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Estimating Random Integrals from Noisy 
Observations: Sampling Designs 

and Their Performance 

Ahtract -The problem of estimating a weighted average of a random 
process from noisy observations at a finite number of sampling points is 
considered. The performance of sampling designs with optimal or subopti- 
mal, but easily computable, estimator coefficients is studied. Several 
examples and special cases are studied including additive independent 
noise, nonlinear distortion with noise, and quantization noise. 

I. INTRODUCTION 

HE PROBLEM of estimating a weighted integral of a T random process from observations of the process at a 
finite number of sampling points has been studied by 
several authors (see the survey [2]). It is an important 
problem of interest in several areas of communications, 
information theory, statistics, and signal processing. The 
usual questions of interest are to find the optimal sampling 
design of size n,  or sampling designs which are asymptoti- 
cally optimal as the sample size tends to infinity. Coupled 
with these is the problem of estimator design and the study 
of how the mean square estimation error tends to zero as 
the sample size tends to infinity. 

In this paper we consider these problems for the case 
where the observations are corrupted by noise. We allow 
the noise to be possibly dependent upon the random 
process whose integral we are trying to estimate, hence- 
forth called the signal process. In t h s  case, as the number 
of sampling points increases to infinity, the mean square 
approximation error no longer tends to zero but instead to 
some positive least possible value. We consider estimators 
which use optimal coefficients as well as suboptimal (but 
simple) coefficients. 

As far as the authors are aware, the only case of noisy 
observations considered in the literature is in [ 5 ] ,  [6] ,  where 
the observation noise is assumed white and the signal 
Gauss-Markov. The optimal sampling designs are de- 
termined in [ 5 ] ,  and the rates of convergence of the mean 
square estimation error are found in [6]  to be l / n  with 
noise and l / n 2  with no noise. 
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One of the main contributions of this paper is to show 
that these mean square estimation errors and their rate of 
convergence to least possible values depend crucially on 
the solution of a certain Wiener-Hopf integral equation. If 
the solution to the integral equation is smooth and con- 
tains at most Dirac delta functions, but not derivatives of 
delta functions, then asymptotically optimal sampling de- 
signs can be chosen for both lunds of estimators. Other- 
wise, the rate of convergence of the optimal coefficient 
estimator is not known. Fortunately the rate of conver- 
gence of simple coefficient estimators can still be found 
even in this case, but their asymptotic mean square estima- 
tion error is not the least possible, even though it can be 
made arbitrarily close. 

In Section I1 we develop the general set-up and solution 
to the problem. In Section I11 we consider in more detail 
the cases of additive observation noise, of nonlinear signal 
distortion plus additive noise, and of quantization noise. 
In particular, we see that while additive noise of compara- 
ble smoothness with the signal does not affect the rates of 
convergence (but does affect the asymptotic constants), 
quantization noise also reduces the convergence rate. 

Throughout the paper we consider in detail the case of 
random processes with no quadratic mean derivative, both 
for simplicity of exposition and because several questions 
still remain unresolved, especially when quadratic deriva- 
tives of order two and higher exist. 

We consider only two kinds of (nonrandom) sampling 
design. They generalize periodic sampling, which includes 
the endpoints a and b,  and periodic sampling which does 
not include the endpoints but is symmetrically spaced in 
the observation interval. Choose a continuous positive 
probability density h on the interval [ a ,  b ] .  Regular sam- 
pling chooses for each n as the n sampling points T,= 
{ tnl; . ., t,,} all ( n  - I ) - '  percentiles of h: 

and we refer to { T, } as a sequence of regular sampling 
designs generatd by the density h. Median sampling choos- 
es for each n as the n sampling points T, = { f n l ;  . ., r,,} 
the medians of a regular sequence of designs: 

2k  - 1  
/""h ( t  ) dt = - k =1 ,2 ; .  ., n ,  

U 2n ' 
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and we refer to { T,} as a sequence of median sampling 
designs generated by the density h.  When h is the uniform 
density, both regular and median sampling become peri- 
odic; the former includes the interval endpoints while the 
latter does not. 

