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ON COMPLEXITY OF TRELLIS STRUCTURE OF
LINEAR BLOCK CODES!

Abstract

This paper is concerned with the trellis structure of linear block codes. The paper consists
of four parts. In the first part, we investigate the state and branch complexities of a trellis
diagram for a linear block code. A trellis diagram with the minimum number of states is said
to be minimal. First, we express the branch complexity of a minimal trellis diagram for a
linear block code in terms of the dimensions of specific subcodes of the given code. Then we
derive upper and lower bounds on the number of states of a minimal trellis diagram for a linear
block code, and show that a cyclic(or shortened cyclic) code is the worst in terms of the state
complexity among the linear block codes of the same length and dimension. Furthermore,
we show that the structural complexity of a minimal trellis diagram for a linear block code
depends on the order of its bit positions. This fact suggests that an appropriate permutation
of the bit positions of a code may result in an equivalent code with a much simpler minimal
trellis diagram. In part two, we consider boolean polynomial representation of codewords
of a linear block code. This representation will help us in study of the trellis structure of
the code. In part three, we apply boolean polynomial representation of a code to construct
its minimal trellis diagram. Particularly, we focus on the construction of minimal trellises for
Reed-Muller codes and the extended and permuted binary primitive BCH codes which contain
Reed-Muller code as subcodes. Finally, we analyze and present the structural complexity of
minimal trellises for the extended and permuted (64,24), (64,45), and double-error-correcting
(2™,2™—2m—1) BCH codes. We show that these codes have relatively simple trellis structure
and hence can be decoded with the Viterbi decoding algorithm.



1. Introduction

For years, it has been a common belief among the coding theorists that block codes do not
have simple trellis structure as convolutional codes do and maximum likelihood decoding of
block codes with the Viterbi decoding algorithm is practically impossible, except for very short
codes with small dimensions. As a result of this common belief, very little research effort has
been expended in the study of trellis structure of block codes. It is really a pity that over
the years, there are only four major papers[1-4] touching on the subject of trellis structure
of block codes comparing with hundreds of papers dealing with other algebraic and geometric
structure and properties of block codes.

This paper is concerned with the trellis structure of linear block codes. We show that
some linear block codes of moderate length do have reasonably simple trellises and hence can
be decoded with the Viterbi decoding algorithm. Our study is motivated by the works of
Wolf [1] and Forney [2, 3], especially Forney’s latest work [3] in which he presented a trellis
construction for linear block codes and asserted that the construction results in minimal
trellises in the sense of number of states.

The presentation of this paper is organized as follows. In Section 2, the branch complexity
of the minimal trellis diagram for a linear block code is analyzed, and is expressed in terms of
the dimensions of specific linear subcodes of the given code. Upper and lower bounds on the
number of states of a minimal trellis diagram for a linear block code are derived. We show that
a cyclic (or shortened cyclic) code is the worst in terms of the number of states in its minimal
trellis diagram among the linear block codes of the same length and dimension. Furthermore,
we show that the complexity of the minimal trellis diagram for a linear block code depends
on the order of its bit positions. This fact suggests that an appropriate permutation of the bit
positions of a linear block code may result in an equivalent code with a considerably simpler
trellis diagram. We are particularly interested in finding appropriate permutations of bit
positions of binary primitive BCH codes for reducing the number of states in their trellises.
The binary primitive BCH code of length 2™ — 1 and minimum Hamming distance 2™~ — 1
contains the cyclic r-th order Reed-Muller code of length 2™ — 1 as a subcode [5, 6], and the
dual code of the even weight subcode of the binary primitive BCH code of length 2™ — 1 and
a specific designed distance, denoted q(m, r), contains the cyclic r-th order Reed-Muller code
of length 2™ — 1 as a subcode for g(m,r) = 5, ¢(m,2) = 2™/2 4.3 . .. It is known that
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the state complexity of the minimal trellis diagram for a linear binary block code is the same
as that for its dual code [1, 3], and the noncyclic Reed-Muller codes of length 2™ in their
original form [5] have relatively simple trellis diagrams [3]. From these facts, we determine
a permutation of the bit positions of an extended primitive BCH code of length 2™ which
results in an equivalent code with a considerably simpler trellis diagram.

In Section 3, we consider boolean polynomial representation of codewords of a cyclic
code. This representation helps us in study of the trellis structure of the code obtained from
a cyclic code under a certain permutation of bit positions. In Section 4, we apply boolean
polynomial representation of a code to construct its trellis diagram. Particularly, we focus on
the construction of minimal trellises for Reed-Muller codes and the extended and permuted
primitive BCH codes which contain Reed-Muller codes as subcodes. Finally, we conclude the
paper by analyzing the state and branch complexities of minimal trellises for the extended and
permuted (64,24), (64,45), and double-error-correcting (2™, 2™ —2m—1) BCH codes. We show
that the complexity of trellises for these codes are considerably less than that for the original
codes in cyclic form without bit-position permutation. Because of their relatively simple trellis

structure, these codes can be practically decodes with the Viterbi decoding algorithm.

2. Structure of a minimal trellis diagram for a linear code

In this section, the structural complexity of a trellis diagram with the minimum number of
states for a linear block code is studied. For simplicity, we will consider a binary linear code.
The extension to a nonbinary linear code is straightforward.

Let C be a binary block (linear or nonlinear) code of length N. An N-section trellis
diagram for C is a modified state diagram of a finite automaton F[C] which accepts the set of
all binary N-tuples in C, where a modified state diagram means the diagram obtained from a
deterministic or nondeterministic state diagram by deleting every state that is not reachable
from the initial state or from which there is no path to the final state. By a trellis diagram,
we mean an N-section trellis diagram where N is the code length.

Let T be a trellis diagram for C, and for a nonnegative integer h not greater than N, let
Sy denote the set of states of T just after the h-th bit position, where Sy consists of the initial

state so only and Sy consists of the final state sp only. For two states s and &', let L(s,s’)



denote the set of all label sequences (paths) from s to s’. Then L(s¢, sp) = C. For a binary N-
tuple v = (vy,vs,...,vn), let p,, 4,V denote the binary (hy — hy)-tuple (vp, 41,V 42, -, Vny)

and let py, »,[C] be defined as

A
phl,ha[C] = {phl»hQV P VE C} (2‘1)

Let w = (uy,us,..., %) and v = (vy,0y,...,v;) be two binary sequences of lengths ¢ and j

respectively. The concatenation of u and v is defined as the following sequence of length i+ j:
A
uov= (ul,U2,...,’ll,,',’l)1,’l)2, ,’UJ)

Then the definition of a trellis diagram implies that for 0 < h < A’ < N,
(1)
U U L(S, S’) = Ph,h'[C], (2.2)

JGS;. c'GS,,:

and

(2) For u; and uy in L(so, s) with s € Sy and any binary sequence v of length N — h,
yovel < uovel. (2.3)

Hereafter we assume that C is a linear binary (N, K') code. For two integers h; and h,
such that 0 < h; < hy < N, let Cj, p, be the linear subcode of C consisting of all codewords
whose components are all zero except for the h, — h; components from the (h; + 1)-th bit

position to the hy-th bit position. Let Ky, p, ¢ (or Kj, »,) be the dimension of Cy, 4,, i.€.,
I(hx ha = log2 |Ch1,h2|

where for a set S, |S| denotes. the number of elements in S. For convenience, K is defined
as zero. For simplicity, we write Cf’ , for py, »,{Ch, ,], the truncation of Cj, 4,. Clearly,
Cii 1, and Ch, p, have the same dimension, and Cf" ,  is a linear subcode of ps, x,[C]. Then

the condition (2.3) is equivalent to the following condition:
u; +u, € CF,. (2.4)

Le., w; + uy is a codeword in Cf,. For a linear code A and its linear subcode B, let A/B

denote the set of cosets in A with respect to B. It follows from (2.2) and (2.4) that for s € S},
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L(s0,5) is a subset of a coset in pox[C]/C§), and the number of states in S}, is lower bounded
by
|Sul 2 |poa[Cl/ICTl- (2.5)

