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theorems will be discovered to the mutual benefit of these and 
other areas. 
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APPENDIX 
PROOF OF LARGE DEVIATION LEMMA 

Let Q,(dD) denote the distribution of Wn/n on R, and define 
the “twisted” measures 

Qn,e(dD) =exp[nOD]-Q,,(dD)/exp[ncn(6)], n = 1 , 2 , . . .  . 

As D ranges over a neighborhood G, = (Do - E ,  8, + e) of Do, 
then - OD 2 - ODo - ( @ ( E ,  and, consequently, if G, c G we have 

Qn(G) rQn(Gf) = e x ~ [ n ~ n ( ’ ) I . /  ex~[-n’DIQn,t~(dD) 
G. 

2 exP n ( Cn( 0 )  - ‘DO - l’lc)I . Qn.8 ( C, 1. 
It follows (letting O = 0,) that 

lim inf - log Q,, ( C )  2 C( 0,) - do Do - (Oolc 
1 

n n  

1 
n n  

+ liminf - logQ,,,,(G:). 

Note that c( 0,) - Oo Do = - c*( Do) since c( 0 )  is differentiable at 
0, with finite derivative c’(Oo) = Do. If Qn,e,(Gf) +1 as n + 00, 

the lemma follows by letting E + 0. 
It remains to show that Qn,eo(C,) 41 as n -+ co. Introduce 

random variables V ,  such that V n / n  has distribution Qn,eo(dD). 
Note also for any random variable 2 and t 2 0 we have P{ 2 2 
z} I E{exp[t(Z- z)]} =exp[- tz].E{exp[tZ]}. Hence 

P{ V , / n  2 Do + E }  I E {  exp[ nt( ~ , / n  - D, - E ) ] )  

‘ ~ X P  [ ‘00 ’I Qn ( d’) / ~ X P  [ ncn ( e)]  
~ X P  [ n ( c n  ( 00 + t )  - cn ( 00) - t (  DO + E > ) ]  . 

Hence 
1 

n n  
limsup - logP{ v , / ~ ~ D , + E }  I c ( O o + t )  -.(eo) - t (  D,+E). 

The right side is strictly negative for sufficiently small t since 
[.(e, + t )  - c(O0)]/t -, Do as t -, 0. Similarly, 

limsup - logP{ v , / n  I D, - E }  I .(eo - t )  - .(eo) + t(o0 - E )  

which, again, is strictly negative for small t .  The two bounds 
imply that 1 - Qn,eo(Gf) vanishes exponentially fast and hence 
Q,l,e,(Gc> as n + m. 
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Finite-State Codes 

FABRIZIO POLLARA, MEMBER, IEEE, ROBERT J. McELIECE, 
FELLOW, IEEE, AND KHALED ABDEL-GHAFFAR 

Abstruct -We define and investigate a class of codes called finitestate 
(FS) codes. These codes, which generalize both block and convolutional 
codes, are defined by their encoders, which are finitestate machines with 
parallel inputs and outputs. We derive a family of upper bounds on the free 
distance of a given FS code, based on known upper bounds on the 
minimum distance of block codes. We then give a general construction for 
FS codes, based on some recent ideas of Ungerboeck, and show that in 
many cases the FS codes constructed in this way have a dIree which is the 
largest possible. We also discuss the issue of catastrophic error propaga- 
tion (CEP) for FS codes and discover that to avoid CEP we must solve an 
interesting problem in graph theory, that of finding a “uniquely decodable 
edge labeling” of the state diagram. 

I. INTRODUCTION 
We begin with a description of what we shall call a finitestate 

( F S )  encoder. An (n, k, m )  FS encoder is a qm-state (time- 
invariant) finite-state machine (FSM) with k parallel inputs and 
n parallel outputs taken from a q-letter alphabet (Fig. 1). 

The encoder starts from a fixed initial state. At each clock 
pulse, k symbols (the information symbols) are input to the 
encoder, and in response the encoder changes state and outputs n 
symbols (the code symbols). Thus if ( ul,  u2,  . . . ) is a sequence of 
k-symbol information blocks, then the encoder’s output will be a 
sequence ( xl, x2 . . . ) of n-symbol code blocks, which we call a 
code sequence. The set of all such code sequences is called the 
code generated by the FS encoder. A code generated by a 
(n, k ,  m )  FS encoder will be called an (n, k, m )  finite-state code. 
We note that if only one state exists in the encoder, the resulting 
(n, k,O) FS code is in fact an ordinary block code. Similarly, a 
linear convolutional code is just an FS code in which the finite- 
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Fig. 1. Finite-state encoder. 

state machine is a bank of k parallel shift registers, where each 
output symbol is a linear combination of the k input symbols 
and the symbols stored in the shift registers. Thus FS codes 
include both block and convolutional codes as special cases. 

The free distance (dfreJ of an FS code is defined to be the 
minimum Hamming distance between all pairs of distinct (in- 
finite) code sequences. For given values of n ,  k ,  and m the FS 
code with the largest free distance will usually give the best 
performance. In this correspondence our concern is to find 
bounds on dfrec in terms of the parameters n ,  k, and m to 
produce a family of FS codes meeting these bounds in certain 
cases. In Section I1 we derive our bounds. In Section I11 we 
describe a very general construction for ( n ,  k, m) FS codes using 
ideas similar to those which are current in the trellis-coding 
literature [2], [6], [11]-[13]. In Section IV we discuss the issue of 
catastrophic error propagation and, using techniques from graph 
theory, describe an optimal noncatastrophic edge labeling of the 
complete 2"' state diagram. In Section V we combine the results 
of Sections I11 and IV to construct a class of Reed-Solomon-like 
FS codes which meet the bounds of Section I1 whenever n I q 
and m I min( k - 1, n - k - 1). Finally, in Section VI we attempt 
to draw conclusions and compare some of our new codes with 
codes which have been previously studied. 

