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The Renyi Redundancy of Generalized 
Huffman Codes 

ANSELM C. BLUMER, MEMBER, IEEE, AND ROBERT J. McELIECE, FELLOW, IEEE 

Abstract -If optimality is measured by average codeword length, 
Huffman's algorithm gives optimal codes, and the redundancy can be 
measured as the difference between the average codeword length and 
Shannon's entropy. If the objective function is replaced by an exponen­
tially weighted average, then a simple modification of Huffman's algorithm 
gives optimal codes. The redundancy can now be measured as the differ­
ence between this new average and Renyi's generalization of Shannon's 
entropy. By decreasing some of the codeword lengths in a Shannon code, 
the upper bound on the redundancy given in the standard proof of the 
noiseless source coding theorem is improved. The lower bound is improved 
by randomizing between codeword lengths, allowing linear programming 
techniques to be used on an integer programming problem. These bounds 
are shown to be asymptotically equal, providing a new proof of Kricevski's 
results on the redundancy of Huffman codes. These results are generalized 
to the Renyi case and are related to Gallager's bound on the redundancy of 
Huffman codes. 

PREVIOUS WORK 

I N 1961, Renyi [12] proposed that the Shannon entropy 
could be generalized to 

s+1 ( m ) 
H.( p) =-s-log i~l p}l<s+l) ' s > 0, 

which approaches the Shannon entropy ass~ o+. In 1965, 
Campbell [1] showed that just as the Shannon entropy is a 
lower bound on the average codeword length of a uniquely 
decodable code, the Renyi entropy is a lower bound on the 
exponentially weighted average codeword length 

~log ( i~l P;2sl;)' s > 0. 

Also, 

lim -log L p)51
' = L P;l;· 1 ( m ) m 

s--+0+ S i=1 i=1 
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We define the Renyi redundancy of a code as 

Rs( p, I)= -log L P;251
' - Hs(p). _ 1 ( m ) 

s i=l 

(Note: It will be assumed that the code alphabet is binary, 
though generalization is not difficult. As a consequence, 
"log" will always mean the base 2 logarithm; the natural 
logarithm is denoted by "ln.") Hu [5], Humblet [6], and 
Parker [11] have observed that a simple generalization of 
Huffman's algorithm solves the problem of finding a 
uniquely decodable code which minimizes R s ( p, i). In 
Huffman's algorithm, each new node is assigned the weight 
P; +pi' where P; and p1 are the lowest weights on avail­
able nodes. In the generalized algorithm, the new node is 
assigned the weight 25(p; + p). Note that if s > 0 this 
differs from the usual Huffman algorithm in that the root 
will not have weight 1. 

To summarize, the generalized Huffman algorithm finds 
the optimal solution of the following nonlinear integer 
programming problem. Given p = (p1, Pz,· · ·, Pm) with 
P; > 0, I:;"=lPi = 1, and s ~ 0, find i = (/1, 12 , .. • ,_ lm) with 
positive integer components to minimize Rs(P, I) subject 
to 

m 

E 2-', ~L (KM) 
i=1 

Call the value of this optimal solution R s< p ). 
The constraint (KM), known as the Kraft-McMillan 

inequality, is a necessary and sufficient condition for the 
existence of a uniquely decodable code with codeword 
lengths 1;. Equality holds if setting I;= -log P; gives inte­
gral lengths. In any case, the inequality is satisfied by 
letting 

A code with these codeword lengths is known as a 
Shannon code. For s = 0 the existence of such a code 
shows [10] that the redundancy is in [0, 1). In [1], Campbell 
generalized this by choosing 

I= [log ( £. i!<s+ 1))- -

1
-log P1 

' J=1; s+1 ' 

which gives the following. 
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Theorem 1: 0 s Rs(P) <1 for s ~ 0. 