Let Cj—- denote the linear subcode of C consisting of all codewords whose components from
the (h; + 1)-th bit position to the h,-th bit position are all zero, and let Kj—; o (or K7 %7)
denote log, |Cs%;], the dimension of Cy . Then it follows from the definitions of Cy, », and

Cm that

K5z = Kan, (2.6)
Kiw = Ko (2.7)

Note that for 0 < h; < hy < N,

-K-

|p_h1,h2 [C]l = 2K Biks (2'8)

For integers hy, hy and hj3 such that 0 < h; < hy < hs < N, let Ky, hynsc (08 Kpyhyny) be
defined as
Khl,hz,hs é I{hhha - Khl,hz - I(hz,hs' (2'9)

For simplicity, we write Kj, (or K, ¢) for Kopn (or Kopnc). From (2.5), (2.6) and (2.8) we
see that

|Sh| > 2 Far—Kon = gK—Knn—Kon — oK, (2.10)

If there is a one-to-one correspondence between S, and po,[C]/C{], such that L{so,s) is a
coset of pox[C]/C{,, then the equality in (2.10) holds, and for s in S;, and different s] and s,
in Sy, L(s, s}) and L(s, sy) have no common sequence. Such a trellis diagram can be obtained
from the reduced deterministic state diagram of the finite automaton F[C] with the minimum
number of states and is said to be minimal. A minimal trellis diagram is unique within graph

isomorphism and the number of states in Sy, |S|, is given by
|Sy| = 2K», (2.11)

This was first given by Forney [3, Appendix A].
Let T' be the minimal trellis diagram for a linear binary (N, K') code C. For a state s

of T, let ¢(s) denote the coset leader of the coset corresponding to the state s. Now we will
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show how to find L(s,s’) for two states s and ¢’ of T. Let h and A’ be integers such that
0 < h< K < N. From the definition of ¢, it follows that for s € S, and s’ € S,

L(so,5) = {e(s)} + Cop, (2.12)
L(so, s,) = {(p(s')} + C(?,.h" (2.13)

where for two codes A and B of the same code length, A+ B 2 {u+v : u€ Aand v e B}
For s € Sy, s’ € S)» and a binary sequence v of length A’ — h, v € L(s, s') if and only if

L(SO) s) ° {V} c L(SO) s’)) (214)

where Ao B2 {aof : a € A and B € B} for two sets A and B of binary sequences. If u
and u’ are in L(so, 3), and uo v and u’ o v’ are in L(so, s'), then it follows from (2.12) and
(2.13) that |

u+u' €Cy, (2.15)

(u+u')o(v+v')eCH,. (2.16)

From (2.15), (u+u')o Or'—h-g C{y, where 0*~* denotes a sequence of h' — h zeros, and from

(2.18) it follows that 0% o (v + V') € Cf,.. Clearly,
v+v ey, ' (2.17)

Note that C{J, o C¥, is a linear subcode of Cf. Let {a;08; : |oule = b, |Bi]e = B — h,
1 < i < 2Foan'} be the set of all coset leaders of Cf,/(Cry, o Cfy), where |, denotes
the length of binary sequ'en'ce a. For two different coset leaders a; o 8; and oy o fy with
1<i<i < ofonn

a; # o and ,3,' ?é ,3,'1. (2.18)

Each f; is said to be corresponding to a;. (Assume the contrary, e.g. o; = a;y. Then
o; 0B +o; 0B =00 (B + By) € C§yr, which implies that 8; 4+ G» € C’f[’h,, that is, o; 0 B

and ay o By are in the same coset of Cf',./(Cy', 0 C¥yi), a contradiction.) Hence we see that

PonlConl/Con = {oi: 1< i< 2Komn}) (2.19)
Pap[Con]/Cly = {Bi: 1<i < 2Fomn} (2.20)

where “A «— B” means that B can be chosen as the set of all coset leaders of A.
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Lemma 1: For 0< h< h' < N,let s €S, and s’ € Spi. Let ¢(s’) be represented as

p(s) = ao B, (2.21)

where |a|, = h and |B|, = k' — k.

(1) If there is a positive integer ¢ not greater than 2Xo.n such that

o(s) =a+a; (mod Cg,), (2.22)
then L(s,s') is given as
L(s,s') = {8+ B} + Clhr (2.23)

(2) Otherwise, L(s, s') is empty.
Proof: Suppose that L(s,s') is not empty. It follows from (2.13), (2.14), (2.19) and (2.21)
that

L(so,s) C {a}+ poslCo]
C {a}+{m:1<i<25omm} 4 CF,. (2.24)

From (2.12) and (2.24), we have that
e(s) € {a+ o 1<i< 2Ko,,,’h,} + C(t)jh-

That is, there exists a; which satisfies (2.22). Conversely, suppose that such an a; exists.

Then it holds that for any v € Cg’,,

(a+a;+vy)o(B+5) = (aoﬂ)+(a;oﬂ;)+(700h'“h)

€ {o(s)}+Ci +(Cq 0 Ciyi)
€ {w(s)} + Cglu
€ L(sg,$"). (2.25)

From (2.14) and (2.25), we see that 8+ 3; € i(s, s'). Then the equality (2.23) follows from
(2.17). AA

This lemma says that L(s,s') is either empty or a coset of pyw[C]/Cf . From this
lemma, we have Theorem 1 (refer to Figure 1) which describes the structure of the minimal

trellis diagram for a linear block code.



Theorem 1: For 1 < h < N, let S, be the set of states of the minimal trellis diagram for a
linear binary (N, K') code. For 1 < h < k' < N, S, and Sy can be partitioned into 27 blocks of
the same size Sy, She, ..., Spae and Siry, Shig, . . ., Spiae, Tespectively, where ¢ 2 Korn—Kopnn,
in such a way that (1) there is a path from s € S, to s’ € Sy, if and only if s € Sp; and
s' € Sp; for the same i, (2) for s € Sy; and s’ € Syy; with 1 < 4 < 29, L(s,s') is a coset of
prw[C]/Ciy and (3) the number of paths from s to s’ is 2Knn.

Proof: See Appendix A. AA

Now we consider the complexity of the minimal trellis diagram for the dual code C* of
C. It can be easily proved that for 0 < h < b’ < N, Cf’,,, and pj ps[C*] are duals (Lemma 6
in [3, Appendix A] is for h = 0). Hence it follows from (2.8) that

I(h,h',C-L = h, —h—-K + I(W,C' (226)
From (2.6), (2.7), (2.9) and (2.26), the following identities hold:
Kh,C == Kh,C-‘-) (227)

Konncs — Koppor = Ko — Koo — Kwne. (2.28)

Identity (2.27) was given in [3, Corollary, Appendix A]. The equality of (2.27) actually says
that the minimal trellis diagrams for a linear block code and its dual have the same state
complexity.

Next we show a condition for a code to be the worst in terms of the number of states of

its trellis diagram. Since Ko, > K — N+ h and K,y > K — b,

K, < min(h, N — h). (2.29)
It is also known [1] that ,
K; < min(K, N — K). (2.30)
Consequently, it holds that
Ky < min(h, N — h, K, N — K). (2.31)

Lemma 2: If C has a generator matrix (or a parity-check matrix) of which the first K (or

N — K)) columns and the last K (or N — K) columns are linearly independent respectively,

then the equality in (2.31) holds for 0 < h < N.
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Proof: The assumption on a generator matrix implies that

Kop = max(0,K — N+ h), (2.32)
I(},’N = max(O,K—h) (233)

Then we have that

Ky K — max(0, K — N + h) — max(0, K — h)
= min(K, N — h) — max(0, K — h)

min(K, N — h, b, N — K). (2.34)

AA

If the condition of Lemma 2 holds for a parity-check matrix, consider the dual code.

Then Lemma, 2 follows form (2.27) and (2.34). The inverse of the above lemma also holds.
If C is a cyclic or shortened cyclic code, then any K consecutive columns of a generator matrix
~ of C are linearly independent, and therefore, the equality in (2.31) holds for 0 < h < N. In
order to obtain a trellis diagram with a smaller number of states for a cyclic or shortened
cyclic code, the order of bit positions must be permuted. For a permutation 7 on 1,2,..., N
and an N-tuple v = (vy,vy,...,vx), let 7v denote (vr1), Ux(2); - - -, Ux(avy) and for a code C of

length N, let #[C] be defined as
7[C] & {av : veC). (2.35)

Lemma 3 can be used for finding a proper permutation to reduce the state complexity of the

minimal trellis diagram for a cyclic or shortened cyclic code.

