

From a Monte Carlo simulation, P6  = 4.1 x 
8.9 x and P,, = 9.4 x Thus, 

pS = 

PE N ‘ - A * G ( 0 . 3 0  + 3.8 X lo-’ + 5.4 x 
64 

63 
64 = - - A .  (0.12), 

and 
1 
2 

p b  - - A ’  (0.26). 

Note again that the terms above for codewords at the 
minimum distance are much larger than the remaining 
terms. 

VI. ASYMPTOTIC CODING GAIN 
The codinggain is the ratio of the signal-to-noise ratio 

without coding to the signal-to-noise ratio re.quired when 
using an error-correcting code to achieve the same error 
probability. We define the asymptotic coding gain as the 
limit, as the signal-to-noise ratio approaches zero, of the 
coding gain. Two theorems based on the criteria of PE 
and Pb, respectively, will be given. 

We now derive approximations to PE and Pb at low 
signal-to-noise ratios when no coding is used. For an 
unquantized AWGN channel, the bit-error probability 
without coding is 

pb = Q( a,) 7 

where Q(x1 = /xme-‘2 /2 /  6 dt. Thus, near A = 0, 

1 1 

If k bits are grouped as a block without coding, a block 
error occurs when there is at least one erroneous bit and 
so 

PE = 1 - (1  - Pb)k, 

which gives the following approximation near A = 0: 

Comparing (11, (7), (111, (171, and (181, we obtain the 
following theorems. 

Theorem 6: For binary block codes, with the criterion 
based on block-error probability, the asymptotic coding 
gain at low signal-to-noise ratios is given by 

Theorem 7: For binary linear block codes, with the 
criterion based on bit-error probability, the asymptotic 
coding gain at low signal-to-noise ratios is given by 

\ 2  

\ xi ax, =xi I .  

If the code used is systematic with no repeated columns 
and its automorphism group contains a transitive permu- 
tation group, then the asymptotic coding gain can be 
simplified to 

which is equal to (k/nI2GE. 

We now apply the results in Theorems 6 and 7 to the 
codes discussed in Section V. For orthogonal codes with 
2 codewords, based on the PE-criterion, the asymptotic 
coding gain is 

which approaches rr In 2 = 3.38 dB as k + w. For the 
Pb-criterion, the asymptotic coding gain becomes 

Z( f i t ) [P ( t ) ]2k -2  dt , 1j-l i’ G - kzz(k-1) 
b -  

which is asymptotic in k to ( 7 ~  In2)k2/22k. The same 
results were obtained in [l]. The asymptotic coding gains 
based on criterions PE and Pb for orthogonal codes are 
listed in Table 111. Note that, based on the PE-criterion, 
except for k = 2, orthogonal codes result in positive cod- 
ing gain compared with no coding at low signal-to-noise 
ratios and the gain increases with the number of code- 
words. However, for the P,-criterion, there is always a 
coding loss when using an orthogonal code and the loss 
increases with k. 

For biorthogonal codes with 2k codewords, based on 
the PE-criterion, 

# ( c ( f i t ) [ P ( t )  - P (  - t ) ] 2 k - ’ - 2  dt . i’ 
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TABLE I11 
ASYMPTOTIC CODING GAIN FOR ORTHOGONAL CODES 

k G, G, 

2 
3 
4 
5 
6 
7 
8 
9 

10 

- -0.798 dB 
0.258 dB 
0.880 dB 
1.29 dB 
1.58 dB 
1.79 dB 
1.96 dB 
2.09 dB 
2.19 dB 

- 4.32 dB 
- 7.10 dB 
- 10.6 dB 
- 14.6 dB 
- 18.8 dB 
- 23.4 dB 
- 28.1 dB 
- 33.0 dB 
- 38.0 dB 

For the P,-criterion, 

G,  = k(2k - 
\ 2  

P (  - t ) ] 2 k - 1 - 2  dt . 1 
The asymptotic coding gains for biorthogonal codes are 
tabulated in Table IV. It is observed that with the PE- 
criterion, there is a positive coding gain when using a 
biorthogonal code and the gain increases with the number 
of codewords. Again, with the P,-criterion, there is always 
a coding loss and the loss increases with k.  

For the (24,12) extended Golay code, 

2 22 

24.12 
G, = - (759\/8P, + 2 5 7 6 m P , 2 ) 2  

= 1.16 = 0.66dB, 
which is a gain over no coding. Also 

which is a loss. For the (15,6) expurgated BCH code, 

21° 
15 * 6 

GE = -(306P, + 15J8Pg + 1 8 m P 1 0 ) 2  

= 1.35 = 1.3 dB, 
and 

It was shown in [l]  that if hard quantization is used on 
an AWGN channel, using the bit-error probability crite- 
rion, any coding scheme results in a loss at low signal-to- 
noise ratios. Note that for all the codes discussed in the 
last section, based on the P,-criterion, there is a loss with 
respect to no coding. We conjecture that this is true for 
binary codes in general on an unquantized AWGN chan- 
nel with maximum-likelihood decoding. Since, at low sig- 
nal-to-noise ratios, maximum-likelihood decoding is not 
the scheme that minimizes the bit-error probability, a 
stronger conjecture is that, based on the P,-criterion, any 
coding scheme will result in a loss on an unquantized 
AWGN channel at sufficiently low signal-to-noise ratios. 