Although Theorem 1 shows that Shannon coding is 
always within 1 bit of the optimum on the average, indi­
vidual codewords can be much longer than necessary. For 
example, when coding a two-letter alphabet with two code­
words, each codeword should be 1 bit. If one of the letters 
has arbitrarily small probability, the Shannon codeword 
for that letter is arbitrarily long. 

The remainder of this paper is devoted to showing how 
to get a better upper bound on the redundancy of optimal 
(Huffman) codes by shortening these long codewords, and 
how to get a better lower bound by using the idea of 
randomizing codewords. Randomizing will not result in 
codes which can be used in practice, but it will enable us 
to obtain much better bounds on the redundancy. 

APPLICATIONS 

In 1968, Jelinek [7] showed that coding with respect to 
the Renyi redundancy is useful when source symbols are 
produced at a fixed rate and code symbols are transmitted 
at a high fixed rate. In this case, the instantaneous rate at 
which code symbols are produced depends on the length of 
the current codeword. For long codewords, this rate will be 
higher than the average rate at which code symbols are 
produced. Excess code symbols must be stored temporarily 
in a finite buffer. This buffer may still overflow if an 
unusually long sequence of low probability source symbols 
is encoded. This problem can be reduced by shortening the 
lengths of the long codewords. Minimizing the lengths of 
the longest codewords results in a code with uniform 
lengths (corresponding to s = oo ), which in most cases will 
not have a good average rate. Jelinek [7] shows how to pick 
s to solve this problem and gives bounds on the probabil­
ity of buffer overflow based on s. 

Similar considerations apply to the construction of opti­
mal search trees [8]. Each internal node in such a tree 
corresponds to a decision made during the search. An item 
is found when a leaf is reached. The items correspond to 
the source symbols in Huffman coding, and Huffman's 
algorithm constructs the tree which minimizes the average 
search time. The search time for an item is proportional to 
the path length from the root to the leaf corresponding to 
that item, which is equivalent to the codeword length 
above. If there is a requirement that searches be completed 
within a certain time after they are requested, then this 
time limit corresponds to the buffer length above. Jelinek's 
analysis then shows that the generalized Huffman algo­
rithm can be used to reduce the probability that this limit 
is exceeded, and to obtain a bound on this probability. 

Campbell [2] has shown that the lengths given by the 
generalized Huffman algorithm arise in a natural way from 
geometric considerations when interpolating between the 
distribution p and the uniform distribution along curves 
in a Riemannian geometry which correspond to straight 
lines in Euclidean geometry. Parker [11] provides a list of 
other possible applications and references. 

LOWER BOUND 

The 0 lower bound on Rs(P) was obtained by relaxing 
the integer restriction on the I; and letting 

I;= f; =log c~/y<s+ll)- s: 
1 

log P;· 

Setting I;= f 1~1 gives a solution to (KM) and leads to the 
upper bound Rs(P) <1. 

Given the probability distribution p and the parameter 
s, it will be useful to define a new probability distribution 
p based on the optimal (but not necessarily integral) 
lengths f;: 

p}/(s+l) 
m 
L py(s+l) 
j~l 

Let t; denote the fractional part of - f; 

and let n; denote the difference 

n;=l;-ff;l =1;-f;-t;. 

(1) 

(2) 

Thus n; + t; gives the discrepancy between a solution I; 
and the optimal solution 1~. 

Using the fact that /J;21• = 1, (KM) may be rewritten as 
an average with respect to the probability distribution p: 

m m m 

1- I: 2- 1·=1- [fJ;2r,-t,=1- [fJ;2-n,-t,~o. 
i~l i~l i~l 

If s > 0, the objective function may also be rewritten as 

R,(p,l)=-log LP;2sl, ---log LPV(s+l) _ 1 ( m ) s+1 ( m ) 

s i~l s i~l 

=-log L p}/(s+l)pJf(s+l)2sl,2s(l,-l,) 1 ( m • • ) 

s i~l 

-~log[(£:. p}/(s+l))( £:. p}/(s+l))s] 
t~l t~l 

Since (1 Is) log x is a strictly increasing function of x, this 
objective function may be replaced by 

m 

v,(-p, i, n) = I: /J;2s(n,+t,)_ (3a) 
i~l 

If s = 0, we define 
. m m 1 

V0 (p,i,n)=R 0 (p,l)= LP;i;- LP;log-
i~l ;~1 P; 

m m 

= L P;( I; -I~)= L p;(n; + t;), {3b) 
i~l i~l 
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since P; = P; in this case. We have transformed the original 
integer programming problet:n into the following. 