Lemma 3: Let C' be a linear (N, K — k) subcode of C or a linear (N, N — K — k) subcode
of the dual code C* of C. For a permutation 7 on 1,2,..., N,

Kh,r[C] S Kh,,‘.[cl] + k (236)

Proof: First consider the case where C’ is a subcode of C. Since Ko xic] = Kop,r[c/] and
Kn N[} = KnNxc), inequality (2.36) follows from the definition of K. For the case where
C' is a subcode of C*, this lemma follows form (2.27) and (2.36) for C*. AA
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Let ex-C denote the extended code obtained from C by adding an overall parity bit to
each codeword in C. Let BCH,, 4 denote the binary primitive (or narrow-sense) BCH code of
length 2™ — 1 and designed distance d. Let ¢-RM,,, denote the cyclic r-th order Reed-Muller
code of length 2™ — 1 [5, 6]. It is known that ¢c-RM,,, is a subcode of the BCH, gm-r_;.

Example 1: For 1 < r < m, let C and C’ be ex-BCH,, ym-r_; and ex-c-RM,,, , respectively.
Then C' is a subcode of C. There is a permutation 7 on the bit positions (see section 4)
such that [C'] = RM,,,, the r-th order (noncyclic) Reed-Muller code of length 2™ [5, 7].
Let T1,Ty,. .., Tar be trellis diagrams for the cosets of #[C]/x[C’], respectively, where M =
|C/C"|. These trellis diagrams are isomorphic to each other except for branch labels. A
(nondeterministic in general) trellis diagram for #[C] with M parallel subdiagrams is obtained
from T},T5,...,Ta by merging the initial states and the final states of 71,73, ...,Tas into a
single initial state and a single final state, respectively. It is known that r-th order noncyclic
Reed-Muller code RM,, , has a relatively simple diagram [3]. This fact suggests that for small
M, the code n{ex-BCH,, gm-r_;] also has a relative simple trellis diagram. AA

Let hg, by, hy, ..., h,, be integers such that
ho=0< h<hy<...<hpy<h,=N.

An m-section trellis diagram for C' can be obtained from the minimal trellis diagram T' by
deleting every state in S), for h € {0,1,...,N} = {ho, hy, ..., h} and every branch to or from
a deleted state and by writing a branch with label & from a state s € Sy; to a state s’ € Sy,
for 0 < i < m, if and only if there is a path with label a from s to ¢’ in T. This m-section
trellis diagram is said to be minimal, and if h;;; — h; is the same for 0 < i < m, it is said to
have the same section length.’

If the binary code of length N£ derived from a 2‘-ary PSK or QASK block modulation
code C of length N by representing each symbol as a binary sequence uniquely is linear

under the modulo-2 addition [8], then the method described in this section can be applied to

construct a trellis diagram for C.



3. Boolean polynomial representation of a cyclic code
In this section, we consider boolean polynomial representation of a cyclic code. We show that
the codewords of a binary cyclic code of length 2™ — 1 (or its extended code) can be expressed
by boolean polynomials with m variables. A method for finding the polynomial representation
of a basis of any cyclic subcode of the given cyclic code is presented. This boolean polynomial
representation is very useful in study of the trellis structure of the code or its equivalent code
obtained by permuting its bit positions under a certain permutation.

Let o be a primitive element of the Galois field GF(2™), and let 81, Bs, .. ., B, be a basis
of GF(2™) over GF(2). For a positive integer ¢ less than 2™, let o'~! be expressed as

ai—l s E aijﬂj) (31)
j=1

with a;; € GF(2). For i = 0, let ay; 20 for 1 < j < m. Let n denote 2™ — 1 in this
section. For a binary n-tuple & = (v;,vs,...,9,), a boolean polynomial with m variables,
f(z1,22,...,2.m), is said to represent # {with respect to a cyclic order of bit positions) if and
only if for 1 <1 < n, ,

v = f(air, @iz, - -+, Gim), _ . (3.2)

where (a;1, @3, . . ., @ir,) is the binary representation of a*~! with respect to 81, Ba,. .., Bm. A
boolean polynomial f(zi,z,,...,2,) is also said to represent a binary n + 1-tuple,
Vex = ('UO; V1.0 vn)y

if and only if vo = f(0,0,...,0) and the equality (3.2) holds for 1 < i < n. If a boolean
polynomial f of degree m — 1 or less represents a binary n-tuple (vy,vs,...,v,), then f also
represents the (n+ 1)-tuple (Xn: i, V1, Vg, ..., V,). For a boolean polynomial f, let ¢(f) denote
the binary n-tuple ( or (n +if)1-tuple ) represented by f with respect to a cyclic order of bit
positions.

For 0 < ¢ < n, represent ¢ in the standard binary form as i = Y7, i;2971. Then the
binary weight of ¢, denoted w(3), is defined as the number of nonzero #;’s. If follows from the
definition that

w(n —1) = m — w(i). ' (3.3)
Let I, denote the set of the cyclotomic coset representatives mod 2™ — 1, and for i € I,,,,

let m; denote the number of integers in the cyclotomic coset whose representative is i. For
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1< j < m,let Tj(z) be defined as
Ti(z) 2 z+2’+27 +- +277. (3.4)

Since m; is a factor of m, GF(2™) is a subfield of GF(2™). For i € I, let A, A {ms)
be a basis of GF(2™) and for 1 < h < my, let f;4(z1,29,...,Zm) be defined as a boolean

polynomial of m variables:
A m; n—l
fi,h(xl,x%--'azm) = m, 7}; )(Z /3_72"] . (35)

From (3.3), n — i is expressed as 2 + 22 +--- + 2", where 0 < 4; <4y <--- < ¢, < mand

v = m — w(i). Then we have that

™ n—i m Yo, 2
(Z ﬂj"”i) = ( Bz .7')
Jj=1 j=1

_ H (Z Fs ) (3.6)

=1

Hence, f; 4 is a boolean polynomial of degree m — w(i) or less. In particular, the coefficient of

i), Ly, - -, 2, of degree m — w(3) is given by
(my)
Toni 0" Bi i i) (3.7)
where
2!’1 2‘2 . ?I.y
J1 g J1
2 otz Ig?"’
_ 72 32 J2
Bjy jzsiy = det | ) . . (3.8)
2 g2 ot
Jv Jv Jv

For i € I,,, let gi(z) denote the minimum polynomial of o‘. Theorem 2 follows from (3.1),

(3.2), (3.5) and the property of Mattson-Solomon polynomial [5, 7].

Theorem 2: Let C be a binary cyclic (n, k) code with generator polynomial [I;¢; gi(z) where
I C I,,. Let Pg(C) be defined as

) {fir:i€l,—Tand 1 <h<m}. (3.9)

There is a one-to-one correspondence between Pg(C) and a basis B of C such that each

polynomial in Pg(C) represents a codeword in B. AA
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Let C' be a cyclic (n, k') subcode of C with generator polynomial [1;¢fr gi(z) where I C
I' C I,,. We partition C into 2*7¥ cosets with respect to C'. As the set of coset leaders,
we choose a cyclic (n,k — k') subcode with generator polynomial [T;ezy(r,,—r) 9i(2)- Let this
subcode be denoted C' — C’. Then it follows from the Theorem 2 that there is a one-to-one
correspondence between a basis of the set of 2*=*' coset leaders and the following set of boolean
polynomials:

PB(C—C')é{f;’hIiEI,—IaHd 1 Shgm.} (310)

Therefore, C is uniquely specified by Pg(C’) and Pg(C — C').
Consider a special case where m; < m. Then ¢ = 1+ 2™ + 2?™ 4+ ... 4+ 2™ and
w(¢) = m/m;. Then

m;~1 w(i)

n—i= Y 3 ottme-t), (3.11)

t=1 s=1

Let {71,¥2,---,7m,} be a basis of GF(2™) over GF(2), and let {6;,65,...,8,;)} be a basis of
GF(2™) over GF(2™). For 1 < j < m; and 1 < h < w(i), let Bj4min—1) be defined as

a
Bitmih-1) = ;- (3.12)

Then By, Ba, ..., Bm is a basis of GF(2™) over GF(2). For 1 <j<m;, 1<t<m;, 1 <h <
w(i) and 1 < s < w(i),

t4m;(s—1) t ot+m(s-1)
B emih—1) = Y 64 . (3.13)

This is used in the following Examples 2 and 3.

