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The Capacity of a Vector Gaussian 
Arbitrarily Varying Channel 

Abstract -The random coding capacity of a vector Gaussian arbitrarily 
varying channel (VGAVC) is determined, along with a simple general 
method for computing this capacity. The VGAVC is a discrete-time 
memoryless vector channel with an input power constraint and additive 
Gaussian noise that is further corrupted by an additive “jamming signal.” 
The statistics of this jamming signal are unknown and may be arbitrary 
subject only to a power constraint. 

I. INTRODUCTION 
HE AIM of this paper is to determine the maximum T amount of information that can be reliably transmit- 

ted across a vector communication channel that is cor- 
rupted by additive Gaussian noise and an intelligent jam- 
mer. We impose no restrictions on the class of jamming 
signals considered, beyond the fundamental limitation of 
bounded power. The channel under investigation, called a 
vector Gaussian arbitrarily varying channel (VGAVC) is 
described as follows (cf. Fig. 1). Once each second the 
transmitter sends an m-dimensional random vector, say 
u: at time i, representing the output of an information 
source of rate R (bits per channel use) to the receiver. The 
sequence { u: } can be chosen arbitrarily subject only to a 
power constraint (to be specified later). The channel out- 
put is defined by 

yi* = u; + T/T +si*  

where { T/: }, called the background noise, is an indepen- 
dent and identically distributed (i.i.d.) sequence of zero- 
mean Gaussian rn-vectors with covariance matrix C. The 
sequence {si* } represents hostile jamming or other noise 
sources with unknown statistics. The only restriction we 
impose on this sequence is a power constraint (also to be 
specified later). 

There is a rich literature on the discrete arbitrarily 
varying channel (AVC). Much of this is summarized in [l]. 
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Early results relevant to jammed Gaussian channels can be 
found in [2]-[4]; however, the first investigation of a 
channel substantially like the GAVC was reported in [5] 
and [6], where bounds on the achievable rates of reliable 
transmission were reported. Bagar and Wu [7] have investi- 
gated the use of essentially the same channel for a differ- 
ent source transmission problem in whch the source is a 
discrete-time memoryless Gaussian source, and reliability 
is measured by mean-square distortion. Ahlswede [8] has 
established the capacity of the GAVC when {si*} is a 
scalar Gaussian sequence with arbitrarily varying variance. 
In [9] we determined the random coding A-capacity of the 
GAVC for a variety of transmitter and jamming power 
constraints. Here we extend some of these results to 
VGAVC‘s, i.e., to GAVCs with vector input and output 
alphabets. 

We are interested in determining the relationship be- 
tween achievable error probability and coding rates 
when random coding is used. The methods and results of 
Blackwell et al. [lo] for discrete AVC‘s do not apply to the 
channels considered here due to the presence of cost con- 
straints on the transmitter and jammer power. These con- 
straints often lead to results for the GAVC which are 
unlike those of discrete AVC‘s. This is exemplified by the 
observation that unlike discrete AVC‘s, the GAVC with 
ensemble-averaged power constraints does not have a ca- 
pacity in the usual sense [9]. Rather, the achievable error 
probability of the code is a continuously increasing func- 
tion of its rate. We emphasize that this aberrant behavior 
is due to the imposition of cost constraints and not the 
continuous input and output alphabets of the GAVC; 
indeed, discrete AVC‘s with ensemble-averaged cost con- 
straints on the transmitter and jammer also generally fail 
to have a capacity [l l] ,  [12]. 

Our results can be summarized as follows. A coding 
theorem and a strong converse are proved that characterize 
the capacity of the VGAVC over the class of power-limited 
codes along with a simple and general method for comput- 
ing this capacity. We find that the capacity of the VGAVC 
has a “ water-filling” interpretation, much like the capacity 
of the m-dimensional additive Gaussian noise channels 
that it generalizes [13, theorem 7.5.11. 