VII. CONCLUDING REMARKS 
In this paper, we have derived error probabilities and 

asymptotic coding gains of binary block codes used on an 

TABLE IV 
ASYMFTOTIC CODING GAIN FOR BIORTHOGONAL CODES 

k GE Gb 

3 0.505 dB - 1.99 dB 
- 5.06 dB 4 

5 1.32 dB - 8.78 dB 
6 1.59 dB - 12.9 dB 
7 1.80 dB - 17.4 dB 

- 22.1 dB 8 1.96 dB 
9 2.09 dB - 27.0 dB 

10 2.19 dB - 32.0 dB 
11 2.28 dB - 37.1 dB 

0.965 dB 

unquantized AWGN channel at very low signal-to-noise 
ratios. The results show that the performance depends 
heavily on the codes' global geometric structures through 
the important quantity P, for each codeword. Since the 
computation of P, involves degenerate multivariate nor- 
mal random variables, for most cases it is very difficult to 
get closed-form expressions and we do not expect such 
exist. In order to have better insight to the performance 
of codes at low signal-to-noise ratios, we suggest further 
research in finding tight lower and upper bounds for P,. 

From the results of this paper, we know that the code- 
words which cover other codewords do not affect the low 
signal-to-noise ratio performance at all. We conjecture 
that for x,, x, E C, if d,  < d,, then P, > P,. Now consider 
the quantity ' K P , ,  which plays an important part in 
the expressions of error probabilities. It is observed that 
the term &P, at the code's minimum distance is larger 
than the sum of remaining terms. We also conjecture that 
it is true in general. 

One may wonder how the approximations obtained for 
the block-error probability and bit-error probability com- 
pare to the exact performances at low signal-to-noise 
ratios. An example is shown in Fig. 1, where the exact 
block-error probability and the approximation obtained in 
the paper for the biorthogonal code with M = 16 code- 
words on an unquantized AWGN channel are plotted as 
functions of the bit signal-to-noise ratio Eb/N, .  As seen 
from the figure, the approximation is very tight for Eb/No 
up to - 10 dB and not bad up to -5  dB. 

AFJPENDIX A 
PROOFS OF THEOREMS 1 AND 2 

Theorem I: Let XI, X, ; . . ,  X,- be M - 1 mean zero jointly 
normal random variables (possibly degenerate), with covariances 
(T and with cumulative distribution function F(x,,  xZ; . . ,  x M -  
;;th every pair X , ,  X, linearly independent (nondegenerate). 
Let U , ,  u2; . - ,  U,- be nonnegative real numbers. Then, for 
x > 0, 

F ( u , x ,  U 2 X , " ' ,  U,- I X )  = F(O,O, . . . ,O)  

M - 1  

where 

pi = Pr { X i  I O for j + i I Xi = 0) 
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Also, 

J P i ( h )  - Pil = O ( h ) .  

Proof If we can show that 

Pr { y I - I  aijlh, for j z i) I Pi( h )  I Pr { 7 I I uijlh, for j f i) , 
(23) 

then (21) follows immediately. We first note that if 0 < Xi  I h, 
for each j # i, we have the following set inclusions: 

{Y I -luijlh} G { X i  I O }  G {y I lCTijlh}. 

From this, it follows that 

-30 -25 -20 -15 -10 -5 0 

Bit SNR (dB) 5 Pr { I ;  I Icrijlh, for j z i 10 <Xi I h} .  (24) 

Fig. 1. Block-error probability of the biorthogonal code with M = 16 
codewords on an unquantized AWGN channel. (Solid line: exact perfor- 

N~~ if i + j, xi and y are uncorrelated since 
mance. Dashed line: approximation.) E ( X i 7 )  = UiiE(XiXj) - FijE(Xi") = fTiicrij - cij'ij0ii = 0, 

def 
= lim 

h - 0  

Pr { X I  I 0 for 1 z i, 0 < X I  I h} 

Pr {O < X, I h}  

Proof We partition the event {XI I a , x ; . . ,  X,,-l I 
U , , - ~ X }  into 2'-' subsets, according to which of the X,'s are 
positive. If none of them are positive, we get the term F(0, O;.., 0) 
in (19). If two or more of the X,'s are positive, say XI > 0 and 
XI  > 0, then the corresponding probability is I Pr (0 < X I  I 
a , x ,  0 < XI I a,x),  which, since we assume that X ,  and XI are 
linearly independent, satisfies 