11. BOUNDS ON dfrcc 
We derive a family of upper bounds on dlrar in terms of the 

parameters n ,  k ,  and m. The basic idea is to find "subcodes" of 
a given FS code which are block codes and use the fact that any 
upper bound on the minimum distance of the block code is also 
an upper bound on the free distance of the parent code. 

Here is some needed notation: let A ( n ,  k) denote the largest 
possible minimum distance for a block code over a q-letter 
alphabet with length n and qh codewords. (We note for future 
reference the fact that A(n, k)  is meaningless for k I 0.) The 
following theorem gives a bound on the free distance of a FS 
code in terms of A. 

Theorem 1: For any FS code with parameters n ,  k, and m, 
the free distance is bounded as follows: 

dfrce I min A (  L n ,  Lk - m ) .  
L: Lk > m 

Proof: We consider all possible input sequences consisting of 
L k-symbol input blocks ( u , u , ; . . , u J .  There are q*.h such 
input sequences. For each of these sequences the encoder starts in 
the initial state and terminates in one of q"' states. It follows 
from the pigeon-hole principle that there must be at least q'.' -''I 

of these length-L input sequences which have the same final 
state. The code sequences corresponding to these input sequences 
can be thought of as a block code with length Ln with at least 
q',' 

n' codewords. The minimum distance of this block code is 
by definition at most A( Ln, Lk - m) .  On the other hand, by the 
definition given in Section I, the minimum distance of this block 
code is an upper bound on the dlrcC of the original FS code. Since 
this is true for all L ,  we apparently have 

dfrcc I min A( Ln,  Lk - m).  

However, as we noted earlier, A(n, k )  is meaningless if k I 0, 
and so the minimization can only be taken over those values of L 
for which Lk - m > 0. 

I .  2 1 

Corolluty 1: If k > m, then dlrec I A ( n ,  k - m). 

Proof: If k > m, then it is permissible to take L =1 in the 

Coro//uty 2: The free distance of an ( n ,  k, m )  FS code over a 

minimization in Theorem 1. 

q-letter alphabet satisfies 

dlree 5 min ( Ln - Lk + m + 1) 
L :  L.k > m 

= ( n - k )  -+1  + m + l  1: I 
= n - k + l + m  i f k b m  

Proof: This follows from Theorem 1 and the Singleton bound 
[8, theorem 1.111 which says that 

A(n ,k)  ~ n - k + l .  

Corolluty 3: The free distance of an FS code also satisfies 

Proof: This follows from Theorem 1 and the Plotkin bound 
[ l ,  theorem 13.491 which says that 

Comments: Most of the ideas used in the proof of Theorem 1 
are already in the literature. The first such occurrence is in [lo], 
where McEliece and Rumsey proved Corollary 3 for the special 
case of systematic convolutional codes with k = 1. Soon after- 
wards, Heller [7] generalized the result of McEliece and Rumsey 
to the case of nonsystematic convolutional codes still with k = 1. 
Then McEliece and Layland [9] further generalized the result to 
arbitrary time-varying linear convolutional codes and showed 
that block code bounds other than the Plotkin bound (in particu- 
lar, the Gnesmer bound) could sometimes be used to obtain 
useful bounds. Thus Theorem 1 adds little to what is contained in 
[9] except that it applies to nonlinear codes and explicitly points 
out that any upper bound on the minimum distance of a block 
code bound can be used to obtain an upper bound on the free 
distance of a FS code. Although in this correspondence we 
usually only need to take L =1 in Theorem 1 and its corollaries, 
for many sets of parameter values, in particular, for the impor- 
tant case n = 2, k =1, q = 2 (i.e., binary rate 1/2 convolutional 
codes), the optimal value of L is typically much larger than 1. 

111. CODE CONSTRUCTIONS 
In the last section we derived bounds on dfrec which apply to 

arbitrary FS codes. In this section, we describe a very general 
construction for a class of FS codes which is based on an idea 
that originated in Ungerboeck's landmark paper [ll]. We find 
that many of the codes constructed by this technique meet the 
bounds of Section 11. 

Our basic idea is to start with an explicit state-transition 
diagram and build a code around this diagram. For definiteness, 
we will consider only complete& connected q"'-state transition 
diagrams, in which every ordered pair of states is connected by a 
directed edge (illustrated in Fig. 2 for q = 2. m = 2); however, 
most of our ideas can be generalized to other diagrams. 

The FS code is to have parameters n and k .  T h s  means that at 
every clock cycle, k symbols go into the encoder and n symbols 
come out. Of the k input symbols it is reasonable to suppose that 
m are used to determine the next state of the encoder (recall that 
there are q"' states altogether) and k - m to determine which n 
symbols are to be output. Thus it is natural to think of the 
possible n-symbol output blocks associated with a fixed state 
transition as the words in an ( n ,  k - m )  block code. Our basic 
idea is to assign an ( n ,  k - m) block code to each possible state 
transition. 
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Fig. 2. Completely connected four-state diagram (edge labels are as de- 
scribed in Theorem 4). 