We will use the following notation to simplify the 
text. With T =  (tl; * * ,  t,) an n-point subset of [ a ,  b]  
and with functions f ( t )  defined on [ a , b ]  and R ( s , t )  
defined on [ a ,  b ] x [ a ,  b] ,  we will write f ;  for the n- 
vector ( f ( t l ) ;  . ., f ( t n ) )  and R ,  for the n X n matrix 
{ R(t , ,  t,)}:,,=l. We also frequently delete the range of 
integration as well as the argument, writing, e.g., JlRff for 
l,hl,bR(S, t ) f ( s ) f ( t >  dsdt. 

11. GENERAL CASE 

We consider the problem of estimating the weighted 
integral of a random process X = { X (  t ) ,  a I t I b } : 

I =  y X ( t )  f ( t )  dt 
a 

from “noisy” observations of the random process Y =  
{ Y ( t ) , a i t i b }  at n sample points T =  { t k } i = l .  The 
processes X and Y are assumed to have continuous corre- 
lation functions Rx(s ,  t )  and R,(s, t )  and cross-correla- 
tion function R,,(s, t ) ,  and the weighting function f is 
assumed to be continuous. We restirct attention to linear 
estimates with weights c; = ( c , , ~ ,  

+ ,  c,, ,): 
n 

I , =  1 c , , k Y ( t k )  = c h y T ,  
k = l  

whose mean square approximation error is 

e; = E (  I - Z,)2 = a 2  -2c&g, + c$R, ,~c ,  (1) 

where 

a 2  = E12  = / /R , f f ,  

4 1 )  = S h R X ( t ,  u ) f ( u )  du, 

R ( t )  = / k X ( f >  u ) f ( u )  du, ( g =  RYXf 1. (2 )  

(s = R x f  ), 
U 

If the observation process Y could be observed over the 
entire interval [ a ,  b] ,  then the minimum mean square ap- 
proximation error €2 would be achieved by the projection 
f of I onto the linear span of Y ,  which is determined by 

E [ I Y ( t ) ]  = E [ j Y ( t ) ]  

for all a I t 5 b, or equivalently by 

= (RYXf ) ( t >  = E [ f y w l .  

€2 = E I ~  - ~i~ = a 2  - \ ~ g l l & ~ , , ) .  

It follows that g belongs to the reproducing kernel Hilbert 
space (RKHS) 9 ( R , )  of Y and 

(3) 

Of course when noiseless observtions are available, Le., 
when Y ( t )  = X ( t ) ,  then g = s and e &  = 0. In the general 
case we always have c: 2 0. 

Our goal is to choose the sampling points T and the 
estimator weights c, in such a way that the resulting mean 
square estimation error e; should be as close to EL as 
possible. 

Optimal Coefficients 

For a fixed sample T, the optimal coefficients c^T are 
those which minimize the mean square approximation 
error e ;  of (l), or equivalently those which make c;Y, the 
projection of I onto the linear span of Y,. They are given 
by c^$ = g+R,’,, and thus the optimal estimator and its 
mean square approximation error are 

i, = g$R,,lTY, 

c 2  = a 2 - g  ; R-‘ Y,&T = a 2  - llpTgll&R,) (4) 

where P,g is the projection of g to the subspace of 
a ( R Y )  generated by { RY( . ,  t ) ,  t E T } .  

The optimal sampling design of size n (if it exists) thus 
maximizes / ~ P , g \ ~ $ ~ R , ~  over all sampling designs An of size 
n: T =  { a  s t ,  < t ,  < . < t ,  I b } .  The performance of 
the optimal designs tends to 6: as the sample size tends to 
infinity, since 

Optimal sampling designs may not exist, and even when 
they exist, it may be dificult to determine them. 