The remainder of the paper is organized as follows. In 
Section I1 we define the problem and summarize our 
results. Section I11 contains the proofs of these results. 
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11. DEFINITIONS AND SUMMARY OF RESULTS In the language of [9], (2.3) and (2.4) are peak power 

I 
I 

For our purposes, a codeword of length n is a real m x n 
matrix, U = { u,,}y;'Ll, selected by the transmitter. A jarn- 
rning sequence of length n is an rn x n matrix, S =  
{ s f J } ~ ; ~ , ,  selected by the jammer. Given a codeword U 
and a jamming sequence S,  the output of the VGAVC is 
defined by 

Y * = U + H * + S  
where H* = { v,*}T;Ll denotes an rn X n random matrix 
whose columns are i.i.d N(O,C), where 0 is the origin in 
R" and is a nonnegative-definite rn X rn matrix.' 

An ( n ,  M )  (deterministic) block code is a system 

where { U, } r= are codewords of length n ,  and the decod- 
ing sets {Df}Kl are disjoint Bore1 subsets of R"'". We 
permit the use of random codes, denoted by 

and also random jamming sequences, denoted by S*. The 
code C:, the jamming sequence S*, and the background 
noise H* are constrainted to be mutually independent. 

Both the transmitter and jammer are subject to limita- 
tions on transmitted power. For any m x n matrix, say 
V =  { u f J } ~ ; L l ,  denote the (time-averaged) power of V by 

1 m n 

Then for fixed p > 0, we say that the random code (2.1) 
satisfies a time-averaged input power constraint almost 
surely (a.s.) if 

P(U,*) I f i  (a.s.), 1 I k I M .  (2.3) 
A jamming sequence S* satisfies a time-averaged jamming 
power constraint if 

P ( S * )  I y (as.) .  (2.4) 

'We use the following notation throughout this paper: N(p,E) denotes 
a Gaussian distribution with mean vector p and covariance matrix E. 
Asterisks are used as superscripts to denote random quantities and to 
distinguish them from deterministic quantities. 

constraints. 

probability is defined by 
Given an ( n ,  M )  random code C,* the (maximum) error 

A,(c,*)= sup max Pr{U,*+H*+SED:} 
s: P ( S ) l y l s k l M  

(2.5) 

where 3: = Rmx"  - DZ. We say that an ( n ,  M )  random 
code C: is an ( n ,  M ,  A )  random code for some 0 < A I 1, 
if it satisfies (2.3) and if 

A,(C,*) I A .  
The random coding capacity of the VGAVC over the 

class of codes that satisfy (2.3), if it exists, is defined to be 
the largest nonnegative number C such that for any c > 0 
and 0 < A 5 1, there exists an ( n ,  M ,  A )  random code with 

M 2 2"(c-c) 
for all sufficiently large n ,  and for all 0 I A < 1 there does 
not exist an (n, M ,  A )  random code with 

M 2n(C+c) 
for all sufficiently large n. 

Before proceeding further, it is convenient to make a 
simplifying observation. For any m X rn nonnegative-defi- 
nite matrix C there exists an orthogonal transformation of 
R"', say 0, and a diagonal matrix diag(a), where a = 
( a , ; .  e ,  a,) and a 2 0, such that 

O X O T =  diag(a) 

where the superscript T denotes the matrix transpose [14]. 
The codeword power, jamming sequence power, and error 
probability of Cn* are unchanged when Y* is multiplied by 
0; therefore, it follows that an ( n ,  M ,  A )  code exists for 
the VGAVC with noise covariance matrix C if and only if 
one exists for diag(a). We can therefore assume, without 
loss of generality, that Z = diag(a) and further that a ,  I 

We now present several theorems that fix the value of C. 
First consider the special case y = 0 (no jammer is present). 
The results here are well-known [13, theorem 73.11. The 

I a,. . . .  
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a 5  

I 
Fig. 2. Water-filling interpretation of parallel discrete-time Gaussian 

channels for m = 5 (after [13, p. 3441). 

channel has capacity Co that is given by2 

if a, > 0, and by Co = + 00 if a, = 0. The input power 
distribution bo = (b:; * ,  b:) that attains the maximum in 
(2.6) has the form 

b p + a , = B ,  i f a , < B  

by=0, if a, 2 B (2.7) 
where B is such that Zby=p. This distribution has the 
simple interpretation illustrated in Fig. 2. We can thnk of 
pouring a volume p of water into a container whose 
bottom consists of a series of plateaus whose heights are 
equal to the components of a .  The level to which this 
water settles is B, and bp gives the depth of the i th plateau 
below the water's surface. Consistent with this interpreta- 
tion, we call bo the water-filling vector of power j3 for a if it 
satisfies (2.7). 