Example 2: Let C be BCHg 5, the binary primitive (63,24) BCH code with minimum dis-
tance 15 and C’ be c-RMg, the cyclic (62,22) 2nd order Reed-Muller code [5]. Then C’ is
a subcode of C' and consists of the set of all binary n-tuples represented by boolean polyno-
mials of degree 2 or less [7]. Then I' — I in (3.10) consists of 21(= 1 + 2% + 2*) only, and
w(2l) =3, v=m—-w(2]) =3, my =2andn—-21=2+ 23 + 25, It follows from (3.10)
that féf)l and fz(f)z represent two codewords in C' which form a basis of the coset leaders of
C/C', where f\9) denotes the polynomial consisting of the terms of degree j in f. Suppose
that {v1,7;} is a basis of GF(2?) over GF(2), and {6;, &;, 83} is a basis of GF(2°) over GF(2?).
Let 1, B, ..., Ps be defined as (3.12). Now consider Bj, ;, ;, given by (3.8) with different j,,
J2 and 3 in {1,2,...,6}. It follows from (3.8), (3.11) to (3.13) that (i) if there are j and j' in
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{J1,72,J3} such that 7' = j + 1 and j is odd, then
3 S - 3 5
( .?')/31?'7:3_7?')=73712( _72)ﬂ.12’ﬁ]2)

and therefore,

B;i 25 = 0, (3.14)
and (ii) otherwise, for a binary 3-tuple (ay, as, a3),
Bita,,3+a3,5+a; = ('73’71_2)““2“331,3,5. (3.15)

Here By 35 € GF(2?) — {0} [7, p.117, Lemma 18]. We can choose ;, 8,, 83 to make B, 55 to

be one. Without loss of generality, take 1 for v, and a primitive element v for v, then

B1+al ,34a2,54a3 — 1, if a, + as+ az = 0 (mod 3), (316)
= 7, ifa;+ay+a3=2 (mod3), (3.17)
= 1449, ifa,+a;+a;=1 (mod 3). (3.18)

In (3.1), let 4% £1and %? £ 4. Then it follows from (3.5), (3.7), (3.8) and (3.16) to (3.18)
that

3
f§1,)1 = Z123%6 D 212425 D 12426 D T2T375 D T223%T6 D T2747s5, (3.19)

féf)2 = Z123T5 D T1T4T6 D T22T3T¢ D ToTsTs D ToT4Ts. (3.20)

Summarizing the above results, we see that C is the union of four cosets with respect to C’
whose leaders are generated by ¢( féf)l) and ¢( féf)z .

Let T} be a trellis diagram for C’. Then the other three cosets of C/C’' would have
trellis diagrams, Ty, T3 and Ty, isomorphic to Tj. As a result, C has a trellis diagram which
consists of 4 parallel isomorp‘hic subdiagrams without cross connections among them. The

state complexity of the overall trellis diagram can be greatly reduced if a proper bit position

permutation is performed on C and C’ (this is shown in Section 4). AA

Example 3: Let C be BCHg 7, the binary primitive (63,45) BCH code with minimum dis-
tance 7 and C' be c-RMg 3, the cyclic (63,42) 3rd order Reed-Muller code [5]. Then C’ is a
subcode of C' and consists of the set of all binary n-tuples represented by boolean polynomials

of degree 3 or less [7]. Note that I’ — I in (3.10) consists of 9(= 1 + 2°) only and w(9) = 2,
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v=m-—w9) =4, mg=3andn—9=2+22+2*+ 2% It follows from (3.10) that féi),
é:;) and fs(,;) represent three codewords in C which from a basis of the coset leaders of C/C",

where f*) denotes the sum of terms of degree 4 in f. Suppose that {", Y2, 73} is a basis of

GF(2%) over GF(2) and {6, 6,} is a basis of GF(2°) over GF(2®). Note that 47 = 77 and

7}2 = 7}5 for 1 <5 < 3. Let B, f,..., 8 be defined as (3.12). Now consider B;, ;, ;,.;, With

1 <71 < j2 < J3 < js < 6. There are two cases to be considered:

(i) Suppose that either j; =1, j, =2 and j3=3o0r j, =4, js =5 and j, = 6. For 4 < j < 6,

2 2 4 2 5
(282 767 26 78
2 2 4 2 5
1262 26T 262 2
2 2 4 2 5
28 25T 28 T

\ & & & &

B1,2,3,j = det

(82 AFsF 0 0
262 22622 0 0
= det Y201 ’722 12
736 v 6 0 0
4_ 5 _02
\ 2 pY Y 6182 BT 46TV RY
= 0. (3.21)
Similarly, we have that
Bj,4,5,6 = 0, for 1 S] S 3. ’ (322)

(ii) Suppose that 1 < j; < jo <3< j3 < js < 6. Let ji and j} be defined as

h = j3_3)
Js — 3.

ey
]

Then we have that
2 2 4 2 5
e e e ha
2 2 4 2 5
B = qet| B RS G G
s = det 252 Bg aent g
Y102 Y b3 7j{62 V! b3

2 £2 22423 2 24 22 025
7,';52 7t 63 7,';52 T 63
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2 2
282 428 0 0
3 62 7}:53’ 0 0

= det
2 3 4 24_2 2 5 2 5__92
Vi8R ET (83 + 86T AE (6 + 78T
2 2 4 4 _ 2 5 2 5_ 92
732;5%, 7,?;63 7,?5(53 + 867 7?) ’Y_?; (82" 4 62677
= 7-7?1 7.?2(7.7?1 + 7.1?2)7.1?,' 7.725(712{ + 7.725)6f62(6;( + 6;)6 (3.23)

Note that 8;65(87 + 62), denoted 7, is in GF(2%) — {0}. Let &, and &, be defined as
1T 0 1 2

e

8 b1,

Jay -
6’2 = T 162.

If {6{,6}} is used as a basis of GF(2%) over GF(2®) in place of {6, 6,}, then
6880 (87 + 657)% = 1. (3.24)

Without loss of generality, {1,7,7?} can be chosen as a basis of GF(2®) over GF(2), where v

is a root of 23 + z + 1. Then it follows from (3.23) and (3.24) that the sum f®) of terms of
6 ) 2422424425

degree 4 in (Z Bix,

t=1

is given by

4 2 2
f( ) = (72122 ® Y2123 D T223)(V24T5 B Y T426 D T526)
_ a2 3
= YL1222425 D YV L12224%6 D YT 122256
3 4 2
DY T123T4%5 D Y T1T3%4T6 D Y T123Z5%6

@’)’1}21‘31)4235 &) ‘)’22221,‘32}42:5 @D zox3T5T6. (325)

In (3.5), let {753),79),7;(,3)} be the dual basis of {1,7,+?}. It follows from (3.5), (3.7), (3.8)
and (3.25) that

(4) :

91 = ZT1T2T4%6D T173%4%5 D T22325%s, (3.26)
(4)

92 — ZT1T2%4%5D 11232476 D T12325%6 D T22374%s, (3.27)
(4)

93 = T122T4%¢ D 21220526 D 1232425 D 21237426 D ToT3T4T5. (328)

Summarizing the above results, we conclude that BCHg; is the union of eight cosets with

respect to c-RMg 3 whose leaders are spanned by the vectors, ¢( féi)), c( é?;) and ¢( é:?).
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It follows from Example 1 that BCHg 7 (or its equivalent code obtained by permuting
its bit position under a certain permutation) has a trellis diagram consisting of 8 parallel

isomorphic subdiagrams without cross connections among them. AA

Example 4: Let C be the dual code of the even weight subcode of the primitive binary BCH
code of length 2™ — 1 and minimum distance 5, where m > 3, and C’ be the cyclic first
order Reed-Muller code of length 2™ — 1 whose codewords are represented by linear boolean
polynomials [7]. Then C’ is a subcode of C, and I'— I in (3.10) consists of £ = n—2m"2 —2™~1
only, and w({) = m —2, v =2, my = m and n — £ = 2™ 2 + 2™~1_ [t follows from (3.10) that
fl(zh) with 1 < h < m represent m codewords in C which form a basis of C — C’, the set of
the coset leaders of C/C’. Let B, fs, ..., Bm be a basis of GF(2™). Then it follows from (3.8)
that for 1 < j; < jo < m,
Bjiis = {BiBn(Bin + Bi)}" 2.