Pr {O < X ,  i a , x ,  o < X, I a , x )  = o ( x * ) ,  

so that the sum of the terms with at least two positive Xr's is 
O ( x 2 > .  Finally we come to the terms with exactly one positive 
XI. A typical term of this form is 

so that the conditions in (24) can be deleted, giving (23). To 
prove the estimate (22), note that the set difference {T I la,,lh} 
- {E; I -Icrlllh} is contained in the union U ~ j l { - l u l J h  I Z; 
i ~ a l J ~ h ) ,  so that the difference between the right and left sides 
of (23) is bounded by 

M- 1 

Pr { - la, , lh i 7 i Ia,,lh). (25) 
I =  1 

And finally, each term in (25) is O(h). This proves (22). 0 

APPENDIX B 

DERIVATIONS OF (9) AND (10) 
If the code C has no zero columns and no repeated columns, 

then it is easily shown that 
M- 1 

(26) Pr ( X I  I O for j # i, O < X ,  i u , x )  XI:  = 2k-', for j = 1,2;.., n ,  
I =  1 = Pr{O < X I  I a , x }  .Pr{X, I Oforj # ilO < X I  I a , x } .  

As x + 0,  we have 
a i x  

Pr (0 < X i  I a , x }  = ~ 

M- 1 

X r j X r j  = 0,  for j = 1,2;..,n, (27) 
i =  1 

M- 1 
x i j x i l  = 2k-2, for j , l  = 1,2;.., n and j # I ,  (28) 

i =  1 

M- 1 
and X I J X l I  = 2k-2 , for j , l  = 1,2;.., n and j # I ,  (29) 

where xI, ,  j = 1,2;.., n, are the components of x ,  and Z I J  is the 
complement of Note that the symmetric assumption we 

are no zero columns. 

I =  1 Pr { X ,  5 0 for j # i IO < X ,  i a , x }  = PI + O ( x ) ,  

from Theorem 2 , which follows. Thus, the term (20) contributes 

proof. 
+ o ( x 2 )  to the (19)' This the made about each bit position of the codeword implies that there 

Theorem 2: Define, for h 2 0, We have 

P,(h)  = P r ( X J 5 0 , f o r j # i I O < X , ~ h } .  

Also, define the random variables y/, for j # i, by 

M- 1 M - 1  

r = l  

7 = arrX, - u,Jxl. If j = m, then by (26) 

Then, 

(21) lim ~ , ( h )  = Pi = Pr (y/ I O,for j + i}. 
h - 0  

n M-l 

1 x:. = 
j = 1  i = l  



CHAO et al.: PERFORMANCE OF BINARY BLOCK CODES AT LOW SNR’S 1687 

O n  the other hand, if j f m, then by (28) 

n n M-1 

C C X I I X , ,  = n(n - 1)2k-2. 
j = 1  m = l  r = l  

m +I 

Therefore, 
M -  1 

d; = n 2 k - ’  + n(n  - 1)2k-2  
r = l  

= n(n + 1)2k-2. 

This ends the derivation of (9). 
Similarly, 

If j = m, then by (26) and (27) 

Since there are (n - d,) of xrj ’s such that xII  = 0, 
n M - l  

O n  the other hand, if j # m, then by (28) and (29) 

M -  1 

I =  1 

It follows that 

n n M-1 

X t I ( X 1 ,  e X l m )  = n ( n  - 1)2k-2. 
j = 1  m = l  r = l  

m ‘ I  

Finally, 
M- 1 

d,d(x, e x,) = ( n  - d,)2k-’ + n(n - 1)2k-2 
I =  1 

= n(n  + 1)2k-2 - 4 2 k - 1 ,  

which is the result of (10). 

APPENDIX C 

PROOF OF THEOREM 5 
The Farkas Alternative [IO, p .  561: Either the equation 

Ax = b has a solution x 2 0 

or  (exclusively) 

y% 2 0, yTb < 0 has a solution y .  

Lemma I:  Either the equation 

Ax + a d  = b has a solution x > 0, a E R (30) 
or  (exclusively) 

y% I 0, yTd = 0, y T b  > 0 has a solution y .  (31) 
ProoJ? Set the unconstrained a = U - U in (30) and require 

U 2 0 and U 2 0. Now this lemma follows from the Farkas 
Alternative. 0 

Theorem 5: Let the set .d = {x: Ax I 0, dTx  = 01 be 
nonempty. The  inequality bTx I 0 holds for all x E&, if and 
only if b = ATy + ad ,  for some y 2 0 and a E R.  

ProoJ? The proof for the sufficient condition is straightfor- 
ward. Now suppose the necessary condition is wrong, and as- 
sume that b is not in the form of ATy + a d ,  y > 0 and a E R. 
Then, the equation ATy + a d  = b does not have a solution 
y 2 0, a E R. Therefore, the case (30) of Lemma 1 is wrong, and 
we must have the alternative: 

xQT I 0, xTd = 0, xTb > 0 has a solution x, 
which contradicts the assumption that bTx I 0 holds for all 
x €d. U 
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