Problem 1: Given a probability vector p and s ~ 0, 
compute p and i by (1) and (2). Then find integers n; 

satisfying (KM) and minimizing T-~(p, i, n) given by (3). 
The optimal value of this program is 2sR,(p) if s > 0, and 

R 0 (p) if s = 0. Inequality (KM) may be further rewritten 
as EP[l-2-N-T] ~ 0, where £P denotes expectation with 
respect to the probability distribution p and T and N are 
random variables. T is defined so that 

P(T=t)= L P; 
i: 1,=1 

and N is defined similarly. We can also rewrite 

_ _ _ { £P(2s(N+T)], 
V,(p,t,n)= Efi[N+T], 

for s > 0 

for s = 0 

This notation suggests the following modification to the 
above problem. 

Problem 2: Given s ~ 0 and a random variable T with 
values in [0, 1) and discrete probability distribution p, find 
an integer-valued random variable N satisfying 

and minimizing £fi[2s(N+T)] or, if s=O, minimizing 
£P[N + T]. 

Let L
5

( p) be defined so that 2sL,(p) is the value of the 
minimal solution to the above problem. If s = 0, let this 
value be L 0 ( p). 

Theorem 2: 0::::;; L
5
(p)::::;; Rs(P) for s ~ 0. 

Proof: Every feasible solution to Problem 1 corre­
sponds to a feasible solution to Problem 2, since T can be 
defined as above, and N can be defined by 

P(N=n,T=t)= 

On the other hand, not all feasible solutions to Problem 2 
correspond to feasible solutions to Problem 1. For exam­
ple, any N with 0 < P( N = n) < min P; for some n cannot 
correspond to a feasible solution to Problem 1. Where 
there are corresponding feasible solutions, they have the 
same value. It follows that 2sL,(ft)::::;; 2sR,(p) and L 0 ( p) ::::;; 
R 0(p), proving the right-hand inequality. 

Any feasible solution to Problem 2 satisfies £P[2-N-T] 
::::;; 1, so by Jensen's inequality 

2EP[-N-T] :S; £P[2 -N-T] :S; 1. 

Taking logarithms gives 

Efi(N + T] ~ 0 

which proves the s = 0 case. Applying Jensen's inequality 
again and using this last inequality, 

Since this holds for any feasible solution to Problem 2, 
taking 11 s times the logarithm of both sides gives the 
left-hand inequality in the s > 0 case. 

UPPER BOUND 

The previous section showed that computing Ls( p) 
provides a lower bound to R

5
(p). Since the value of any 

feasible solution to Problem 1 provides an upper bound to 
R 

5
( p), and Shannon coding provides a feasible solution 

with value exceeding the lower bound by less than 1, we 
had lower and upper bounds showing that the redundancy 
is in [0, 1). The feasible solution to Problem 1 correspond­
ing to Shannon coding is n = 0. The following algorithm 
improves this solution by changing some components of n 
to -1. The value U,(p) of this solution will provide an 
improved upper bound to the redundancy. As with the 
bound derived from Shannon coding, the difference be­
tween the upper and lower bounds will be estimated. 

Algorithm 1 

1) Given Ps and s ~ 0, compute p, i using (1) and (2) 
and 

c =1- .L ft;2-l;_ 
i=l 

2) Set n = 0. 
3) Repeat the following pair of steps, in order of de­

creasing t;, until step 3a causes C to become negative (step 
3b is skipped when this happens); 

a) decrease C by p)- 1
•• 

b) replace the corresponding n; by - 1. 