For m = 5 and 6, by taking a?~! for 3; and the dual basis of {1, «,...,a™ '} for {7§m), “ém),
.o+, 7™}, the following f,(i) with 1 < h < m are derived:

(1) For m =5,
(2 _
70 = 223D Tory O 2375,
(2) _
72 = D1T3D 2124 D 2175 O 2275 D 2325,
(2) _
73 = 124 D125 D 2oz O 2225 @ 2325 D 2475,
2
§4) = LT2DT1T4 D 2175 D 2223 D 2274 D 2374 © 2475,
(2 _
75 = Z124 D ZaTy D 2oT5 O T324 O 1475.
(2) For m =86,
(2 _ ,
151 = ZToT3D T2Z{ D 2276 D 1325 D T4Te,
(2)
152 = 122D 0174 © 224 D 2225 D T374 D T4T5 D 25T,
(2 _ .
158 = T1Z2D 123D 2124 D 2274 D 2225 D 276 D 324 D 2476,
2
1(5,)4 = 124D 2125 D 2223 D T224 D 225 D 2226 D 2374 @ 7326 D T5%s,
(2) __
155 = T1Z2D 123D 2124 D 2125 D 2176 D T276 D 2374 D 2326 D T4Ts,
(2)
156 — ZT1Z3DT1Z4 D T2T3D 2224 O T2Z5 B T926 D 1325 D 1326 D 426 D T5T6.

AA
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Let a(# 0) and & be elements of GF(2™). For 0 < ¢ < 2™, let =, ;(¢) be a permutation on
{0,1,2,...,2™ — 1} defined as follows:
(1) For i = 0, if b = 0, then 7, ,(0) = 0, and otherwise, m, ;(0) = j where o/ = b.
(2) Fori#0,if aa'~'4b = 0, then 7, ,(i) = 0, and otherwise, 7, (i) = j where o/ = aa*~'+b.
This permutation is called an affine permutation. The extended codes of primitive BCH codes,
cyclic Reed-Muller codes and some other cyclic codes are known to be invariant under the

affine permutations [5]. The following lemma is used in the next section.

Lemma 4: Suppose that the extended code ex-C of a binary linear code C is invariant under
the affine permutations. For a boolean polynomial f(z;,zs,...,2,,) and a binary m-tuple

b= (b1,bs,...,bn), let fo(z1,2a,...,2m) be defined as
fi(z1, 20,y 2m) = (21 @ b, 20D bay ..., T B byn). (3.29)

If f represents a codeword of ex-C, then for any binary m-tuple b, f; also represents a codeword
of ex-C.
Proof: Let b be defined as

b= ibjﬂj. ) (3.30)

then it follows from (3.1), (3.2) and the deﬁrii—tion of m 4 that for 0 <1< 2™,
filai, aioy ooy 8im) = flain @by, a0 ®bay ..., aim @ by) (3.31)
= flap,am,. .., Gmy), (3.32)

where ¢’ = 7 (). That is,
C(fs) = msC(f)- (3.33)
AA

4. Application of boolean polynomial representation to construc-

tion of trellis diagrams of binary linear codes
In this section, we apply boolean polynomial representation of a linear block code to construct
its trellis diagram. In particular, we focus on the construction of minimal trellises for (non-
cyclic) reed-Muller codes and the extended and permuted primitive BCH codes which contain

Reed-Muller codes as subcodes.
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For a positive integer m and a nonnegative integer r not greater than m, let Pz, z,,

..., Zm] (or P2) denote the set of all boolean polynomials of degree r or less with m variables

£1,Za,...,Lm. For a nonnegative integer ¢ less then 2™, let (b;1, biz, - - - ,bim) be the standard
m

binary expression of i such that i = Y 4;;2™ . For a binary 2™-tuple v = (vo, vy, - . -, vom_1),
i=1

a boolean polynomial f(zi,z.,...,%) is said to represent v with respect to the standard

binary order of bit positions if and only if
v; = f(b;l, bio, -+, b;m), for0< < 2™, (4.1)

In this case, v is denoted b(f). For a binary code C of length 2™, let P[C] denote the set of

boolean polynomials with variables z,,zs, ..., z,, such that

Cc = {i(f): f € PICI}. (@)

For 0 < r < m, the r-th order (noncyclic) Reed-Muller code of length 2™ [5, 7], denoted
RM,, ,, is defined as {b(f) : f € PL}, thisis, P[RMp,] = Py,
Let 7, denote the permutation on {0,1,2,...,2™ — 1} such that for 0 <1 < 27,

ﬂ“c(i) é Z a,'j2m—j, (43)
Jj=1
where a;;, 45, . . ., @i, are defined by (3.1). Then 7 is a permutation from a cyclic order to the

standard order of bit positions. It follows from (3.1) and (4.1) that for a boolean polynomial

f with m variables,
mo(f) = b(f). (4.4)

Suppose we apply 7. to permute the bit positions of ex-BCH,, gm-r_; and (ex-BCHm,q(m,,))L.

The we have

T [ex-BCHppom-r—1] 2 RMp,, for1<r< m, (4.5)
wc[(ex-BCHm,q(m,,))L] 2 RM,,,, (4.6)

for ¢(m,1) = 5 and ¢(m, 2) = 2l™/2] + 3.
For a binary code C of length 2™, C is said to be s-invariant, if and only if for any binary
m-tuple a,

b(f;) €C <> b(f)eC (4.7)
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where f; is defined by (3.29).

Let A be an invertible affine transformation over binary m-tuples:
Yi = Cio @ Zc;jzj, for1 <t < m. (4.8)
J=t
For a binary code C of length 2™ which is specified by the set P[C] of boolean polynomials,
let m4[C] be defined as

74[C] = {b(f(clo 52 Z €125, C20 D Z C2; T,
y=1 j=1

i=t

ooy Cmo D Em: emiz;)) : f€ P[C’]} . (4.9)

Since 74[RM,,,] = RM,,, for any affine invertible transformation A over binary m-tuples, it

follows from (4.5) and (4.6) that for 1 < r < m,

WA[WC[CX-BCHm’zm—r_l]] 2 RMm,,., (410)
T a[7[(ex-BCHpm gm.r)) *]] 2 RMpm,s. (4.11)

If a binary code C of length 2™ is invariant under the affine permutations, then it follows
from Lemma 4 that ma[r.[C]] is s-invariant. For example, 74[n.[ex-BCH, 4] and RM,, are
s-invariant.

For a nonnegative integer r not greater than m and two integers h and A’ such that

0<h<k<2m let P ley,2s,...,2m] (O Py, 5 ) be defined as follows:

a
Pz, 22,y 8m] = {f € P'ley, 23, 20]

f(bjy,b505--2105,) =0for 0 < j< hor B<j<2™} (412)

For a binary linear code C of length 2™, it follows from (4.12) that for f € P[C] NP7,
b(f) € Cpp if and only if
fe P b R

where Cj p is defined in Section 2.

Let #; denote 1 ® z;. From the definition of (4.12) it holds that

f(zly L2y 1zm) € szm_h"zm_h[xl, Toyeeoy a:m]
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if and only if
f(£1,%3,...,%m) € Py ey, 29, ..., Tm). (4.13)

Now we have Theorem 3.