Here then is our general construction for an (n, k ,  m) FS code. 
We begin with a linear ( n , k , )  block code C, with minimum 
distance d,. If we form the union of q k 1 - k 2  cosets of G ,  we will 
obtain an (n, k , )  block code C, (not necessarily linear) whose 
minimum distance we denote by d,. We assign one of the cosets 
of C, to each of the q2” state transitions in the state transition 
diagram. This assignment cannot be arbitrary. For example, we 
require that all q” transitions originating at a given state or 
terminating at a given state be assigned a different subcode. This 
forces us to use at least 4’’’ different cosets; however, to avoid 
catastrophic error propagation, we will need more than qm sub- 
codes, as we shall see in Section IV. If the big code C, has qkl 
codewords, where k ,  is an integer, this implies ’ 

k , > k , + m + l .  

The encoder now works as follows (see Fig. 3). The FSM is 
started in the initial state. At every clock pulse the encoder 
accepts k symbols. The first m of these symbols are input to the 
FSM. These m symbols determine the next state of the FSM and 
produce k ,  - k ,  output symbols which are used to select one of 
the q k L - k 2  cosets of C,. The remaining k - m = k ,  input sym- 
bols are used to determine which of the q k 2  codewords from the 
selected coset is to be output from the encoder. Note that if 
m = 0, the encoder in Fig. 3 is simply an encoder for an (n, k )  
block code, and if k ,  = 0 and the FSM is linear, the encoder 
becomes an ordinary encoder for a convolutional code. We will 
use this fact in Section VI when we compare block, convolu- 
tional, and FS codes. 

rn-k-k, 
k input 
lines 

Fig. 3. Conceptual view of encoder 

This design is similar to a construction of Ungerboeck [12, part 
11, fig. 11 and the Class V codes of Forney [6, part I]. The key 
difference is that while Ungerboeck and Fomey seek to construct 
codes over the reds with large Euclidean distance via lattice 
partitions, we seek to maximize Hamming distance via partitions 
of block codes. Still, as one of the referees has observed, no 
essential difference exists between constructing trellis codes to 
maximize Euclidean distance using sublattices of 2” that lie 
above 22”  and constructing trellis codes to maximize Hamming 
distance. 

In the next theorem we estimate the dtree of the code con- 
structed in this way. The essential idea of this theorem is implicit 
in Ungerboeck [ll]. 

Theorem 2: The free distance of the (n, m + k,, m) FS code 
constructed as described earlier satisfies 

min(d2,2d,) I dfree I d , .  

Proo) We need to estimate the Hamming distance between 
pairs of code sequences corresponding to paths in the state 
diagram which begin and end in the same state. Let us say that 
these paths both begin in state s, and end in state s K .  There are 
two cases to consider: 1) when the second states in the two paths 
are the same and 2) when they are different. 

In case 1) we look at only the first n-symbol block of each 
path. These two blocks are distinct codewords in the same (n, k,) 
subcode and so must differ in at least d ,  positions. Thus if case 
1) holds, the Hamming distance between the two code sequences 
is at least d,. Furthermore, since d ,  is the minimum distance of 
each of the subcodes, we know that the Hamming distance 
between some pair of code sequences is exactly d,. Thus dfree 5 

In case 2) the paths must differ in at least two edges: the edges 
leaving s, and the edges next entering a common state (there 
must be such a common state since the paths both terminate at 
sK-see Fig. 4). The n-symbol blocks corresponding to these 
pairs of edges are distinct codewords in the (n, k , )  parent code 
since we have assumed that different subcodes are assigned to all 
state transitions beginning (or ending) in the same state, and so 
each pair must differ in at least d,  positions. This means that the 
two code sequences must differ in at least 2d, positions. Thus if 
case 2) holds, the Hamming distance between the two code 
sequences is at least 2d,. Combining cases 1) and 2) we obtain 
the statement of the theorem. 

d2. 

d l  d l  

Fig. 4. Proof of Theorem 2. (a) Case 1. (b) Case 2 

Once the free distance of a FS code is known, the next 
important number to know is the error coefficient, which is the 
number of code sequences at distance dfree from a given code 
sequence. (If the code is linear, this number is independent of the 
code sequence chosen.) This is a difficult quantity to compute in 
general, but the following corollary is often useful. 

Corollary 4: Let Ad,  denote the number of codewords of 
weight d ,  in the code G. If d, I 2d,, then the error coefficient 
of the FS code constructed by Theorem 2 is  2 Ad2. If d ,  -= 2d,, 
then the error coefficient is exactly equal to Adz.  

Proof: According to Theorem 2, if d ,  5 2d,, then dfree = d,. 
According to the proof of Theorem 2, there are potentially two 
classes of code sequences at distance dfre from a given code 
sequence, viz. the “Case 1” and the “Case 2” code sequences. In 
Case 1 the only way to get distance d ,  is if the two length n code 
sequences are codewords at distance d ,  in the code C,, and the 
number of codewords at distance d ,  from a given codeword is 
the number of words of weight d ,  since C, is assumed to be 
linear. This accounts for at least Ad,  code sequences at distance 
dfree from a given code sequence. However, if d ,  < 2d,, Case 2 
does not contribute to the error coefficient. 