4) Compute 

if s > 0 

if s = 0. 

After Step 3b, C is the value of the left side of (KM) for 
the current solution. The algorithm will stop in m or fewer 
steps, since t; < 1 for all i, and so 

m 

1-2 LP;r';=1- Lft;21
-

1·<0. 
i=l i =1 

The reason that the algorithm proceeds in order of decreas­
ing t; is the following. The change in (KM) resulting from 
replacing n; by n; -1 is - ft;2 -n,-l,, while the change in 
the objective function, V,(p,i,n) is- P;(1-2-s)2s(n,+l,) 

(or if s = 0,- P;). Thus the component of n which gives 
the greatest decrease in the objective function per decrease 
in (KM) is the component with the largest value of n; + t;. 
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The following example, with s = 2, shows that this alga-
rithm will not always yield optimal solutions to Problem 1. 

P; fi, r, rf,1 Optimal/, 

169 l3 
1.25 ... 2 

299 31 
64 

2 1.95 ... 
299 31 
64 

299 31 
1.95 ... 

1 
4 -

299 31 
4.95 ... 4 

1 
- 4.95 ... 4. 
299 31 

Note that /3 = 3 in the optimal solution, which corre­
sponds to n 3 = 1, so any algorithm which can reach an 
optimal solution must be able to consider positive values 
for n;. The following algorithm finds L

5
(p), as shown by 

Theorem 3 (to follow). 

Algorithm 2 

1) Given s z 0 and p, compute p and i using (1) and 
(2). 

I::"~ 1LnEZPin(n + ti) subject to the constraints 
m 

L L Pin2-n-t, =1 
i~lnEZ 

and 

The first constraint is (KM) with equality holding. In­
equality cannot hold in an optimal solution, since some 
Pin could then be reduced by some t: > 0 while Pi n- 1 

was increased by t:. This results in a reduction' of 
t:(l-2-s)2s(n+t,) in the objective function for the s > 0 
case, and a reduction of t: for the s = 0 case. t: must be 
chosen so that the increase t:2-n-t, in (KM) will not 
violate that inequality. 

The proof of the theorem now proceeds by constructing 
the dual program and finding solutions to both the original 
program and the dual program with the same value. The 
dual program is as follows. 

Find q0 , q1, • • ·, qm to maximize q0 + L;"~ 1q;p;, subject to 
the constraints 

2) Find the smallest t E [0, 1) satisfying the constraint or 

I: pi2-t, + I: p;21-t, :::;1. 

3) Find the largest bE [0, 1) satisfying the constraint 

4) If s = 0, let z( x) = x; otherwise, let z( x) = 2sx. Let 

5) Let 

{ 

W,(p), 
L - - 1 

s ( p ) - -:; log ( W, ( p ) ), 

if s = 0 

if s > 0. 

The only difference between this algorithm and the 
previous one is the extra randomization allowed when 
ti = t. 

Theorem 3: W,(p) is the minimum value of Problem 2. 

Proof" Let Pin= P(T= ti, N = n). Problem 2 can be 
viewed as a linear programming problem with the Pin as 
variables, as follows: 

Problem 2 (Restated): Given s z 0 and p, find p and 
i using (1) and (2). If s > 0, find Pin to minimize 
L~ 1Ln E zP;n2s(n+ t,) or, if s = 0, to minimize 

For any feasible solutions to these linear programs, the 
following inequalities show that the value of the dual 
program is at most the value of the original program: 

m m m 

qo + L q,pi = qo L L P;n2-n-t, + L qi L Pin 
i~l i ~1 n E Z 

m 

= L L Pin(qo2-n-t, + qi) 
i ~1 n E Z 

m 

:::; L L Pin2s(n+t;)' 
i~1 nEZ 

m 

if s > 0 

:::; L L Pin(n+t;), ifs=O. 
i ~1 n E Z 

this 
Thus, if feasible solutions with the same value can be 
found for both the original and the dual programs, 
common value must be the optimal value. 