Suppose now that y > 0 (jammer present). Consider the 
quantity 

R ( p , y ) =  max min r ( b , c )  (2.8) 
b > O :  e . b s B  c > O :  e . c s y  

where 

and e = (1; . .,l). In Theorem 3 it will be shown that the 
value of the program (2.8) is unchanged if we switch the 
order of maximization and minimization, i.e., 

R ( P , y ) =  min max r ( b , c ) .  

From (2.6), we see that R ( P ,  y)  can be interpreted as the 
smallest channel capacity that can be inflicted on the 

c t O :  e . c < y  b t O :  e . b s B  

20nly the weak converse is established in [13, theorem 7.5.11; however, 
Theorem 2 confirms that the strong converse holds. 

transmitter by a jammer whose signal is limited to station- 
ary memoryless Gaussian noise of expected total power y. 
The following theorems, whose proofs are deferred to 
Section 111, establish that R(P,y) is the capacity of the 
VGAVC. The latter channel encompasses a far broader 
collection of jamming signals; viz., it includes all (possibly 
nonstationary non-Gaussian) signals of power at most y 
(i.e., all signals that satisfy (2.4)). 

Theorem I (Coding Theorem for the VGAVC): Let 
and E be arbitrary positive numbers with A I 1. When n is 
sufficiently large, there exists an ( n ,  M ,  A )  random code so 
that 

M > ~ ~ ( R ( B . Y ) - O .  

Theorem 2 (Strong Converse for the VGAVC): Let A 
and c be arbitrary numbers with 0 I A <1 and > 0. 
Suppose that an ( n ,  M ,  A )  random code exists. If n is 
sufficiently large, then 

M < ~ ~ ( R ( B , Y ) + €). 

We now address the problem of computing R(j3, y) .  As 
stated earlier, for y = 0 the optimizing power distribution 
in (2.6) is easily calculated from (2.7). The following theo- 
rem shows that a simple procedure also exists for comput- 
ing the power distribution bo and co, that optimize r (6, c )  
when y > 0. 

Theorem 3: Consider the following two-player zero-sum 
game (cf. [15]): 

Program I : max min r ( b , c )  

Program 11: min max r ( b , c ) .  

Let co be the water-filling vector of power y for the 
background noise power vector a ,  and let bo be the 
water-filling vector of power /3 for a + co. Then co and bo 
are saddlepoint strategies for the game defined above; i.e., 
for any other nonnegative sequences c 2 0 and b 2 0 such 
that e . b  I j3 and e - c  < y where e = (1;. .,1), the follow- 
ing double inequality holds: 

b > O :  e . b s B  c t O :  e . c c y  

c > O :  e . c c y  b > O :  e , b s B  

r ( b , c O )  ~ r ( b ~ , c O ) < r ( b ' , c ) .  (2.10) 

The optimizing power distributions of Theorem 3 also 
have a simple water-filling interpretation, illustrated in 
Fig. 3. A volume y of water is poured into the container of 
Fig. 2. The depth of the ith plateau below the water's 
surface is cp. We then pour an additional volume /3 of 
water into the container. The amount by which the new 
water level rises above the old over the ith plateau is by. It 
is interesting to note that co and bo are "mutually water 
filling" in the sense that co is also the water-filling vector 
of power y for the sequence a + bo. 

111. PROOFS OF THEOREMS 1-3 

We will prove Theorem 3 first, because its conclusions 

Proof of Theorem 3: It suffices to prove the following 

are required in the proofs of Theorems 1 and 2. 
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Fig. 3. Water-filling interpretation of optimizing power distributions 
from Theorem 3 ( rn = 5) .  
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Thus (c:; . . , c z )  satisfies (3.1) with 

- by 
p -  

2( a, + c:)( a, + cy + by) ' 

thereby proving statement b). This completes the proof of 
Theorem 3. 