Example I: Let q = 2, and consider the four-state state dia- 
gram of Fig. 2. We choose as the parent code C, a (16,5) 
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first-order Reed-Muller code with d, = 8. This code contains a 
(16,l) linear subcode C, (the repetition code) with d ,  = 16. There 
are 16 cosets of C, in C,, and so it is possible to assign a different 
coset to each of the 16 state transitions in the state diagram. The 
result is a (16,3,2) code with (according to Theorem 3.1) dfree =16. 
(A calculation which we omit shows that the error coefficient is 
13. For each code sequence there is one “Case 1” code sequence, 
and 12 “Case 2” code sequences at distance 16.) On the other 
hand, by Corollary 1, we find that the free distance of a (16,3,2) 
code with q = 2 is at most 16. Therefore, the code constructed 
this way has the largest possible dfree for its given n ,  k ,  and m. 
(This example will be generalized in Example 4 in the next 
section.) 

Example 2: We again take q = 2, and C, to be the (16,5), 
d,,, = 8 first-order Reed-Muller code. C, is a subcode of the 
(16,ll) d,,, = 4 second-order Reed- Muller code which we will 
call C*. If we take C1 to be the union of eight cosets of C, in C*, 
then C, will be a (16,8), d,,, 2 4 code. Thus if we use the 
edge-labeling described in Fig. 2 to assign these eight cosets to 
the 16 state transitions, Theorem 2 tells us that we get a (16,7,2) 
FS code with dfree = 8. On the other hand, the bound in Corol- 
lary 3 (take L = 1) shows that any (16,7,2) FS code must have 
dlree I 8, and so any code constructed in this manner is optimum. 
By Corollary 4, the error coefficient of this code must be 2 30, 
which is the number of words of weight 8 in C,. However, we 
note that if we choose the eight cosets properly, C, will be the 
(16,8) nonlinear Nordstrom-Robinson code, with d, = 6 [E, ch. 
151. In this case, we have d, < 2 4 ,  and so by Corollary 4, the 
error coefficient is exactly 30. This example will be generalized in 
Example 5 to follow. 

The codes constructed by the techniques of this section are 
often, as we have seen, quite good if dfree is used as the figure of 
merit. However, they are not yet guaranteed to be noncatas- 
trophic. In the next section we will address the problem of how to 
assign subcodes to state transitions to avoid catastrophy. 

IV. UNIQUELY DECODABLE EDGE LABELINGS 
In Section 111 we showed how to construct an ( n ,  k ,  m) FS 

code by assigning cosets of a subcode of an ( n ,  k )  block code to 
the edges of a state diagram. This coset-to-edge assignment must 
be done carefully. For example, for the construction of Theorem 
2 to work, all edges leaving a given state and all edges entering a 
state must be assigned distinct cosets. A coset assignment that 
has this necessary property is called nonsingular. However, there 
is a subtler issue. If the coset-to-edge assignments are not done 
carefully, the resulting encoder could be catastrophic. 

Here we study the problem of assigning cosets in a nonsingular 
manner so to avoid catastrophy. We will see that for the com- 
pletely connected state diagram with 4“‘ states at least 2q”’ cosets 
are needed; we will also see one way to make a nonsingular 
noncatastrophic coset-edge assignment if q”’+ cosets are avail- 
able. The key concept is that of a uniquely decodable edge-label- 
ing of a state diagram, which we now define. 

If s and t are two states, we denote by L ( s ,  1) the label on the 
directed edge from s to t. (In our application, the “labels” are 
cosets.) Let ( s l ,  s,,. . . , s, ) and ( t,, t , ,  . . . , t, ) be two sequences 
of K states. If the two corresponding sequences of labels 

L( $1, 3 , )  , L ( s ,  3 s3) 3 .  ’ . I L( SK- 1 t s,) 

L( t , ,  t 2 ) ,  L( t 2 ,  t 3 )  ,. . . , L( t,- ,, t K )  

and 

are identical, we call two such state sequences label indistinguish- 
able. 

Definition 1: An edge labeling of a state diagram is said to be 
uniquely decodable (UD) if and only if an integer KO exists such 
that any two label-indistinguishable state sequences of length 
K 2 KO are identical. (This says that any sufficiently long state 
sequence can be recovered uniquely from its label sequence.) 

We will need uniquely decodable edge labelings to ensure that 
a bad burst of channel noise will never cause the decoder to make 
an infinite number of decoder errors, Le., will not cause catas- 
trophic error propagation. If the edge labeling is not uniquely 
decodable, catastrophic error propagation might happen. We can 
see this as follows. Let (s,, s2, . . . ) and ( t , ,  t 2 ,  . . . ) be two 
arbitrarily long label-indistinguishable state sequences. If the 
encoder follows a state sequence that finishes with the sequence 
(sl, s,, . . . ), it is possible for the channel noise to be such that the 
decoder will correctly determine the state sequence up to (but not 
including) s,, but then choose t, instead of s,. If this happens, 
the decoder will almost surely never recover since its metric 
calculations based on hypothesizing the incorrect state sequence 
( t , ,  t,, . . . ) will be identical to those based on the true state 
sequence ( s, , s2, . . . ). 