Theorem 3: Suppose that C is an s-invariant linear binary code of length 2. Then the
following symmetry holds:

(1) The minimal trellis diagram for C is invariant under reversing the direction of every branch,

and (2)

Kh,h‘ = sz_hl’gm..h, for 0 S h < hl S 2m, (414)
I(h = Kgm_h, for 0 S h S 2™, (415)

Proof:

(1) It follows from the definition (4.7) that for f(z,, z5, .. Zm) € P[C], f(Z1,T3,...,Tm) €
P[C]. Note that for (vo, vy,...,vm-1) = b(f) € C, (vam_y1, Vam_g,...,v) = b(f(Z1, o, .. -,
Tm)) € C. Then we readily see that the symmetry (1) holds.

(2) Equation (4.14) follows from (4.13) and (4.7), and equation (4.15) follows from (2.9) and
(4.14).

AA

Next we show how to find K}, 5/ for a binary linear code which contains a Reed-Muller

code as a large subcode.
A polynomial f € P'[z;,,...,2y,) is expressed uniquely as the following form:
r
f=aa) > @251 851 Tz -+ - Tjes (4.16)
t=1 1<n<ja<~<ji<m
where ap and a;,j, j, are either 0 or 1. Let £ be a positive integer not greater than m. By

rearranging the terms in (4.16) with respect to the smallest suffix of variables in a term, f

can be uniquely expressed as
¢
[ = fo,zEBExjfj, (4.17)
i=1

where f; € P77 z;41, 2542,y 2] for j < m, frn € {0,1}, for € P[T441, 2142, .-, ZTm] for
£<mand fy, €{0,1}.
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In the following, we will present a necessary and sufficient condition for a polynomial

f € P, tobein f € P} ; ,m. For a positive integer h less than 2™, suppose that the standard

binary expression of h—1is ) b;2™9. Let the binary sequence b,b; ... b, be represented as
i=1

biby...by = 0M1MQ2 1™ ... ofr]nr

where 0 < <m, 1< <mfor2<t<r,1<n,<mfor1<t<r,and 0 <n, <m. Let

r be a positive integer not greater than m. Define 7' as follows:
7—1

() Hr=1or Zn,<r,then'r’-é-1'.
s=1

(2) f ny > r, then 7 £ 1, and otherwise, let 7' denote the greatest integer such that
7 ~1
don, <1
s=1

t—1
For 1 <t < 7/, define j; as j; £0 and Jt = Z(Z, + n,). Then the following lemma holds.

s=1
Lemma 5: For f € P'[z1,2s,...,2,], fisin Pl,.[z1,29,...,2,] if and only if f can be
h,2
represented in the following form:
fe o ]  (4.18)
A Jr+li+ne
fO=ge| I =), for1<t <7, (4.19)
J=j1+li+1 :
) A
f( ) = grs (4'20)
=0, if £ =0, (4.21)
A Ji+ts
=D g if either £, #0andt=1and 1 <¢< 7/, (4.22)
J=h+l
where g, ; € Pz 41, T542,.. ., Tm) and g ; € pr1-L.5 P Z541, Tjgay .-, Tm)for 1 <t < 7.

The above representation is unique if it exists.

Proof: A proof is given in Appendix B. AA

Note that equations (4.18) to (4:22) don’t depend on 7 but depend on 7'. Then we have

the following corollary.

T—1 )
Corollary 1: In Lemma 5, consider the case where 7 > 1 and E n, > r. Let the binary
s=1
sequence bi b, - - - b and positive integer A’ be defined as
BBy 2 oh1m0R1m . 04 1, (4.23)
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K-1 2 Y Hom, (4.24)

J=1
T'—1
where n!, 2m- Z (£, + n,) — £,+. Then it holds that
s=1
P omlz1, 29, .., Tm] = Ppigm[21, 22, . .. y o) (4.25)

AA
Example 5: We apply Lemma 5 to the following cases:
(1) Let & £ 9mv with 0 < u < m. Then biby... b, = 0*1™"" £; = u, n; = m — u and
7= 7' = 1. It follows from Lemma 5 that
Pinugm = {2191 ® T2g2a ® - D Tugu 1 g5 € P Hzj1,.. ., 2m], for 1 < j <u}. (4.26)

(2) Let h 2 gm _9m=v with 0 < u < m. Then, byby... b, =1*7101™™ £, =0, n, =u—1,
bh=1,n=m—-uand =2 Ifu—1< rthen 7 = 2, and otherwise 7' = 1. It follows

from Lemma 5 that
Pim_gm-ugm = {2122...2.9:9 € P [gys1,...,2m]}, foru<r, (4.27)
= {0}, foru>r. (4.28)

(3) Next consider the case where b = 2™~242™3 with m > 3. Then b,b,...b,, = 0101™73,
bL=n=f=1n=m-3and 7=2 Ifr =1, then 7 = 1, and otherwise ' = 2.

From Lemma 5, we have that

Pgm—2+2m—a’2m = {:L']_gl &) ToZ3g2 i 1 € P"—l[xz, ey lfm],
g2 € P 2zg,...,z]},for r > 2, (4.29)
= {z10,:91 € P Mzg,..., 2]}, for r=1. (4.30)

(4) Now consider the case where h = 2™ — 2™~2 _ 2m=3 with m > 3. Then b;by...5, =
10213, 4, =0,n =1, 4=2,npg=m—-3and 7=2. If r =1, then 7 = 1, and
otherwise 7/ = 2. From Lemma 5, we have that

Pim_gm-s_gm-3gm = {21(2292 D z393) : g2 € P" z3,..., 2 m),
g3 € PP 2zy,...,z,]}, for r>2, (4.31)
= {0}, forr =1, (4.32)

AA
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Lemma 6: (1) For 0 < u < m, let 7 be a nonnegative integer less than 2* whose binary

expression is Y a;2*77, and let  be a nonnegative integer not greater than m. If r < u, then
J=1

1),"2m-u’(,'+1)2m—u[z1, To,..., zm] = {0}, (4.33)

and otherwise it is given by

‘l)f;""“,(i+1)2""“[xli T2y-eeyyTm) = {(H(ia Daj))g:g€ P 2yt1, s T} (4.34)
i=1

(2) If C is an s-invariant linear binary code of length 2™, then

Kt‘zm—u,("_*_l)gm—u = Koﬂm—u, (4.35)

KW - K2m—u,2m. (4.36)
Proof: (1) Note that f(z1,%s....,2m) € Phm-u(i41y9m-u[%1, %2, +,,Zm] if and only if f(z: & -
a, Ea®ag, ..., Fy Dy, Typ1y--.,Tm) € P2’,,._2,,,-.,,2,,.[:c1, Z3,...,Zm,)- Then the first part of the

lemma follows from (4.27) and (4.28).
(2) Equation (4.35) follows from the above proof (1) and (4.7). If and only if f(z1,z2, -+, 2Zm) €

;;m—-w,(iW[xla Loy, .’Bm], then
f(xl 5% @y, T2 ® Az, Ty & Quy Lutl, s xm) € P(;j;m-u[xl, Lo, - ,xm]~ (437)
Hence, Km=vpiyysm=v = Kgzm=v- Then equation (4.36) follows from (2.6). ’ AA

Structural analysis of trellises for Reed-Muller codes
In the following, we analyzev the state and branch complexities of minimal trellis diagrams
for Reed-Muller codes and some extended and permuted primitive BCH codes which contain
Reed-Muller codes as subcodes.