Proof of Theorem 1: Let c and X be arbitrary positive 
numbers with X I 1. We now show that an ( n ,  M ,  A )  code 
exists with M > 2n(R(B,v)-t) for all sufficiently large n .  We 
suspect that the best transmitter strategy and the worst 
jammer strategy are both asymptotically Gaussian (as in 
[9]). Therefore, define p(Y1U) and p ( U )  to be the condi- 
tional density and unconditional density, respectively, of 
Y* when U* has i.i.d. N(O,diag(bo)) columns, S* has i.i.d. 
N(O,diag(c)) columns, and Y* = U* + H* + S*; i.e., 

two statements: 

max r ( b , c o )  = r ( b o , c o )  

min r (  bo, c) = r (  bo, c o )  

h r O :  e . b s f l  
a> 

b) 
c r O :  e . c s y  

where r ( b , c )  is defined in (2.9) and bo and co are as 
defined in Theorem 3. Statement a) is well-known 
[13, theorem 7.5.11; therefore, it only remains to show b). 
The function r(bo;) is convex over { c :  ~ 2 0 ) ;  thus 
necessary and sufficient conditions [13, theorem 4.4.11 for 
a given sequence c' to minimize r(bo, .) are 

a r ( b o ,  c') 
= p ,  for all i: c: > 0 

d C f  

for some real p. 
We now show that co satisfies these conditions. Note 

that the water-filling sequences have the following proper- 
ties (see Fig. 3): cp > 0 implies cp + a, = cy + a, and by = 

by; cp = 0 implies a, 2 c: + a,, bp + a ,  2 cy + a ,  + by, and 
bp I by. Therefore, if cp > 0, then 

- bp - - 8 r ( b o ,  c o )  

dc, 2( a, + cp)( a, + cy + bp) 

Otherwise, if cp = 0, then 

- by 
2 2( a,+ c:)( a, + c1" + b:) . 

for all Y = { y f J } ; ; t ,  and U = { u I J } ; ; ' l l ,  where bo is the 
optimal transmitter power vector defined in Theorem 3 
and c 2 0 is an arbitrary jamming power vector. For any 
given m X n matrices U and Y and any c 2 0, define the 
mutual information between Y and U as [13, p. 291 

Yf;  m ,  n 
= nr ( bo, c) + log, e C 

1 ,  J = 1  2( bp + c, + a , )  

Finally, let Gn consist of real m-vectors c 2 0 such that 
n c / y  has only integer components and such that e . c  I y ;  
clearly, it follows that ICnl I (n + l)m.3 

To prove Theorem 1, we require the following two 
lemmas whose proofs are contained in the Appendix. 

Lemma I :  Let U* = { u: }:;:, be a random matrix with 
independent elements so that u: has distribution N(0 ,  bf ), 
and let Y be any m X n matrix. Then 

holds for any real (Y and c 2 0. 
Lemma 2: Let U* be as in Lemma 1. Then for any 

m X n matrix S that satisfies P(S)  I y ,  there is a jamming 

'I(A( denotes the cardinality of the set A 
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power vector cs E Gn so that 

Pr - I ,~(u*;u*+H*+s)  <r (bo ,c s ) ) -6  C P ~ / ~ ~ ~  

(3.3) 
if, i 

holds for all 0 < 6 I 5m and n > (1 + 2/8 ln2)m2. 
Remark: Observe that the right side of (3.3) does not 

depend on S and tends to zero for all 6 > 0. 
We now proceed with the proof of Theorem 1. Fix e > 0, 

and to avoid trivialities, assume that e 110m. Let M 
21n(R(B*y)-c)l. For any m x n matrices U and Y we say that 
Y is G,-typical of U if and only if 

1 
-Ic(  U ;  Y )  > r ( bo, c )  - e/2 
n 

holds for some c G G,. Consider an (n,4M) random code 
whose codewords { U1*; ., U4&} are independent replicas 
of U* = { u:}T;El, where the components u: are inde- 
pendent and N(0,  by) distributed. We decode a particular 
received sequence Y as message i if and only if Y is 
G,-typical of V,* and is not G,-typical of v/* for any 
j # i; otherwise, we declare an error. Let D,* be the set of 
received sequences that are decoded as U, *. It is easily seen 
that 

{ U , * + H * + S E D , *  

where 

and 

Therefore, for each S satisfying P ( S )  I y, 

Pr { v,* + H*+ s E P I * }  
s P r ( B , ) +  Pr(B,) 

+ c  c 
J + l  

2 2 - nc2/188m - 
J Z I  C E G ,  

.Pr - I ~ ( ~ * ; u , * + H * + s )  > r ( ~ , c ) - c / 2 )  i: 
- ~)2-nrz/188m + (4M - 1) IGnl'-n('(bo.C)-t/2) 