Notice that if all the edge labels are distinct, any state se- 
quence can be uniquely recovered from its label sequence, and so 
the labeling is uniquely decodable. (If the state diagram is the 
complete N-state diagram, this requires N2 labels.) On the other 
hand, if all edges in the state diagram have the same label, all 
pairs of state sequences are label indistinguishable, and so the 
labeling cannot be UD. The basic problem is to find the mini- 
mum number of different labels that are needed for a UD 
labeling. We do not know what this number is for an arbitrary 
state diagram. However, if we assume that the state diagram is 
D-regular, i.e., that there are exactly D edges coming into (and 
going out of,) each state, the following theorem places a nontrivial 
lower bound on the required number of distinct labels. 

Theorem 3: For a D-regular state diagram with at least two 
states, at least 2 0  distinct labels are required for a UD edge 
labeling. 

Proof: As a first step, note that if we have labeling L such 
that L ( s ,  t )  = L(s’, t ) ,  where s and s’ are distinct states, the 
labeling cannot be UD, since then (s, s,, s3, s4; . . , s,) and 
(s’, s2, s3, s4, .  . . , sK ) are label indistinguishable but not identical 
state sequences for any value of K .  Similarly, if L ( s ,  t )  = L ( s ,  t’), 
where t and t‘ are distinct states, the labeling is also non-UD 
since (s,, s,,. . . , sK- ,, t )  and (sl, s,; . . , sK- ,, t’) are label indis- 
tinguishable but not identical state sequences for any value of K .  
Thus we have for any UD labeling that 

L ( s , t )  # L ( s ’ , t ) ,  i f s + s ’  

L ( s , t )  f L ( s , t ’ ) ,  if t + t ’ .  

In other words, if we are given x and L ( x ,  y ) ,  we can recover y ;  
if we are given y and L ( x ,  y ) ,  we can recover x. If the labeling 
has this property we say that it is nonsingular. Thus all UD 
labelings are nonsingular, but the converse may not hold. 

Next we assume that we are given a UD labeling of a D-regu- 
lar state diagram, but that the labeling uses fewer than 2 D labels. 
We will show by induction that this assumption leads to a 
contradiction by constructing a pair of arbitrarily long nonidenti- 
cal but label-indistinguishable state sequences. If s, and t, are 
distinct states, then (s,) and ( t , )  are two label-indistinguishable 
but distinct state sequences of length 1. Now assume that we 
have already constructed a pair of nonidentical but label-indis- 
tinguishable state sequences of length K ,  say (s,, s,; . ., s,) and 
( t , ,  t,; . ., t K ) .  (We have just seen that we can do this for K = 1.) 
Since the labeling is nonsingular, we know that s, f t,. Now 
consider the 2 0  labels of the form L(s,, s) and L ( t K ,  s). Since 
there are fewer than 2 D labels available, two of these labels must 
be identical. These identical labels cannot be of the form L(s,, s)  
and L ( s K , s ’ ) ,  or L ( t K , t )  and L ( t K , t ’ )  since the labeling is 
nonsingular. Hence we must have L(s , ,  s )  = L ( t K ,  t )  for some s 
and t .  Thusif we set s K c l  = s  and t K + ,  = t ,  then (~~,s,,...,s~+~) 
and ( t , ,  t,; . ., t , ,  ,) are nonidentical but label-indistinguishable 
state sequences of length K + 1. This completes the proof that 
2 D labels are necessary in any UD edge labeling. 
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Theorem 3 says that 2 D labels are necessary for a UD labeling 
of an D-regular state diagram. However, 2 0  labels are not 
always sufficient as can be seen by considering a three-state state 
diagram with each state connected only to itself with a loop. Here 
D = 1, but plainly three labels are required since the loops must 
all have different labels. However, the next theorem implies that 
2 0  labels are sufficient if D is a power of two and if the state 
diagram is completely connected. 

Theorem 4: The completely connected qm-state diagram has a 
UD labeling that uses only qm+' labels, so that every sequence of 
m edge labels uniquely identifies the state sequence. 

Proof: Let us number the q" states with the integers in the 
set {0,1;..,q"-'}. We will use the integers in the set 
{0,1, . . . ,qm+'-1)  as edge labels. Indeed, if x and y are two 
states, we label the directed edge from x to y with the integer 
L(x, y )  = y - qx mod qm+' .  We claim that this labeling is UD. 
As a first step in this direction we note that this labeling is 
nonsingular. To see this, note that if we are given x and L = y - 
qxmodq"+',then y=L+qxmodq"+ ' ;  ifwearegiven y and 
L, then x = ( y  - L)/q mod q". 

To see why the labeling is UD, let xo, x 1 ; ~ ~ , x m  and 
yo, yl,. . . , y, be a pair of label-indistinguishable state sequences 
of length m + 1, and let L, be the common label on the edges 
x, - , + x and y,_ 4 y,. Then (all arithmetic is interpreted 
mod q"+") we have 

L ,=x , -qxl - l=yl -qyl - l ,  for i=1 ,2; - . ,m.  

From this we conclude that 
x, = L, + 4x0 

x, = L, + qL, + q2xo 

x, = L, + . . . + q m - l L 1  + q m x 0 .  

It follows from this that 

x , = L , +  ... +qm-'L,modqm. 

Thus x, depends only on the m labels L,,. . , L, and not on 
the initial state xo. Since y, can be computed in exactly the same 
way, it follows that x, = y,. Since the labeling is nonsingular, it 
now follows that x, - = y, - ,,. . . , x1 = y,, and so the two state 
sequences are identical. This proves that the given labeling is UD 
and indeed that any state sequence can be identified after at most 
m labels. 

