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TABLE IV 
GENERATORS (IN OCTAL) AND MAP OF DELETING BITS FOR BEST 

RATE R = 7/8 PUNCTURED CODES 

[8] Y. Yasuda, K. Kashiki, and Y. Hirata, “High-rate punctured convolu- 
tional codes for soft decision Viterbi decoding,” IEEE Truns. Commun., 
vol. COM-32, pp. 315-319, Mar. 1984. 
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Abstract-A modified proof of Berger’s abstract alphabet source coding 
with a fidelity criterion theorem is provided, utilizing a variant of a result 
from large deviation theory due to Gktner and Ellis. This proof does not 
use an asymptotic equipartition property of any kind, thus providing, in our 
opinion, a new and more direct approach to this key result. 

a Partidsearch. 

R = 7 / 8 , k = 5 )  all the maximum d, codes found had a very 
large information weight W(d,); the next largest d, codes are, 
therefore, also tabulated. A small personal computer (8-MHz 
Intel 8086 processor) was used to obtain the listed codes, and in 
one case ( R  = 7 / 8 ,  k = 6) only a partial search was performed. 

The free distances of the new codes and the punctured vari- 
able-rate codes derived from specific rate 1/2 codes by Yasuda 
et al. [8] are compared in Table V. The new codes have greater 
free distances in five instances. The comparison indicates that not 
too much bit error rate performance is sacrificed when variable- 
rate codes are used. ’ 

TABLE V 
COMPARISON OF FREE DISTANCES OF NEW CODES df WITH 

THOSE OF VARIABLE-RATE CODES d,, 

R = 6/7 R = 7/8 

2 2 2 2 2 2 2  2 2 
3 3 3 3 3 2 2  2 2 
4 4 3 3 3 3 3 3 3 
5 4 4 4 4  4 3  4 3 
6 . 4  4 4 4 4 3  4 3 

R = 4/5 R = 5/6 
k df dfu df df” df df” dl  df” 
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I. INTRODUCTION 

Berger’s proof of the abstract alphabet source coding with a 
fidelity criterion theorem is based upon [l, theorem 7.2.2, pp. 
273-2781. This theorem asserts the existence of a code with 
distortion less than D + S and with rate less than R,( D )  + S for 
any S > 0 where R,( D )  is the first-order approximation to the 
rate-distortion function R( D ) .  

At the very end of the proof of the theorem, an appeal to a 
generalized asymptotic equipartition property (AEP), as reported 
by Perez [2], is made. A counterexample to this generalized AEP 
has, however, been discovered. It is for this reason that Dunham 
[3] claims that Berger’s proof is technically incorrect. He, how- 
ever, does indicate that an “information stability” type of AEP 
result [6] shown by Pinsker does hold and immediately provides 
the needed fix. 

In this correspondence we take a somewhat different line in 
that we modify Berger’s proof in such a way that no AEP 
property of any type is needed. We instead invoke a result from 
large deviation theory that provides a new and more direct 
approach to this key theorem. This completes a line of research 
first started in [7]  where we gave a proof of the source coding 
theorem for a less general case utilizing another large deviation 
theorem known as Sanov’s theorem. 

11. PRELIMINARIES 
If c is a convex function defined on the real line 9, then the 
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conjugate function of c ( 0 )  is defined as c*( D) = supr, [eD - c( e ) ] .  

Let c , ( e )  = n-llogE{exp(BW,)}, where { W,,} 1s a sequence 
of nonnegative random variables. If c(0) = lim, c , ( e )  exists for 
all 0 E 9,, then c(t9) is convex and nondecreasing because each 
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Ellis [9] used Gktner's exponential estimates for large devia- 
tions of random vectors in gd and obtained upper bounds for 
arbitrary closed sets as well as lower bounds for arbitrary open 
sets. 

111. PROOF OF THE SOURCE CODING THEOREM 
We adopt the terminology and notation of Berger [1, ch. 71. 

Our modification of his proof begins with [l, eq. 7.2.311, at which 
point it only remains to show that 

4, = /Fn( D + SIX) dk ( x)  (1) 

vanishes in the limit of large n. Here pn is the soucce probability 
measure restricted to n-dimensional space and Pn( D + 61x) I 
[l- v"({ y :  p,(x, y )  I D t where Y" is the probability 
measure that governs the independent selection of each of K - 1 
codewords. The total umber of codewords is K .  