(3.4) 
- 22-flC2/188m +l)m2-fl€/2 

holds for all n > (1 +4/e ln2)m2, 1 I i I 4M. The justifica- 
tion of these steps is as follows. Step a) follows by observ- 
ing that e <lOm and 

B, c -zCs (u,*; u,* + H* + S I  < r(b0, c s )  - t/2} it 

and applying Lemma 2 with 6 = e/2. Step b) follows from 
applying Lemma 1 to the right-most term in a), and step c) 
follows from M I 2"(R@,y)-c), IG,l I (n + 1)" and (2.10). 

The last line of (3.4), which is independent of S and i, 
tends to zero for all e > 0, as desired. The code defined 
earlier, however, does not satisfy (2.3) since the codewords 
are Gaussian. This can be remedied by selecting a subset 
of M codewords as follows. Let A* = { i :  P(U,*) > p, 
1 I i I 4M}. If IA*l II 3M, select in any way a subset of M 
codewords that satisfy P(U,* )  I /3 (together with the cor- 
responding decoding sets) and call the resulting code C:; 
otherwise, if IA*I > 3M, declare an error. It follows that 

Ay(C,*) I 2-"cZ/188m + S ( n  +1)m2-"'/2 

+Pr { IA*l> 3M) (3.5) 

for all n > (1 +4/cln2)m2. Note that IA*( is binomial 
(4M, p), where p = Pr{ P(U*) > p } ,  and that P(U*) is 
gamma distributed with EP(U*) = p. Since the median of 
the gamma distribution is less than or equal to the mean, it 
follows that p I1/2.  By Chebyshev's inequality [16, p. 
1901 we have 

Substituting this last result into (3.5), we find that the 
right side of (3.5) can be made less than any A > 0 for n 
chosen sufficiently large. This completes the proof of The- 
orem 1. 

Proof of Theorem 2: For all e > 0 and 0 I A <1, we now 
prove that an (n, 2n(R(B,y)+c), A)  random code does not 
exist for all sufficiently large n .  Let 

c,= { ( ~ l , D , ) , . . . , ( U , , ~ , ) }  

be any (n, M ,  A )  deterministic code. Since R ( P ,  -) IS ' con- 
tinuous and decreasing, we can choose 7 < y so that 

e 
R ( P 4  I R ( P , Y ) +  2'  (3.6) 

Let Eo be the water-filling vector of power ./ for u. Let 
S* = { sl: }:;El be an m X n random matrix with indepen- 
dent elements so that sI: has distribution N(O,?;). As 
defined, S* does not satisfy (2.4). Therefore, define fi = S* 
if P ( S * )  I y ;  otherwise, fi = 0. Clearly, fi satisfies (2.4), 
and by the law of large numbers [16, p. 3631 

e , = ~ r { f i + ~ * )  -,o 
as n + 00. It further follows that 

Ay(Cn)  2 max P r { U , + H * + f i E D Z }  
l 5 k S . M  

2 max P r { U k + H * + S * E 5 j k * } - c , .  
1 s k s . M  

Let bo be the water-filling vector of power p for u + Co, 
and for 0 < 6 < 1 define the following mn-dimensional 
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ellipsoidal regions: more than the volume of E: which is 

We require the following two lemmas whose proofs are 
contained in the Appendix. 

Lemma 3: Let U = { u,,}y;'& be any m X n matrix such 
that P ( U )  I P (cf. (2.2)). Then for any 6 > 0, 

4 
mnS2 ' 

Pr { u + H* + s* E E; } < - (3.7) 

Lemma 4: Let v ( A )  denote the volume of any A c  
R m X n  , and define p = Pr( H* + S* E A ) .  Then 

v( A )  2 v( Ep' l ( p r n n ) )  (3.8) 

where g ( 6 )  = (1 - S)es ,  for 0 I 6 < 1. 
To prove Theorem 2, we proceed as follows. Fix 1 > 6 > 0 

(to be chosen later). Choose n o  = no( A,  6, m, y ,  7) 2 2 
(which does not depend on C,,) so that 

l - X  4 1 - X  [ y 1 2'mn 2 8( s ) - -  
mn62 ' 4 E,,'- 

4 
(3.9) 

for all n 2 no; this is possible since g( 6)  < 1 for all 1 > 6 > 
0. Define D,' = D, n E:. From Lemma 3 and (3.9) it fol- 
lows that 

l - X  
2 

Pr{U,+H*+S*ED;} 2-. 