Comment: Another way to produce a UD labeling of the 
completely connected q" state diagram has been suggested by 
Forney [6]. Take a noncatastrophic encoder for a (m + 1, m, m) 
convolutional code whose state diagram is the completely con- 
nected q"' state diagram, and label each state transition with the 
encoder's output corresponding to this state transition. This will 
work provided the encoder is also "nonsingular" (which is not 
hard to ensure). This idea has recently been expanded upon by 
Cheung and Popovii [3]. 

Example 3: The edge labels prescribed by the construction of 
Theorem 4 in the case q = 2 ,  m = 2  are given in Fig. 2; in the 
case q = 2, m = 3 they are given in the following 8 X 8 matrix: 

0 1 2 3 4 5 6 7  
0 1 2 3 4 5 6 7  

1 4 1 5  0 1 2  3 4 5 
12 13 14 15 0 1 2 3 
10 11 12 13 14 15 0 1 

8 9 10 11 12 13 14 15 
6 7 8 9 10 11 12 13 
4 5 6 7 8 9 1 0 1 1  
2 3 4 5 6 7 8 9  

where the (x, y )  entry of the matrix gives the label on the x + y 
state transition. Notice, for example, that the label sequence (7,4) 
is ambiguous (the state sequences (0,7,5) and (7,5,1) both yield 
the label sequence (7,4)), but the label sequence (7,4,11) uniquely 
specifies the state sequence (0,7,5,5). We can combine Theorems 
2 and 4 to give the following general construction for linear FS 
codes. 

Theorem 5: Suppose that C, is an (n, k,),  d,,, = dl block 
code over GF(q) and is the union of q k l - k z  cosets of C,, an 
(n, k,) ,  d,,, = d, block code. Then for every m in the range 
0 I m I k, - k ,  - 1, there exists a noncatastrophic (n, m + k, ,  m) 
FS code with min(d2,2dl) Id,, ~ d , .  

Proof: Using the construction of Section 111, we begin with 
a completely connected qm-state diagram, where 0 I rn I k,  - 
k ,  - 1. Since there are q k l - k z  cosets of C, in C,, by Theorem 4 it 
is possible to use these cosets to make a UD labehng of the state 
diagram. By Theorem 2 the result is an (n, m + k,,  m) FS code 
whose free distance satisfies the bounds given in the statement of 
the theorem. 

Example 4 (cf. Example I ) :  Let q = 2; let C, be the (2J, j + l),  
dl = 2J-' first-order Reed-Muller code, and let C, be the 
(2J11), d2 = 2J repetition code with is a subcode of C,. Using 
Theorem 5, for each 0 I m I j - 1 we can construct a (21, m + 
l,m),dfEe = 2 J  FS code which by Corollary 1 is optimal. A 
calculation (which we omit) shows that the error coefficient for 
this code when j =  m + l  is 2m+3 -4m -7.  (For m =  2 this gives 
17, as compared to the error coefficient 13 given in Example 1. 
This discrepancy is due to the edge labeling; in Example 1, 16 
labels were used, but the construction given here only requires 
eight labels. The price paid for the more efficient labeling is a 
larger error coefficient.) 

Example 5 (cf. Example 2): Let j be even, let C, be the 
(2J, j + 1) first-order Reed-Muller code with d, = 2J-', and C, 
be the (2J,2j), d, = 2J-' -2(J-,)/, Kerdock code which is known 
to be the union of 2J-' cosets of G. Then, using Theorem 5, for 
each 0 s m s j - 2  we can construct a (2J, m + j +1, m) FS code 
with d,, = 2J-', which by Corollary 3 (again take L =1) is the 
largest possible. Also, since 2d1 > d,, it follows from Corollary 4 
that the error coefficient is equal to the number of words of 
weight d, in C,, viz. 2J+'-2. 

The FS codes constructed in Example 4 can be thought of as 
generalizing the (2J,1) repetition codes, and those in Example 5 
as generalizing the (2J, j + 1) first-order Reed-Muller codes. We 
could continue this series of examples, using the fact that the rth 
order Reed-Muller code is a subcode of the (r + 1)st order 
Reed-Muller code and construct higher order "Reed-Muller- 
like" FS codes. However, the FS codes constructed this way 
would not have the largest possible d,, since the higher order 
RM codes themselves are not particularly good. A much more 
interesting possibility is to generalize the family of Reed - Solomon 
codes. We consider this in the next section. 

V. REED-SOLOMON FS CODES 
Now we use the techniques of Sections 11-IV to construct a 

class of FS codes which are "Reed-Solomon-like" and which 
meet the bounds of Section I1 in many cases. 

The ancestors of the FS codes to be constructed are 
Reed-Solomon codes. Reed-Solomon codes are (n, k )  block 
codes with minimum distance d = n - k + 1 (thus achieving the 
Singleton bound). These codes exist for all n and k satisfying 
1 I k I n I q, where q is the alphabet size. (See [8, ch. 101.) 

Our goal is to use a Reed-Solomon code to construct a 
(n, k ,  m) FS code with d, = n - k + 1 +  m, which by Corollary 
2 is the largest possible value. Following the prescription in 
Section 111, we let C, be an (n, k + 1) Reed-Solomon code with 
d l = n - k .  The subcode C, is taken to be an (n ,k-m)  
Reed-Solomon code, with d, = n - k + 1 + m (this requires m < 
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k). Thus by Theorem 5 the resulting ( n ,  k ,  m )  code will have 

min(2( n - k ) ,  n - k +1+ m )  i dfrcc I n - k + l +  m .  