We now consider regular sequences { T, } 9f sampling 
des@ T, generated by a density h ,  and write Ir,n and c r , w  
for ITn and ern. As the sampling size n increases, they 
satisfy 

€ 2  r .  n =a’-  I IpTng l I i (R , )  $- llg - PT,,gl\&(Ry) f €2. 
Precise rates of convergence follow from the work of Sacks 
and Ylvisaker [9], [lo], [ll] where the observation process 
Y has exactly k quadratic mean derivatives, under the 
additional asusmption that the function g of (2), which is 
in the RKHS of R y ,  actually belongs to the smaller space 
r ( R y ) ,  the range of the integral type operator with kernel 
R y ,  Le., 

g ( 4  = p Y ( G  .)$(.> du, ( g  = R Y d >  ( 5 )  
U 

with $ a continuous function. Specifically, under certain 
regularity conditions, 

where a ,, is the jump along the diagonal of the derivative 
of the ( k ,  k )  partial derivtive of R,, a,, k ( t )  = R$ k + l ( f ,  t 
- 0 )  - Rk; + ’( t ,  t + 0) > 0 (superscripts denoting partial 
derivatives). The regularity conditions are specified in [ll] 
and need not be repeated here. It should be noted, how- 
ever, that for k 2 2 this result has not been established for 
as broad a class of covariances R ,  as when k = 0,l  (cf. [2, 
Section 6.11). By choosing the density h * ( t )  which mini- 
mizes the right-hand side of (6), i.e., proportional to 
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[ “ y , k ( t ) + 2 ( t ) ] ” ( 2 k + 3 ) ,  we obtain a regular sequence { Tn* } 
of sampling designs which is asymptotically optimal. That 

d) the minimum mean square error linear estimate i of 
I based on { Y ( t ) ,  a I t I b }  is of the form (with 

is, it satisfies + E L , )  

and 

The regularity conditions are satisfied by stationary 
processes with rational spectral densities, the stationary 
process with triangular covariance, the Wiener process, 
etc., and in all these cases the jumps ak( t )  of the covari- 
ance derivative are constant. The value of the constant is 
C,  = IBZk+,1/(2k + 2)! where Bm is the mth Bernoulli 
coefficient, and C, = 1/12,  C, = 1/720 (see the discussion 
in [2 ,  p. 3511). 

For simplicity we will consider from now on examples 
with no quadratic mean derivative, i.e., k = 0, such as the 
stationary Gauss-Markov process, the stationary process 
with triangular covariance, or the Wiener process, in which 
case we have 

i= Y ( t ) + ( t ) d t .  

In this case the expression of the asymptotic mean 
square error (3) can be written as follows: 

Lb 

Simple Coefficients 

Here we consider the very simple choice of (nonoptimal) 
coefficients of the following form: for each sample of size 
n ,  T, = { t n k } i , l ,  we take 

for some continuous function c ( t ) .  Thus the coefficient 
cTn,k of Y ( t n k )  depends only on the sample point tnk via 
an appropriate function c, unlike the optimal coefficients 
which depend on the entire sample T,. 

For a sequence of median sampling designs { T, } gener- 

and by [4, Lemma 21, 

The Wiener - Hopf Equation (5) 

these precise rates is the existence of a continuous function 

e : , , =  lim 
n + m  

From (2 )  and (5) it follows that a sufficient condition for 
= / / R  x f f  - 2/chg + /p Y (ch >( ch)  

cb such that 

(9) = E (  / X f  - / Y e h i ’ .  (10) 
a 2 t I b,  or R p#~ = R y x f  ( = g). It may be desirable to 
first check the existence of a square integrable solution, 
and then check its continuity. In t h s  connection it is of 
interest to note that a square integrable solution + of the 