Let t and b be chosen by Algorithm 2, and let 

{

pi, 

bpi, 
Pin= (1-b)pi, 

0, 

if ti < t, n = 0, or t; > t, n = -1 

if ti = t, n = -1 

if ti = t, n = 0 

in all other cases. 

By construction of t and b, this is clearly a feasible 
solution to the original program with the appropriate 
value. If s > 0, let 

qo= -(1-2-s)2(s+1)t 

for ti:::; t 

fort;zt. 
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Similarly, if s = 0, let 

qo= -2' 

( 
ti- q0 2- 1

', 

q= 
' ti- qo21-t,, 

for 1i s 1 

forti~ t. 

Note that, in both cases, the alternate expressions for qi 
give the same value when 1i = 1. 

It remains to be shown that these formulas give admissi­
ble solutions to the dual program and that these solutions 
have the appropriate values. For s > 0, the value of the 
dual program is 

qo+ I: Piqi+ I: Piqi+ I: Piqi 
t,<t t,=t t;>t 

t,<t t,=t 

+qo[1- I: Pi2-'·-(1-b) I: pi2-'• 
f; < ( t, =t 

-b I: P;21-t,_ I: Pi21-t,]· 
t;=t tl>t 

The factor multiplying q0 above is zero by choice of 1 and 
b, leaving only the first four terms, which are equal to 
~(p), as desired. Similarly, for s = 0, the value of the 
dual program is 

qo+ I: piqi+ 2: Piqi+ 2: Piqi 
t;<t t,=t l;>t 

+qo[1- I: P;2-'•-(1-b) I: P;2-'• 
1;<1 t;=t 

- b I: P;21-t,- I: P;21-t,]. 
l; = l t, > ( 

All that remains is to show that these solutions are 
admissible. If s > 0, this requires showing that 

qi S 2s(n+t,) _ qo2 -n-t, = 2s(n+t,) + (1- 2 -s)2st2 -(n+t,-t) 

for i = 1, 2, · · ·, m and all integers n. Call this last quantity 
gis(n), and let 

Agis(n) = gis(n +1)- gis(n) 

= (2s -1)2s(n+t,) _ {1- 2 -s)2s12 -(n+ l+t,-t) 

= 2s'(1-2-s)[2s(n+l+t,-t) -2-(n+l+t,-t)]. 

Similarly, for s = 0 it is necessary to show that 

qi s n + t;- qo2-n-t, = n + 1; +2-(n+t,-t) 

for i = 1, 2, · · ·, m and all integers n. Call this last quantity 

gi0 ( n ), and let 

Ag;
0

( n) = g;o(n + 1)- g;
0
(n) = 1-2 -(n+l +t,-1)_ 

For ti < t, Agis(n) is negative for n s -1 and positive for 
n ~ 0, so the minimum value of gi,( n) is gi,(O) = qi. For 
ti ~ t, Agis(n) is negative for n s -2 and nonnegative for 
n ~ -1, so in this case the minimum value of gis(n) is 
gi,( -1) = qi again, as desired. 

Theorem 4: 0 s Ls(P) s Rs(P) s U,(p) < 1. 

Proof" The only part that remains to be proved is the 
last inequality, which follows from the fact that the upper 
bound U,(jj) is an improvement over that obtained from 
Shannon coding. 

The following theorem bounds the difference [!, ( p)­
Ls( p). 

Theorem 5: 

0 s Us(p)- Ls(P) < max Pi• for s = 0 

(1-2-s) 
< 

s ln2 

1::; i :s; nt 

max pi2st•, 
l,;i,; m 

for s > 0. 