Let C be the r-th order Reed-Muller code RM,;,, of length n = 2™ with 1 < r < m. For
nonnegative integers ¢ and ¢, let M(¢,q) be defined as

M(i,q) minz{é’q} (q) | (4.38)

i=0 ]

and if ¢ or ¢ is a negative integer, M (i, ¢) is defined to be zero. By definition,

|Pil = M(i,q). (4.39)
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For 1 < h < 2™, consider Kjamam,,, (= |Py 52m|). We use the same notations as those in
Lemma 5. The number of polynomials g,’s with 1 < ¢ < 7’ in Lemma 5 is given by

12
Y M(r—1-%in,m—j — j),
j=1
where Y71 n, = 0 for t = 1, and therefore K} 3m pm,,, is given by
LA
I\’h,2”‘,RMm,,- = Z Z M(T -1 i;i n,, m — jk - ]) (440)

t=1 j=1

As special cases, we have that for 0 < u < m,

erm—u’zm = Z M(T -— 1’ m — j), (4:.4].)
Jj=1

I\,QM_Qm—u’Qm = M(T —-u,m-— 'u), (4.42)

Kom-24gm-3gm = M(r —1,m— 1)+ M(r —2,m —3), form >3, (4.43)

Kom_gm-2_gm-sgm = M(r —2,m —2)+ M(r—-2,m—3), form>3. (4.44)
From Lemma 6 and (4.39), we see that.
Kigm-u (i41)gm-v = M(r —u,m —u), for 0 <i< 2% (4.45)
It follows from (2.9), (4.14), (4.41), and (4.42) that

Kom-w = M(r,m) — M(r — u,m — u) — iM(r —-1,m-—j). (4.46)

i=t

Since M(r,m) = M(r,m — 1) + M(r — 1,m — 1), we have that

Kom-s = M(r,m—u)— M(r — u,m — u)

- mi"{fu'r} (m_’ “) (4.47)

j=max{0,r—u+1} J

Equations (2.11) and (4.47) give the state compiexity (number of states) of the minimal trellis
diagram for RM,, , just after the 2™~*-th bit position for 0 < u < m. For examples, it follows
from (4.15) and (4.47) that

Kgm—l = Kgm-—z - sz_zm—ﬁ = (m - 1) . (4.48)
T
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Forney [3] first showed a 4-section trellis diagram with 2(""") states for RM,.,. In fact, this
number is the minimum as shown by (4.48). It follows from (2.9), (4.14), (4.15), (4.43), and
(4.44), that

I(zm-2+2m—3 = I(zm_zm—2_2m—3
= M(r,m)—M{@r—-1m-1)-M(r—-2,m—2)—2M(r—2,m—23)
= M(r,m—-1)—M(r—2,m—2)—2M(r—2,m—3). (4.49)

Formula (4.49) together with (4.48) gives the minimum number of states at the end of each
section of an 8-section trellis diagram for RM,,,, with the same section length.

Now we consider the minimal 2*-section trellis diagram for RM,,, ,. From Lemma 6 we
see that the subtrellis diagram from a state at the beginning of a section to another state at
the end of the section is either empty or can be constructed to be isomorphic to any of trellis

diagrams for RM,,_, ;—, where RM,,_, ,— = {0}, for 7 < u. From (4.14), we have that
I(O,("+1)2m—u - Ko’i2m—u = K2m__(z'+1)2m-u,2m - sz__izm-u’zm. (450)

The right-hand side of above equation can be computed by using Lemma 5. For instance,

consider the case where u = 2. From (4.41) to (4.45) we have that

I{o’zm—l - Ko,2m-—2 = M(T - 1, m — 1) —4 M(T - 2, m — 2)

= M(r—1,m-2), (4.51)
K0’2m—l+2m—2 bl Ko’zm-l o= M(T - l,m -— 1) + M(T b 1,m - 2) - M(’f' - l,m - 1)
= M(r—1,m-2). (4.52)

From (4.45), (4.51) and (4.52), we have that

-2
Koam-19m-1 = Kqam-1 gm-149m-1 = (m 1), . (4.53)
: r—

where q

20 for g<at.
Consider the special case where r = 1. From Corollary 1 and (4.41) we see that for

0 <u<mand 2™t <h<< 2™

Kh,2"‘ = K2m—u'2m = u. (454)
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It follows from (2.9), (4.14), (4.15) and (4.54) that for 1 < u < m, 2"~} < h < 2™* and
h # 2™"! we have
Kh = sz_h =m-—u-+ 1, (455)

and

sz—l =m— 1. (456)

Structural complexity of trellis diagrams for-some extended and permuted prim-
itive BCH codes
In the next three examples, we analyze the state and branch complexities of minimal trellis

diagrams for some extended and permuted primitive BCH codes of moderate length.

Example 6: Consider ex-BCHg s, the extended (64,24) code of the primitive (63,24) BCH
code with minimum distance 15 (refer to Example 2). The permuted code 7.[ex-BCHg 5] -
contains RMg o, the 2nd-order noncyclic Reed-Muller code of length 64 and minimum distance
16, as a subcode. Then the set of coset leaders of m.[ex-BCHg ;5] /RMgs 3 is generated by b( f éf)l)
and b( 21 2) where fm , and fm 5 are defined by (3.19) and (3.20) respectively. From-Lemma 5
we see that the first 22 components of b( 21, 1) and the first 21 components of b( 21, 2) are all
zero. Since 7 [ex-BCHg 5] is s-invariant, the symmetry stated in Theorem 3 and equations
(4.33) to (4.36) hold. By using (3.19), (3.20) and (4.26) to (4.34), we can find K ;64 (= K4:),
Koati-1)4i and Ky_1)4 for 1 < 7 < 16 (see Table 1). A 16-section trellis diagram for
mc[ex-BCHg 15] has the following state and branch complexities: For 1 < ¢ < 16,

(1) the number of the states at the end of the i-th section (or just after the 4i-th bit) is

2K4is and
(2) for each state s at the 4i-th bit, there are 2Kosi-04i states at the 4(i — 1)-th bit from

which there are branches to s, and the number of parallel branches is 2X1G-n4i,  AA

Example 7: Consider ex-BCHg 7, the extended (64, 45) code of the primitive (63, 45) BCH
code with minimum distance 7 (refer to Example 3). The permuted code w.[ex-BCHg 7]
contains RMg s, the 3rd-order Reed-Muller code of length 64 and minimum distance 8 as
a subcode. The coset leaders of n.[ex-BCHg7]/RMg 3 are generated by b( f("‘)) b( f(4)) and
b( . (4)) where fé? , 542) and f(4) are defined by (3.26) to (3.28) respectively. The first 27
components of b(f, (4)), the first 29 components of b( f, (4)) and the first 30 components of b( f; (4))
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are all zero. In Table 2, K464 (= Kui), Koai=1),4i and Kygi_1)4 for 1 <1 < 16 are shown.
These numbers give the state and branch complexities of the minimal 16-section trellis diagram

for m.[ex-BCHg 7]. AA

Example 8: Let C be ex-BCH,, 5, the extended code of the primitive binary BCH code of
length 2™ — 1 and minimum distance 5 with m > 3. The dual code of C, C*, is the extended
code of the dual code of the even weight subcode of the BCH,, 5, and w.[C't] contains RM,,,
as a subcode. Let C’ denote the subcode 7 [Ct]—RM,, of 7.[C*]. The dimension of C’ is m.
Consider the minimal 4-section trellis diagram Ty for «.[C]. Then it follows from Lemma 3,
(2.27), (4.55) and (4.56) that the state complexity of T is about 1/4 of that of the minimal
4-section trellis diagram for C.

For a boolean polynomial f with m variables, a linear subspace U of the set of binary m
tuples which are generated by @; = (w1, %ia, . . . ; Uim) With 1 < ¢ < h is said to be a maximal

Z-space of f if and only if U is a maximal linear subspace with the following property:

There are binary constants u;g, s, . . . , uso such that for every binary tuple (by, bs, . .., br)

in {(b1,b2,...,bn) : T, uib; = up for 1 < i < A},
f(blxb%"')bm) = 0.