A reasonable way of choosing the weighting function 
is by minimizing the limiting value of the mean square 

e ; ,m;  It follows from that e ; , ,  = if and only 
Wiener-HoPf 
square integrable f ,  if (and Only $ )  any Of the 

equation (9) exist for if /Ych = I or equivalently (by d) in the preceding subset- 
tion) if R & = R Y x f  has an L,  solution +, in whch case c 

equivalent conditions are satisfied: is determined by 

Also, any smoothness requirements imposed on c, such as 
continuity (whch has already been assumed) or twice 
continuous differentiability (which will be required shortly) 
would have to be satisfied as well by the L, solution + to 
the Wiener-Hopf integral equation. When R y + =  R y x f  

a> r ( R y x )  = r ( R Y ) ;  c ( t ) h ( t ) = + ( t ) ,  a s t g b .  (11) 
b) IIRy,el12 I CIIR,el12 for all square integrable func- 

tions e and finite constant (where the 
is L2);  

c) for some finite constant C, 

CJhRY( t ,  u ) R y ( s , u )  d u - / b R , ( t , u ) R , x ( s ,  U )  du 
U U does not have a continuous (resp. twice continuously differen- 

is a nonnegative definite function of t ,  s; tiable) or even an L ,  solution +, then one can find a 
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continuous (resp. twice continuously differentiable) c with 
corresponding mean square error e:, ,  exceeding by an 
arbitrarily small amount (and in the latter case no minimiz- 
ing L,  function c exists). This is because random variables 
of the form jYJ,  with J ,  continuous (resp. twice continu- 
ously differentiable) form a dense set in the linear space of 
Y ,  so that gven any S > 0 we can find a continuous (re:p. 
twice continuously differentiable) J ,  such that E(Z - 
/ Y I ) ) ~  5 S 2  and choosing ch = J ,  we have 

- <€,+S. 
We are thus led to consider the following two cases. 
Case 1:  R y +  = R,,f has a twice continuously differen- 

tiable L,  solution +. Then c is chosen by (11) and 

To see this, we write 

Assuming as in Case 1 that Y has no quadratic mean 
derivative ( k  = 0), that c and f / h  are twice continuously 
differentiable, that R , satisfies the same regularity condi- 
tions required for (7), and that R,, satisfies similar regu- 
larity conditions, we show in Appendix I that 

n 2 (  - e : , , )  

where 

P,,(t)  = [ R ~ ~ ( t - , t ) - R ~ ~ ( t + , t ) ]  

- [ R'$i( t ,  c - ) - R'$i( t ,  t + )] , 
A y ( f )  = h - l ( b ) [ c ' ( b ) R y ( b , t ) + c ( b ) R ' ; o ( b ,  t ) ]  

- h - ' ( a ) [ c ' ( a ) R , ( a ,  t ) +  c (a )R$O(a ,  t ) ] ,  

and A, ,  likewise with R ,  replaced by R,. It should be 
noticed that f i y X ( t )  = 0 when X and Y are jointly sta- 
tionary, as well as when R y x ( f ,  s) is a symmetric function 
of t and s; the latter is the case when Y = X ,  or Y = X + 

Assuming that the observation process y has no quadratic independent noise (see Section lll-A), Or even when is a 
zero-memory nonlinear transformation of X (see Section 
111-C) possibly plus independent noise (see Section 111-B). 

As has been pointed out in the paragraph following (lo), 
in this case the estimator weights c ( t )  should be chosen in 

mean derivatives ( k  = 0), that R , satisfies the same regu- 
larity conditions required for (7), and that + / h  is twice 
continuously differentiable, we obtain from [4, p. 941, 

Thus choosing h * ( t )  proportional to [ a y , o ( t ) + 2 ( t ) ] 1 / 3 ,  we 
obtain a sequence of median sampling designs { Tn* } whose 
corresponding estimators { Zm*, } are asymptotically opti- 
mal. Comparing the asymptotically optimal sequence of 
estimators using median sampling and nonoptimal coeffi- 
cients with the asymptotically optimal sequence of estima- 
tors using regular sampling and optimal coefficients, we 
see that in both cases the design is determined by the same 
density h*(t), while the estimator coefficients require solv- 
ing an integral equation in the former case and inverting 
an n X n matrix in the latter. 