Proof: In case 1 ( s = 0), the difference between U0 ( p ), 
which is the result of Algorithm 1, and L 0 ( p ), which is the 
result of Algorithm 2, is less than Pi for the component 
which caused C to become negative in Algorithm 1. In 
case 2 (s > 0), the difference between 2sU,(p) and J.V,(jj) = 

2sL,(p) is less than (1- 2 -s) p)s". for the same reason as in 
case 1. Therefore, 

1 2sU,{p) 

Us ( P)- Ls ( p) = -;log J.V, ( p) 

1 J.V,{jj)+(1-2-s)pi2'1• 

< -log-----,--,..----
s J.V,(p) 

1 
s -log(1 + (1- 2 -s) pi2st,) 

s 

since »',( p) = 2sL,(p) ~ 2° = 1. The conclusion now follows 
from the fact that y = log (1 + x) is convex, and therefore 
lies below its tangent line at (0, 0). 

APPLICATION TO MEMORYLESS SOURCES 

One case where the preceding theorem is particularly 
useful is fixed-to-variable-length (FV) coding of a memory­
less source (also known as block-to-variable-length or BV 
coding). Suppose that a memoryless source has an output 
alphabet of size m, with probabilities p 1, p2 , • • ·, Pm with 
all Pi> 0 and 'f.~ 1 pi = 1. If bi denotes the number of 
times that the ith letter occurs in a block B from this 
source, then the probability of this block is 

P(B)=TipY·s( max pif<1 
i=l lst,;m 

and so the probabilities of the block approach zero uni­
formly as n ~ oo. The s = 0 case of the above theorem now 
applies, to show that U,(pn)- Ls(pn) ~ 0 as n ~ oo, where 
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is the probability distribution on blocks of length n 
from this source. 

The s > 0 case can be illustrated by examining the 
binary memoryless source with p1 = p and P2 1 p for 
0 < p <1. In this case 

~ 

P(B) Pk=pk(l-pr k (1-prL~pr 
if the first letter occurs k times in the block. There are { Z) 
blocks having this probability, so 

( ) 

k/(s+l) 
(1-pr;<s+l) lpp 

(pl/(s+ll+(1 p)lj(s+l))" · 

To simplify this, let 

p' 
pl/(s+ 1) 

pl/(s+1) + (l- p )1/(s+l) · 

Thus 

pk (1- p')n( 1~/p' r (p')k(1 p'r-k, 

which again approaches zero uniformly as n ~ oo. For a 
source with more output letters, the only difference is that 
the multinomial theorem must be used instead of the 
binomial theorem to simplify the denominator. Thus we 
have the following. 

Theorem 6: LsCpn)- U,( fi") ~ 0 as n ~ oo for any 
memoryless source. 

It is possible to compute an asymptotic formula for the 
minimum redundancy R

5
(p 11

) of a binary memoryless 
source by computing L .. ("pn). By Theorem 6, this must 
approach the minimum redundancy of the source. We will 
need the n + 1 fractional parts 

t k = {log Pi} { n log ( 1 - p') + k log ( 
1 
~' p' ) } . 

Suppose that log( p'/(1 p')) is rational with denominator 
r when written in lowest terms, so 

tk=tk' ifandonlyifk=k'(modr) 

(the irrational case will not be treated here). In this case, 
steps 2-5 of Algorithm 2 depend only on 

Pt I: Pk. I: (;,)cp')k'ct p'r-k· 
k:r,.~tk k'=k(r) 

and not on the individual Pk. The following lemma by 
Ramus [8), shows that Pk* ~ 1/r as n ~ oo. 

Lemma : Pk* (1/r)+ O(p11
) for some p E (0, 1). 