From (3.9) and Lemma 4 it follows that 

v(Dl) > v ( E : ) .  (3 .lo) 

The volume of the unit sphere in mn dimensions is 
T m n / 2  

,(z?zj 
Thus, by an elementary change of variables, the volume of 
an mn-dimensional ellipsoid with axes { rl, }y;t is 

T m n / 2  m , n  
R 

Therefore, from (3.10) the volume of Di U . . . U D; is at 
least 

On the other hand the volume of D; U . . . u DL is no 

Therefore, 

Choosing 1 > 6 > 0 small enough to ensure that 
1 + 6  

m l o g 2 [ 3 j  

we conclude that X < 1 implies that M < 2''(R(B,7)+') for 
all n > no, thereby establishing a bound of the form given 
in Theorem 2 for all (n, M ,  A )  deterministic codes. How- 
ever, since the bounds obtained were uniform (Le., n,  does 
not depend on C,,) over the class of deterministic codes, 
they hold for random codes as well. This completes the 
proof of Theorem 2. 

IV. CONCLUDING REMARKS 
We have established the random coding capacity of the 

VGAVC when the transmitter and jammer are subject to 
time-averaged power constraints. Although the proof of 
this result is complicated, the final capacity formula (as 
given by Theorem 3) has a simple interpretation: C is 
identical to the capacity of the vector additive Gaussian 
noise channel that would be formed if the jammer trans- 
mitted a sequence of i.i.d N(O,diag(co)) random vectors 
(cf. (2.6)). Thus although the definition of error probability 
(2.5) presumes that an intelligent jammer will exploit 
knowledge of the statistics of the transmitter's random 
code to inflict the largest possible error probability, we 
find that the jammer, regardless of how he distributes his 
power, can do no more harm (in the sense of limiting 
achievable rates of reliable transmission) then memoryless 
Gaussian noise with the water-filling power distribution. 

The results of this paper generalize [9, theorem 11 to 
vector channels. In [9] it was shown that for time-averaged 
power constraints on the transmitter and the jammer the 
capacity of the scalar GAVC is the same as the Gaussian 
channel that results when the jammer transmits memory- 
less Gaussian noise at the maximum allowable power. We 
might also consider imposing ensemble-averaged power 
constraints, as in [9]. Under such constraints it is likely 
that the VGAVC, like the scalar GAVC's of [9], will have 
no capacity in the usual sense. The exact form of the 
region of achievable rates and error probabilities, however, 
is not presently known. 
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The capacity of the VGAVC for deterministic codes, if it 
exists, remains an open problem, as it is in the scalar case 
[9]. The presence of a cost structure on the set of transmit- 
ter and jamming symbols causes the results for the GAVC 
to be qualitatively unlike those of the discrete AVC. It is 
important to note that many methods that have proved 
useful in the study of discrete AVC‘s, notably the Ahlswede 
[17] elimination technique, cannot be applied when cost 
constraints are considered [9], [19]. It is likely that new 
techniques will need to be developed to deal with the 
special features of these channels. 

The factors on  the right side in (A.2) can be evaluated as follows: 

p(  0; + SI,)’ P ( U , l ;  + 0: + 5,) E{exp( - 

2( C, + a , )  2( bP + c, + a , )  
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APPENDIX 
Proof of Lemma 1 

Using the inequality u ( t )  I 2‘ for all real t (where u ( t )  is the 
unit step function), we derive the following upper bound: 

- - 2i1(r(b0,c)-a) x2-~~r(bo.c) E 2-na 

Step a) follows by observing that if X is N ( p , u ’ )  and b <  
(2uz)-’ ,  then [18, appendix 7C] 

This completes the proof of Lemma 1. 