Case 2: R y +  = R,,f has no twice continuously dif- 
ferentiable solution G. In this case, 

with strict inequality for all choices of twice continuously 
differentiable c. Thus the asymptotic performance is al- 
ways inferior to that achieved by using optimal coeffi- 
cients. It turns out, however, that the rate of convergence 
of can be found, whle under the present conditions 
no rates are generally known for optimal coefficient esti- 
mators. 

such a way that the resulting asymptotic mean square error 
of (10) would be close to its minimum value €2. This 

is the primary consideration in choosing c, and any further 
considerations such as those resulting from the form of the 
asymptotic constant in (15) are only of secondary impor- 
tance. Since the asymptotic constant in (15) is not neces- 
sarily positive, some choices of c may produce a negative 
value indicating that for sufficiently large n the perfor- 
mance would be at least as good as e:,,, whose value 
would perhaps be appreciably larger than its minimum. 
Also, judicious choices of c may exist which render the 
asymptotic constant in (15) equal to zero, indicating a 
faster rate of convergence which is not currently known. 
However, the dependence of A,, A,, on the boundary 
values of c and c' complicates the question of existence of 
such c's, and more significantly, even though one can 
derive the general form of such choices of c,  it does not 
seem feasible to determine how close the resulting asymp- 
totic mean square error e:, ,  can be to its minimum c k .  
We therefore do not pursue this matter any further. Inci- 
dentally, the estimator weight which minimizes the 
asymptotic constant in (15) is given by 

for a < t < b ,  with appropriately determined values of 
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c( a ) ,  c( b),  e’( a ) ,  e’( b )  via a system of four linear equations 
resulting from the dependence of A,, A yx on these, and 
with corresponding minimum value of the asymptotic con- 
stant in (15), 

Recall that in the noiseless case Y = X ,  we have C+ = f 
and the appropriate choice of c is, by (l l) ,  ch = f. It is 
therefore of interest to determine the best constant multi- 
ple of f as a possible value of ch. Thus putting 

c ( t ) h ( t )  = h f ( t ) ,  a 5 t 5 b ,  (16) 
in the expression (10) of we find that the value of h 
which minimizes the asymptotic mean square error e:, , is 

l j R Y f f  ’ 

with resulting estimator in tlus case of no quadratic mean 
derivative 

minimum asymptotic mean square error value 

J J  

and asymptotics 

The estimator (18) has the advantages of being generally 
applicable and fairly nonparametric, in that it depends on 
the correlation functions only via the integrals in (17). In 
sharp contrast, the estimator (12) requires the solution of 
the integral equation and thus fairly detailed knowledge of 
the correlation functions, and so does of course the opti- 
mal coefficient estimator. The estimator (18) is therefore 
more robust with respect to inaccuracies in our knowledge 
of the required correlation functions than are the other two 
estimators. It can be used for its simplicity and robustness, 
instead of the estimator (12), even when the integral equa- 
tion has a twice continuously differentiable solution, i.e., 
in Case 1, and in this case one would want to know how 
much performance is lost asymptotically because the limit- 
ing mean square error of (19) exceeds E : .  One would 
want to compute 

Observation Process with Rational Spectral Density 

When the observation process Y is stationary and has 
rational spectral density, the integral equation (5) or (9) 
has a solution which contains delta functions and their 
derivatives at the endpoints of the observation interval [8, 
Ch. 111, Sect. 71. In particular, when Y has no quadratic 
mean derivatives ( k  = 0), then the solution contains only 
delta functions so that 

g ( t )  =/ R Y ( t  - u ) G 0 ( u ) d u +  ARy(t  - a ) +  BR,(t - b )  

where (Po is a contonuous function [8]. In this case Sacks 
and Ylvisaker [9] show that their asymptotic result is still 
valid with $I, playing the role of (p: 

h 

a 

It is also straightforward to check that if we adjust the 
simple coefficient estimator using median sampling de- 
signs { T,} by adjoining the endpoints with appropriate 
weights, and if we choose c ( t )  from c ( t ) h ( t )  = Go( t ) :  