Proof Let S = e 2"ifr, then S, S 2, S 3, · · ·, sr-l are the 
roots of j(x) Xr- 1 + Xr- 2 + · · · +X+ 1, SO 

f(Si) { 
r, 

0, 
ifj=O(modr) 
otherwise 

Pk* can be rewritten as 

P* k "f ~t(s'-k)C)Cp')'(I-p')"' 
1~0 r 

1 n r -1 

=- I: I: su-k)j( ~ )( p')' (1- p')" 
r I 0 j~O 

1 r-1 n ( ) - I: s-kJ I: ~ (p'Si)'(l p')"_, 
r j~O 1~0 

1 1 r -1 
=-+ r:s-kJ(p'S1+1-p'(. 

r r 1 ~ 1 

Let p max1 1
., ,_ 1 I p'S i + 1- p'l, and the result follows. 

Let t 1* < fi < · · · < t;:, be the fractional parts with du­
plications omitted. The values t and b computed by Algo­
rithm 2 can be combined into a single number t* E (0, m*] 
by choosing t* so that it rounds up to the index for which 
tt t, and so that {- t*} =b. Let P,* be the total proba­
bility mass at ti*, i.e., 

P/ L Pi. 
j: t1 = t1* 

If g represents the left half of the constraint in step 3 of 
Algorithm 2, expressed in terms of Pi*• tt, and t*, then g 
is a continuous function of these variables, and a strictly 
increasing function of t*. For example, the following chart 
shows what happens as t* goes from 5- E: to 5 + E:. The 
terms in g which change are those multiplying Ps* and 
P6*. Let c1, c2 , c3, and c4 be the coefficients of P5*2~ 1!, 
P5*21 - 1~, P6*2- 1t, and P6*21 - 1l, respectively: 

t* b 

5 ( ts* 1-< 0 
5 ts* 0 1 0 0 

5-,-€ t6* 1 ( 1 0 1- (, 

Similarly, the objective function in step 4 is a continuous 
function of P1*, tt, and t*. It follows that L

5
(pn) is a 

continuous function of the P1*, and it follows from the 
above lemma that using Pk* = 1/ r will give a result which 
is asymptotically true. 
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Now suppose that '11 = tt. In other words, 

'11 = ~ { rn log ( 1 - p') + rk log ( 
1 
~' p' ) } 

1 
= -{rnlog(l- p')}. 

r 

Then t;* = '11 +((i -1)/r) fori =1,2,· · ·, r. If t = t: = '11 + 
( (a - 1) I r ), the constraint in step 3 of Algorithm 2 is 
(using P;* = ljr) 

a-11 r-11 L -2-11-(kjr) + L -21-11-(kjr) 
k=Or k=ar 

1r-l 1r-l 
=- L 2-11-(kjr) + _ L 2-11-(kjr) 

rk=O rk=a 

2 -11-(ajr) 2((1-a)/r)-11 
= = <1 r(l-2- 1/r) r(21/r_l) - · 

This is equivalent to 

a~ 1- r'lj- rlog{r(21/r -1)), 

so 

a= r 1- r'lj- rlog(r(2llr -1))1 

leads to the best choice for t. Let 

1 
8=-{ -l+r'lj+rlog{r(21/r_l))} 

r 

so that 

a-r8=l-r'lj-r1og(r(21/r_l)). 

The next step is to find b, as in step 4 of Algorithm 2: 

a-21 l-b L -2-11-(kjr) + --2-11-((a-1)/r) 
k =Or r 

b r -1 1 
+ -21-11-((a-l)jr) + L -21-11-(kjr) 

r k=a r 

1 r-1 
+ - L 2 -11-(k/r) 

r k=a 

2((1-a)/r)-11 b 
____ + -2-11-((a-1)/r) ~1. 
r(21/r_l) r 

If equality holds, then 

1 28 -1 
b = r211+((a-1)/r)- --- = ---

21/r- 1 21/r- 1 . 
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Now, if s = 0, Ls('pn) can be evaluated directly. Let 

a-21( k) l-b( a-l) Lo( pn) = L - '11 + - + -- '11 + --
k=Or r r r 

+~('lj+ a-l-l)+ rf,l ~('lj+~-l) 
r r k=a r r 

1 (r-1)r b r-a 
=1j+- -----

r2 2 r r 

1 1 1 28 -1 
= 'lj + 2 - 2r - -; 21/r- 1 

1 
-1 +- [ 1 + r8- r'lj- r log ( r(2llr -1))] 

r 

1- r 1 
=- -log{r(21/r -1))+ -.,-,--

2r r(21/r_l) 