If p (  . , .) is the single letter distortion measure, we define 
n 

P , ( X ? Y )  =.-I c P(X,,Y,). 
1 - 1  

For 6 > 0 we can write 
- 
<, (D+Slx )  1 [ 1 - v " ( { y :  p n ( ~ , y ) I D + 6 } ) ] K - 1  

I exp [ - ( K - 1) Y" ( { y : p ,  ( x , y ) I D + 6 } ) ] . 
( 2) 

Given a conditional probability q1 E Ql( D) such that 

Z ( Q )  = Z ( $ , q l )  I R , ( D ) + ~ ,  

let q" denote the conditional probability corresponding to n 
successive uses of the memoryless channel q l ,  and let v" = v 1  x v 1  
x . . . x v', where v1 is the output distribution of the channel q1 
with input distribution pl. We note that our choice of v" is 
different from that of Berger and Dunham. 

Before we proceed with Berger's theorem, we first examine the 
properties of the following nondecreasing convex function: 

f(6') = j l o g [ / e x P [ 6 ' ~ ( x > ~ ) l  d v w ]  dP1(X). 

Lemma 1: The following lower bound holds for the left 
derivative fi (0): 

Proof: The left derivative f: (0) is well defined since f(0) = 0 
and f(0) is convex. Jensen's inequality yields the desired result: 

Our objective is to construct a code with distortion less than 
D + 6 and rate less than R,(D)+ 6. We assume that D < D*, 
since no information needs to be provided about the source and 
R l (  D) = 0 if D 2 D*. We further assume that R,( D) < 00. Since 
a ''6'' of play is allowed in both the distortion and the rate, we 
may assume without loss of generality that R,( D - E )  < co for 
some E > 0. 

Lemma 2: If R,( D )  < co, then 

R , ( D ) + S > Z ( Q )  2 SUP [OD-f(6')]. 
8 5 0  

If, furthermore, D < D* = /p(x, y )  d[v'(y).p'(x)], then also 

sup [ e ~ - f ( e ) ]  = s u p [ e ~ - f ( ~ ) ]  = f * ( ~ ) .  
8 5 0  9 

Proot A discrete alphabet version of the first assertion is 
given in [l, theorem 2.5.3, pp. 37-38]. The interested reader can 
check that the essential ideas carry through to the present setting. 
The second assertion follows from Lemma 1 since f( e )  is convex 
nondecreasing. 

We now return to (1) and (2). To complete Berger's proof, we 
argue that the integrand of the integral defining 4, converges to 
zero for p-a.e. x, so that J, converges to zero by Lebesgue's 
dominated convergence theorem. Indeed, v" is of product form, 
so by the ergodic theorem, 

Suppose D,, < D*. If 0, < 0 exists such that f'(0,) = Do, then 
the large deviation lemma for the one-dimensional random vari- 
able W, = n p , ( x ,  y )  and c(6') = f ( 0 )  yields the lower bound 

liminf n-l logv"( { y :  p (  x ,  y )  I D,, + a } )  
n 

2 -f*( Do) > - [  Rl(  D o ) +  61. 

We see from (2) that pn ( D, + 6) + 0, and hence 4, + 0 as n + 03 

if 

liminf n-l log K 2 R, (  0,) + 6. 

This implies the existence of a code with rate less than D, + 6 
and rate less than Rl (  Do) + 26. 

The proof is slightly more complicated in the remaining case, 
when 0, exists such that Do falls between D- =fl(6',) and 
D+=f:(Oo) but D _ < D , .  Then f * ( D ) = s u p e [ O D - f ( B ) ] =  
[e, D - f(O,)] is a straight line (affine) as D ranges over the 
interval [ D - ,  D, 1. There exists 6'- and 6'+ arbitrarily close to 0, 
such that f'(K ) and f'(0, ) are arbitrarily close to D- = /:(So) 
and D ,  = f: (e,,), respectively, and by the previous argument 
there exists a code with distortion less than D- + 6 and rate less 
than f'(6'- )+ 6 and another code with distortion less than 
D, + 6 and rate less than f'(0, ) + 6. We time share these codes 
with time ratios X -  2 0 and X, 2 0 such that X -  + X _  = 1 and 
A- D -  + A, D, = Do and obtain a code with distortion less than 
Do + 6 and rate less than X- f*( D.. ) + A, f*( D ~ ,  ) + 6 = f*( Do) 
+ 6 I R ,  ( Do) + 26. 

n 

IV. DISCUSSION 
The choice of codeword probability measure v" being of 

product form greatly simplified the calculation in verifying that 
the analog of lim,z - Jj c,, (6') = c( 6 ' )  holds. In the Berger/Dunham 
proof v" is not of product form. It was this fact that necessitated 
the use of an asymptotic equipartition property to complete the 
proof. In an earlier paper [7], we explicitly gave yet another proof 
for discrete memoryless sources and indicated how to extend it 
(to Polish space-valued alphabets and continuous distortion mea- 
sures). This proof relied heavily on a theorem concerning the 
rates of convergence of empirical distributions, known as Sanov's 
theorem. In that paper we expressed the hope that large deviation 
theory can supply a proof for the abstract alphabet case. We 
expect that further interrelationships among the information the- 
ory theorems, large deviation theory, and Shannon- McMillan 
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theorems will be discovered to the mutual benefit of these and 
other areas. 
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APPENDIX 
PROOF OF LARGE DEVIATION LEMMA 

Let Q,(dD) denote the distribution of Wn/n on R, and define 
the “twisted” measures 

Qn,e(dD) =exp[nOD]-Q,,(dD)/exp[ncn(6)], n = 1 , 2 , . . .  . 