We found the set of maximal Z-spaces for each polynomial in P(C’). By using this knowl-
edge, we chose the following affine invertible transformation A to make Kqam-2 x,[r.jc+]) 2nd
Ko am-243m=3 x s(n[ct] @ small as possible. For m = §, let A be the invertible linear trans-
formation: y, = z5, ¥y = 4+ s, Y3 = T; + T3 + 23 + T5, y4 = 23 and y5 = zo. Then
from Example 4 we see that the coset leaders of m4[n.[C*]]/RMs, are generated by b(fi) with
1 < i <5 where f; is defined as follows:

112

fi Y19 + (1 + Y2 + ya)s,
fa
fs
fa

fs

>

(1 + ys + ya + y5)y2 + ysys,

e

Y1ys + y2(ys + v4),

>

YoYs + Y3¥s,

e

y1(ys + ys5) + yaus.
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By using (2.26), (2.27), (4.35), (4.36), (4.54) to (4.56), we can find Ky; ¢, Koa¢i-1)4i,c, and
Kyi—1)4i,c for 1 <1 < 8 which give the state and branch complexities of an 8-section trellis

diagram for the code w4[m.[ex-BCH; )] (see Table 3). AA

5. Conclusion

In this paper, we have investigated the trellis structure of linear block codes, particularly the
state and branch complexities of the minimal trellis diagram of a linear block code. We have
shown that a cyclic (or shortened cyclic) code is the worst in terms of the state complexity
of its minimal trellis diagram among the linear codes of the same length and dimension. We
have considered the boolean polynomial representation of codewords of a cyclic code and
applied this representation to construct minimal trellises for codes obtained from cyclic codes
by properly permuting their bit positions. Particularly, we have focused on the construction
of minimal trellises for extended and permuted primitive BCH codes which contain Reed-
Muller codes as subcodes. We have shown that some extended and permuted primitive BCH
codes of moderate length have relatively simple trellis diagrams. Good block codes with
simple trellises are attractive for error control in digital communications, because they can
be practically decoded with soft-decision optimal or suboptimal decoding algorithm. Soft-
decision multi-stage suboptifnal decoding algorithms for some BCH codes are under study
[10]. In construction of multi-level block modulation codes of moderate length with the multi-
level method, it is desirable to use good block codes with simple trellises as component codes.
This allows us to use multi-stage decoding in which each component code is decoded with
the soft-decision Viterbi decoding algorithm [9]. Using the soft-decision multi-stage decoding,
it is possible to achieve high spectral efficiency and vlarge coding gain with reduced decoding

complexity.
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Appendix A
Proof of Theorem 1

For s € S, and s’ € Sy, let o(s') denote the set of states in S;, from which there is a path
to s', and let o’(s) denote the set of states in Sy to which there is a path from s. From (2.9),
(2.6) and (2.8), |po[C]/Pos[CEn]l = oK~ Kn N =Ko=Ky p) = 9Kopn=Konn = 29 Partition Sy,
into 29 blocks Sh1, Sho, - - ., Spae in such a way that states s; and s, in S, are in the same block
if and only if ¢(s;) and ¢(s;) are in the same coset of por[C]/pon[C§y]. Since each coset of
Po.u[C]/pou[CE] contains exactly |pou[CE]/CEl cosets of pos[C]/CF), every block Sy has

the same size. Lemma 1 implies that for s’ € S, there is exactly one index 7 such that
o(s") = Spi. (A.1)
For 1 <1< 29 let Sp; be defined as
Spi £ {s' € Sy : for s € Sii, 0(s) + pop(s’) € pos[CELN}-
Then it follows from Lemma 1 that for s € Sy;,
0'(s) = Spx. (A.2)

For each a in po,[C], the number of binary sequences 8’s such that a o 8 € pon/[C] is IC,i’,h,!-
from (2.17). Hence |Spi| = |poa[CEul - |CE il /ICG ], and every block Sy has the same size.

If L(s,s') is not empty, then it follows from (2.2) and (2.23) that L(s,s’) is a coset of
prw[C)/CE, and |L(s, s')| = 2%mw, ' AA
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Appendix B

Proof of Lemma 5

For two binary {-tuples (ay,ay,...,a;) and (a},a,...,a)), we write (ay,ds,...,a;) <

(a}, as,...,ay), if and only if

4 4
Y a2 <Y el
=1

i=1

For every binary m-tuple (ay, as, ..., a,) such that (a;,as,...,a,) < (b1, bs,...,b,), denoted
b,
flai,ag,...,a,) =0, (B.1)

if and only if f € P} ym[21,29,...,2m])

We prove this lemma by induction. If m =1, then h =1,7 = 1,4, = 1 and n; = 0. Since
Pl,[z1] = {0, z,}, this lemma is true. Consider the case where m > 2.

Suppose that f € Pj,m[z1,%s,...,2m]. If £ = m and n; = 0, then let £ £ m and
otherwitse, let £2 ¢ + 1. Express f as the form of (4.17). Since it follows form (B.1) that

Y entmmnan
F(0,0,...,0,2441,...,2,) = 0, for must be zero.

(1) fn; =0, then ¢, =m, h =1 and
f=>=fi=g.
j=1

Conversely, f of the above form is in Pjyn[z1,29, ..., Zm]-

(2) If n; > 0, then
4Ll

f= Z z;fi =g Oz fe

Note that ,

[P — ) _
fr=f(0,0,...,0,1,2441,...,20) € P 241, .., Zm)- (B.2)
—
(2.1) Suppose that 7 = 1. (i) If 7 = 1, then for every binary (m—£)-tuple, (0,0,...,0,1,
t t
A41y- -5 8m) < (0,0,...,0,1,1,...,1) = b. From (B.1), f(0,0,...,0,1, as41,...,
t

e e——
am) = 0. Thatis, f = 0. (ii) If r > 7 = 1, then n; > r. If £(0,0,...,0,1,

4 ni
ar41,---, Gm) = 1, then it follows from (B.1) that b = (0,0,...,0,1,1,...,1,
bey4ni+ty---50m) < (0,0,...,0,1,a741,...,6a,). Hence a; = 1 for +1<j<

-30-



£, 4+ n;. Consequently, the weight*® of f, € P Yz4y,...,7,,] is at most
gm—hi—m _ 1 < 2m=4=(-1) and therefore f, = 0. For these two cases, f = g;.

Conversely, f of this form is in P,:,zm[zl, Toye-y Tl

(2.2) Suppose that 7' > 1. Then 7 > 2 and r > 2. Let A’ denote 1+ »_ b 2™

j=t+1
Then 1 < I < 2™~ Tt follows from (B.2) that f € P} ym[21,2,..., 2] if and
only if
: : min{r—1,m—1{)
f[ € Ph',Z""l [Z[+1, ceey xm],

where 1 < £+ 1 < m. Let f® £ fi. Then this lemma is proved by induction
hypothesis. AA
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Table 1

The complexity of a 16-section trellis diagram for n.[ex-BCHg 15], an equivalent code of the

extended (64, 24) code of the primitive (63, 24) BCH code

! 112 3, 4y 5| 6} 7| 8| 911011121314 15|16
Ky 417(10[10}13 1515 (1215|1513 }10({10} 7| 4| O
K i rMs 2 4|7(10|1013(13{13|10}{13 (13131010} 7| 4| O
Kagi—1),4 0

Kot ojo| of 1] o| 1| 1| 3] 0| 1| 3| 3|1|3]|3]|4
Koag-nainvs, |010] 0 1] 0| 1] 2] 3] o) 1| 1| 3] 1| 3| 3| 4

(1) The number of states at the end of the i-th section (or just after the 4i-th bit) is o,

(2) For each state s at the 44-th bit, there are 2K0.4G-0.4i states at the 4(: — 1)-th bit from

which there are branches to s, and the number of parallel branches is 2%4G-1.4:,



Table 2

The complexity of a 16-section trellis diagram for n.[ex-BCHg 7], an equivalent code of the

extended (64, 45) code of the primitive (63, 45) BCH code

1 12} 3| 4! 5| 6| 7| 8| 9|10|11|12 1314|1516
Ky 471010131314 13|14 |13 {13 |10|10 7| 4| O
K4 RMs 5 4{7(10y10(13|13|13|10,13 13|13 };10{10| 7| 4| O
Kyi-1)4i 0

Ko -1y ol1] 1] 3] 1| 3| 3| 4| 3| 4| 3| 4| 3| 4| 4| 4
Kosivyuirme |O1] 1] 3| 1| 3] 3] a| 1| 3| 3| 4| 3| 4| 4| 4




Table 3

The complexity of an 8-section trellis diagram for 74| [ex-BCHj 5]], an equivalent code of

the extended (32,21) code of the primitive (31,21) BCH code

: 1234|5678
Ky 4171919191740
K4 rums, 3|4|5|4|5]4/3]|0
K1) 0

Ko 4(i—1)4i 0(1(2(3|13{44|4
Ko,4(;_1),4;,RM5,1 0(0|0|170}1:1]|3




1 o oo hel » o o ' h'+1 ¢+ N bit position

Figure 1:  The branch complexity of a trellis diagram with the minimum number of states