28 
+ 8 - ---:--;--;--..,-­

r(21/r -1) ' 

which agrees with [9, eq. (6)). 
If s > 0, 

b r -1 1 
+ -2sf11+(a-1)/r)-l] + L -2S(11+(k/r)-1) 

r k=a r 

a-2 1 
= (1-2-s) L -2S(11+(k/r)) 

k =0 r 

1- b 
+ (1- 2-s) --2s[11+((a-1)/r)] 

r 

r-1 1 
+ L -2s(11+(k/r)-1) 

k=O r 

2s11 
+ (1- 2 -s)- (1- b )2s(a-1)/r 

r 

2s11-s 2s -1 
+-----

r ')_sir -l 

= 2s[11+((a-1)/r)] ___ + 1- b (1 2 -s) [ 1 ] 
r 2sjr -l 

_ (1-2-s) ( 21fr_2 8 1 ) 
- +---

r 21/r -1 2sjr -l 

rs(21/r -1) s 

where the last equality follows from the fact that 

a -l 
8 = log{r(21/r -1))+ '11 + --. 

r 
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Thus 

1 1 ( 2
1
/r- 2

8 
1 ) 

= -log(1-2-s)+ -log + --
s S 21/r -1 2sjr -1 

+ 8 -log ( r ( 211' - 1)). 

An interesting application of the preceding results is in 
the case of a binary memoryless source with probabilities 
such that p' = 1j(2m + 1) for some integer m > 0. In this 
case, log(p'/(1- p')) =- m is an integer, so r =1 and all 
of the fractional parts tk are identical. Thus the lower 
bounds can be calculated exactly, rather than approxi­
mately as in the analysis using Ramus' lemma. Plugging 
r = 1 into the formulas for L 0 ("pn) and Ls(pn) obtained 
above gives 

and 

for s > 0. 

Also, 

11 = { n log (1- p')} = { n log ( 
2
:: 

1 
) } 

and 

Since log(2m/(2m + 1)) is irrational, Kronecker's theorem 
[4] says that the set of values taken on by 8 as n increases 
is dense in (0, 1 ), and 

max L 0 ("pn) = 1 +log loge -loge= o 
/) E (0,1) 

a constant which appears in the following theorem due to 
Gallager [3]. 

Theorem 7: Let p be the probability of the most likely 
letter from a finite discrete source. The redundancy of the 
Huffman code for this source is at most p + o. 

The above remarks provide a sequence of examples 
showing that o is the smallest possible value for this 
theorem. 

CONCLUSION 

The standard proof of the noiseless source coding theo­
rem shows that the redundancy is between 0 and 1. 
Campbell [1] has generalized this to the Renyi redundancy. 
The upper bound was obtained by the feasible solution 
known as Shannon coding. This paper has improved this 
bound by shortening some of the codewords in the 
Shannon code while still retaining feasibility. The lower 
bound was improved by randomizing between codeword 
lengths. This transformed the integer programming prob­
lem of minimizing the (exponentially weighted) average 
codeword length subject to the Kraft-McMillan inequality 
into a linear programming problem. The optimal feasible 
solution to this problem provided a lower bound but did 
not result in an implementable code. In the case of memo­
ryless sources, these bounds were shown to approach each 
other asymptotically, providing a new proof and general­
ization of Kricevski's results [9]. In the case of a binary 
memoryless source with s = 0, this provided a sequence of 
examples showing that the constant in Gallager's theorem 
[3] is the best possible. 
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