If 2( n - k )  2 n - k + 1 + m ,  Le., m 5 n - k ~ 1, this gives dfrce = 
n - k + 1 + m and by Corollary 1 the free distance cannot be 
larger than this. Therefore, we have proved the following. 

Theorem 6: For any parameters n ,  k, m ,  and q satisfying 
k s n - l s q - l a n d  

m i min( k -1, n - k -1) 

a noncatastrophic ( n .  k. m )  FS code exists whose free distance 
meets the Singleton bound, viz. 

dfrre = n - k t- 1 + m .  

Example 6: If we start with a (15,ll) RS code over GF(16), a 
code with dmin = 5, (thus k = 10 in the construction described 
earlier), we can construct (15,10, m )  FS codes for 0 _i m I 10. For 
m = 0, 1, 2, 3, and 4, the codes have dfCcc = m + 6  which agrees 
with the Singleton bound of Corollary 2, and so these codes are 
all optimal with respect to free distance. For m = 0, 1, 2, and 3, 
the error coefficients of these codes can be calculated by Corol- 
lary 4 together with the known result [8, ch. 111 that the number 
of words of weight d,,, in a Reed-Solomon code is ( q  - l)( ,,:,, 1. 
For m = 4, however, we do not know the error coefficient. (For 
5 5 m I 10 the codes constructed all have dfree = 10, independent 
of m ,  and do not meet the Singleton bound; we conjecture that 
they do not have the largest possible dfrcc for their values of n ,  k ,  
and m.) 

Even though the RS-like codes constructed by Theorem 6 are 
optimal with respect to free distance, they may be prohibitively 
complex to decode. For example, one possible decoder for the 
m =1 code of Example 6 would require an array of 16 parallel 
decoders for a (15,9) RS code over GF(16). As a comparison, the 
m = 0 code would require only a single decoder for a (15,lO) RS 
code. This increase in decoder complexity would seem to out- 
weigh the advantages of increasing the free distance by one. The 
design of practical decoders for these codes is a challenging 
research problem. 

VI. CONCLUSION 
To compare some of the new codes we have presented to 

existing codes, both in terms of coding gain and decoding com- 
plexity, we define, for each FS code, two figures of ment, the 
as.ymptotic coding guin (ACG) and the Viterhi decoding complexity 
(VDC). 

We define the asymptotic coding gain of an FS code as 
k 
n 

ACG = - dfrce. 

Although this definition has been rigorously justified only for 
binary codes used with binary phase-shift keying (BPSK) modu- 
lation on a Gaussian channel with high signal-to-noise ratio (see 
[4, sec. 1.31, for example), it nevertheless gives a very handy way 
of making quick comparisons of the performance of codes com- 
peting in other arenas as well. 

Similarly, we define the Viterhi decoding complexity of  an F S  
code as 

T h s  quantity is a measure of the number of symbol operations 
required to decode one q-ary information symbol in an FS code 
if a Viterbi-like algorithm is used to decode. It is assumed that 
such a decoder uses a q”’ state diagram in which each state is 
connected to q h - h 2  other states and that each state transition 
corresponds to q h z  possible code blocks (see Fig. 3). Thus to 
completely update all q“’ metrics requires q,,; qh h l  ‘4’1 = q’” + ’ 

block comparisons and n times this many symbol comparisons. 
These n q ” l t X  symbol comparisons yield decoder estimates of k 
information symbols, resulting in the given formula for VDC. 

The parameters ACG and VDC make it easy to make rough 
comparisons of block, convolutional, and FS codes with differing 
values of n ,  k ,  m, and dfree. For example, in the following table 
we compare four representative codes: the (24,12) Golay block 
code, the (16,s) Nordstrom-Robinson (NR) code, the (2,1,6) 
convolutional code which has been adopted by NASA for deep- 
space communication, and the (16,7,2) FS code we introduced in 
Example 2. In each case we have listed the parameters of the 
code in the format ( n ,  k ,  m; dfree): 

Code ACG VDC 

(24,12,0; 8) 4.00 8192 

(16.8,O; 6) 3.00 512 

(2,1,6;10) 5.00 256 

(16,7,2; 8) 3.50 1170 

(Golay) 

(NR) 

(NASA) 

(Example 2) 

According to this table the NASA code ranks first, though not 
dramatically so, both in terms of coding gain and in terms of 
decoder complexity. The Golay code is second in terms of ACG 
but last in terms of VDC, while the NR code is second in terms 
of VDC but last in terms of coding gain. Finally, the code of 
Example 2 ranks third in both ACG and VDC. Of course, the 
table does not tell the whole story. For example, the ACG 
provides a reliable comparison only at high signal-to-noise ratios, 
and we have performed computer simulations which indicate that 
the code of Example 2 performs essentially better than the Golay 
code and as well or better than the NASA code for decoded bit 
error probabilities greater than about 10- ’. (For applications to 
concatenated systems such large error probabilities are desirable). 
Also, the VDC measure of complexity assumes a “ brute-force’’ 
decoder for the cosets of the code C,, whereas in practice there 
will often be much less complex algorithms available. For exam- 
ple, there are several known ways to decode the Golay code 
which require fewer than 213 = 8192 operations per decoded bit, 
and the decoder for the code of Example 2 can be simplified 
using the “Green Machine” [S, ch. 141 decoder for the (16,5) 
code. 