Proof of Lemma 2 

Using the inequality u ( t )  I 2P‘ for all real t and p 2 0, we 
obtain the following upper bound for all c: 

5 r ( b o , c ) - 6  

where 

Steps a) and b) above follow from (1). Substituting b) into (A.2), 
we find that 

for all n 2 1, p 2 0, and c 2 0, where 

where c,”= (l/n)E;=,s,2,. We can assume that Cc,J=y, since 
otherwise we could bound (A.4) below by multiplying the con- 
stants c;‘ by y/Xc,!. Under this assumption we have a simple 
lower bound for p < 1: 

where 

These steps are justified in the following way: a) follows by 
applying the inequality l n ( l +  x) 2 x / ( l +  x) for all x > - 1; 



1002 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 5, SEPTEMBER 1988 

b) follows from p < 1  and 

r, ( P > (  e,” + a ,  1 
1 -2n,(  P)  a ,  

- - P(1+P)bP(c , ”+a , )  
2( e, + a , ) ( ( l  - p’) bp + e, + a , )  + 2 p (  1 + p)  bpc, 

e,”+ a, P ( 1 +  P)bP 

P% bP 
1 - p  2 ( b ; + c , + a , ) ‘  

5 ( ~ ) x 2 ( ( l - p ’ ) b ~ + c f + a , )  

- <- 

We now choose cs EG, to give the desired result. Let 
maximize e,”, and define4 c,” = y [ n c , ” / y l / n  for z f I ,  and c,‘= y 
-C ,+ ,c f .  It follows that 

e,” + a ,  c,” + a ,  

for I # ;; hence 0, = (e,” + a;)/( e,” + a,). By definition e,” - c,” I 
m y / n  and e,” 2 y / m ,  so that e,” 2 y / m  - m y / n .  If we restrict 
n > m’, it follows that 

I t  follows from (A.5) and b) that for the cs chosen earlier, 

“ I  [ l + p  1 - p  1 - p n - m ’  
P P 

~ ( p , c ~ ,  S )  2 p 8 1 n 2 +  ~ -- ~ - - - 

It  is easy to show that 

b, + ?: + a ,  

b, 2 0: Xb, 5 p zl %: + zy + a ,  
max = m.  

Using this, we obtain the following bounds: 

2( Z: + a,)’+4( Z., + a,)b,  
var( Z )  = ‘ 

, = i  m’n(1-t s>’(%? + Z: + a,)’ 

4 b, + ?: + a, 4 
< < 

m 2 n ( l +  8)’ 5: + zy + a ,  - rnn(l+ 8)’ . 

We now apply Chebyshev’s inequality [16, p. 1901 to obtain 

This completes the proof of Lemma 3. 

Proof of Lemma 4 

For any set B c R m x n ,  let P(B) = Pr( H* + S* E B) .  Observe 
that H* + S* has a probability density function that is invariant 
on the boundary of E:; further, it is a strictly decreasing func- 
tion of O I 8 (1.  It follows that P ( E : )  I P ( A )  implies Y ( A )  2 
v(E:) .  To see this, note that P ( A  - E:) 2 P(E:  - A )  implies 

Application of the Chernoff bound [18, p. 971 to P ( E : )  yields 
Y ( A - E:) 2 v ( E; - A ) .  

P( E ; )  I [ (1 - 8) 4 mr1’2 = [ g( S)] nz’i’2 

where g( .) is strictly decreasing from 1 to 0 on 0 I 8 < 1. Thus 
for 6 = g - ’ ( P ( A ) ’ / ” “ ) ,  we have P ( A )  2 P(E:), as desired. This 
completes the proof of Lemma 4. 

2 p(  6 In2 - T,,) - 2p2m, for p < 1/2 

where T,, = m’/(n - m’). Let po = (S ln2-  7,,)/4m. Restricting REFERENCES 
n>(1+2 /81n2)m2  and 815m ensures rn<61n2 /2  and 01 
po < 1/2. Therefore, [l] I. Csiszir and J. Korner, Information Theoty: Coding Theorems for 

Discrete Memoryless Systems. New York: Academic, 1981. 
(61n2)’ 6’1112 [2] C. E. Shannon, “A mathematical theory of communication,” Bell 

Syst. Tech. J . ,  vol. 27, pp. 379-423 and 623-656, July and Oct. 
(A.6) 1948. 

E ( p 0 , c S , S ) 2 - 2 -  
32m 47m ‘ 

U* ; U* + H* + S )  I r( bo, c) - 8 

as desired. This completes the proof of Lemma 2. 
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