As D ranges over a neighborhood G, = (Do - E ,  8, + e) of Do, 
then - OD 2 - ODo - ( @ ( E ,  and, consequently, if G, c G we have 

Qn(G) rQn(Gf)  = e x ~ [ n ~ n ( ’ ) I . /  ex~[-n’DIQn,t~(dD) 
G. 

2 exP n ( Cn( 0 )  - ‘DO - l’lc)I . Qn.8 ( C, 1. 
It follows (letting O = 0,) that 

lim inf - log Q,, ( C )  2 C( 0,) - do Do - (Oolc 
1 

n n  

1 
n n  

+ liminf - logQ,,,,(G:). 

Note that c( 0,) - Oo Do = - c*( Do) since c( 0 )  is differentiable at 
0, with finite derivative c’(Oo) = Do. If Qn,e,(Gf) +1 as n + 00, 

the lemma follows by letting E + 0. 
It remains to show that Qn,eo(C,) 41 as n -+ co. Introduce 

random variables V ,  such that V n / n  has distribution Qn,eo(dD). 
Note also for any random variable 2 and t 2 0 we have P{ 2 2 
z} I E{exp[t(Z- z)]} =exp[- tz].E{exp[tZ]}. Hence 

P{ V , / n  2 Do + E }  I E {  exp[ nt( ~ , / n  - D, - E ) ] )  

‘ ~ X P  [ ‘00 ’I Qn ( d’) / ~ X P  [ ncn ( e)]  
~ X P  [ n ( c n  ( 00 + t )  - cn ( 00) - t (  DO + E > ) ]  . 

Hence 
1 

n n  
limsup - logP{ v , / ~ ~ D , + E }  I c ( O o + t )  -.(eo) - t (  D,+E). 

The right side is strictly negative for sufficiently small t since 
[.(e, + t )  - c(O0)]/t -, Do as t -, 0. Similarly, 

limsup - logP{ v , / n  I D, - E }  I .(eo - t )  - .(eo) + t(o0 - E )  

which, again, is strictly negative for small t .  The two bounds 
imply that 1 - Qn,eo(Gf) vanishes exponentially fast and hence 
Q,l,e,(Gc> as n + m. 
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Finite-State Codes 
FABRIZIO POLLARA, MEMBER, IEEE, ROBERT J. McELIECE, 

FELLOW, IEEE, AND KHALED ABDEL-GHAFFAR 

Abstruct -We define and investigate a class of codes called finitestate 
(FS) codes. These codes, which generalize both block and convolutional 
codes, are defined by their encoders, which are finitestate machines with 
parallel inputs and outputs. We derive a family of upper bounds on the free 
distance of a given FS code, based on known upper bounds on the 
minimum distance of block codes. We then give a general construction for 
FS codes, based on some recent ideas of Ungerboeck, and show that in 
many cases the FS codes constructed in this way have a dIree which is the 
largest possible. We also discuss the issue of catastrophic error propaga- 
tion (CEP) for FS codes and discover that to avoid CEP we must solve an 
interesting problem in graph theory, that of finding a “uniquely decodable 
edge labeling” of the state diagram. 

I. INTRODUCTION 
We begin with a description of what we shall call a finitestate 

( F S )  encoder. An (n, k, m )  FS encoder is a qm-state (time- 
invariant) finite-state machine (FSM) with k parallel inputs and 
n parallel outputs taken from a q-letter alphabet (Fig. 1). 

The encoder starts from a fixed initial state. At each clock 
pulse, k symbols (the information symbols) are input to the 
encoder, and in response the encoder changes state and outputs n 
symbols (the code symbols). Thus if ( ul,  u2,  . . . ) is a sequence of 
k-symbol information blocks, then the encoder’s output will be a 
sequence ( xl, x2 . . . ) of n-symbol code blocks, which we call a 
code sequence. The set of all such code sequences is called the 
code generated by the FS encoder. A code generated by a 
(n, k ,  m )  FS encoder will be called an (n, k, m )  finite-state code. 
We note that if only one state exists in the encoder, the resulting 
(n, k,O) FS code is in fact an ordinary block code. Similarly, a 
linear convolutional code is just an FS code in which the finite- 
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