We find it gratifying that the simple construction of Example 2 
produces a code which competes so favorably with these three 
powerful and well-known codes. This leads us to hope that 
further research will produce FS codes that will find important 
practical applications. 
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A Generalized Convergence Theorem for 
Neural Networks 

JEHOSHUA BRUCK AND JOSEPH W. GOODMAN, FELLOW, IEEE 

Abstruct-A neural network model is presented in which each neuron 
performs a threshold logic function. An important property of the model is 
that it always converges to a stable state when operating in a serial mode 
and to a cycle of length at most 2 when operating in a fully parallel mode. 
This property is the basis for the potential applications of the model, such 
as associative memory devices and combinatorial optimization. The two 
known convergence theorems (for serial and fully parallel modes of opera- 
tion) are reviewed, and a general convergence theorem is presented which 
unifies the two known cases. Some new applications of the model for 
combinatorial optimization are also presented, in particular, new relations 
between the neural network model and the problem of finding a minimum 
cut in a graph. 

I. INTRODUCTION 
The neural network model is a discrete-time system that can be 

represented by a weighted and undirected graph. A weight is 
attached to each edge of the graph and a threshold value attached 
to each node (neuron) of the graph. The order of the network is 
the number of nodes in the corresponding graph. Let N be a 
neural network of order n;  then N is uniquely defined by ( W, T )  
where 

W is an n X n symmetric matrix, where w, is equal to the 
weight attached to edge ( i ,  j ) ;  
T is a vector of dimension n, where r denotes the thres- 
hold attached to node i. 

Every node (neuron) can be in one of two possible states, either 1 
or -1. The state of node i at time t is denoted by y ( t ) .  The 
state of the neural network at time t is the vector V ( t ) .  

The next state of a node is computed by 

(1) 
1, i fH , ( t )  2 0 ;  y ( t + l )  =sgn(&( t ) )  = ( -1, otherwise 

where 

The next state of the network, Le., V( t + l), is computed from 
the current state by performing the evaluation (1) at a set S of 
the nodes of the network. The modes of operation are determined 
by the method by which the set S is selected in each time 
interval. If the computation is performed at a single node in any 
time interval, i.e., IS1 = 1, then we say that the network is operat- 
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ing in a serial mode; if IS1 = n, then we say that the network is 
operating in a fully parallel mode. All the other cases, i.e., 
1 < (SI < n, will be called parallel modes of operation. The set S 
can be chosen at random or according to some deterministic rule. 

A state V( t )  is called stable if and only if V( t )  = sgn( WV( t )  - 
T ) ,  i.e., no change occurs in the state of the network regardless of 
the mode of operation. 

An important property of the model is that it always converges 
to a stable state when operating in a serial mode and to a cycle of 
length at most 2 when operating in a fully parallel mode [3], [ 5 ] .  
Section I1 contains a description of these convergence properties 
and a general convergence theorem which unifies the two known 
cases. New relations between the energy functions which corre- 
spond to the serial and fully parallel modes are presented as well. 

The convergence properties are the basis for the application of 
the model in combinatorial optimization. In section 111 we de- 
scribe the potential applications of a neural network model as a 
local search device for the two modes of operation, that is, serial 
mode and fully parallel mode. In particular, we show that an 
equivalence exists between finding a maximal value of the energy 
function and finding a minimum cut in an undirected graph, and 
also that a neural network model can be designed to perform a 
local search for a minimum cut in a directed graph. 

11. CONVERGENCE THEOREMS 
An important property of the model is that it always con- 

verges, as summarized by the following theorem. 

Theorem 1:  Let N =  ( W , T )  be a neural network, with W 
being a symmetric matrix; then the following hold. 

I )  Hopfield (51: If N is operating in a serial mode and the 
elements of the diagonal of W are nonnegative, the network will 
always converge to a stable state (i.e., there are no cycles in the 
state space). 

2) Goles (31: If N is operating in a fully parallel mode, the 
network will always converge to a stable state or to a cycle of 
length 2 (i.e., the cycles in the state space are of length I 2) .  

The main idea in the proof of the two parts of the theorem is 
to define a so-called energy function and to show that this energy 
function is nondecreasing when the state of the network changes. 
Since the energy function is bounded from above, the energy will 
converge to some value. Note that, originally, the energy function 
was defined so that it is nonincreasing [3], [ 5 ] ;  we changed it to 
be nondecreasing in accordance with some known graph prob- 
lems (see, e.g., min cut in the next section). 

The second step in the proof is to show that constant energy 
implies in the first case a stable state and in the second a cycle of 
length I 2. The energy functions defined for each part of the 
proof are different: 

El(  t )  = V‘( t )  WV( t )  -( V( t )  + V( t))‘T 

where El( t )  and E2( t )  denote the energy functions related to the 
first and second part of the proof. 

An interesting question is whether two different energy func- 
tions are needed to prove the two parts of Theorem 1. A new 
result is that convergence in the fully parallel mode can be 
proven using the result on convergence for the serial mode of 
operation. For the sake of completeness, the proof for the case of 
a serial mode of operation follows. 

Proof of the First Part of Theorem I :  Using the definitions in 
(1) and (2), let A E  = E l ( t  +l)- E , ( t )  be the difference in the 
energy associated with two consecutive states, and let AV, denote 
the difference between the next state and the current state of 
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