(22) 
(n 2 21, its mean square error e:, ,  = E ( Z  - ?,,,,)2 satisfies 

It converges to E:  (rather than to the larger e:, ,)  and 
with the same rate as E:, , ,  provided Go/h  is twice continu- 
ously differentiable. Thus, in this case the modified simple 
coefficient estimator using median sampling is asymptoti- 
cally optimal. 

We should note that, whle the assumption of rational 
spectral density is frequently reasonable, such as when the 
observation is signal plus noise, there are important cases 
where it is unlikely to be satisfied. Some are considered in 
Parts B and C of Section 111. 

111. SPECIAL CASES AND EXAMPLES 

In this section we consider several special cases of noisy 
observations of interest. 

A .  Independent Signal Plus Noise 

Suppose that Y ( t )  = X ( t ) +  N ( t ) ,  a 5 t 5 6, where the 
noise process N is independent of the signal X and has 
zeromean.InthiscaseR,=Rxand R , = R x + R N .  We 
consider in more detail the following two special cases. 

Gauss -Markov Signal and Noise: Suppose we desire to 
estimate the average of a Gauss-Markov signal over the 
unit interval, when observed in additive independent 
Gauss-Markov noise, i.e., 

R A T )  =.:exP[-a.1~11, 

f ( t )  =1,  O I t  5 1 .  
RN(7) =‘iexp[-aN171], 
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In this case, 

0 I t 11. When a, # u N  the integral equation (5) has a 
solution + containing delta functions 

where 
+ ( t )  = + o ( t ) + M ( 6 ( t ) + 6 ( t - l ) }  (24) 

& ( t )  = Ml + M2{exp[ - a t ]  +exp[ - a(1- t ) ] }  (25) 
and the values of the constants M ,  M I ,  M2,  and a > 0 are 
given in Appendix 11. 

The optimal mean square estimation error is computed 
from (3), €2 = u2 - ~ ~ g ~ ~ & R y ~ ,  where 

u z = / l / l R , ( f  - u ) d t d u  
0 0  

and ~ ~ g ~ ~ & ~ y ~  = jdg(t)+(t) dt is easily calculated. 
This optimal error 6; is the limiting (large sample size) 

value of the mean square estimation error when using 
optimal coefficients and regular sampling, cf. (21), or the 
adjusted simple coefficient estimator of (22) and median 
sampling, cf. (23). When using median sampling with the 
simple coefficient estimator (18) with the optimal constant 
h of (17), the limiting value of the mean square estimation 
error of (19) is given in this case by 

r i r i  
, 

e:.m = n 
' X  + ' N  

and the optimal scaling constant by X = r i / ( r $  + r i ) .  
Asymptotically, the loss of performance by using the 
estimator (18) versus the adjusted simple coefficient esti- 
mator (22) can be measured by the ratio 100(ei,, - 
cL)/c;, which is plotted in Fig. 1 for a range of parameter 
values. It is surprising that over a very large range of 
parameter values t h s  ratio does not exceed nine percent. 
This means there is only a moderate loss of performance 
asymptotically when the simple coefficient median sam- 
pling scheme is not adjusted by including the interval 
endpoints with appropriate weights. Only as uN/ux ap- 
proaches zero does the loss of performance become large, 
indicating a substantially improved performance of the 
adjusted scheme. 

0.01 0.1 1.0 10.0 

In Fig. 2 we show how the asymptotic mean square error 
decreases with increasing sample size n in the following 
cases by plotting the corresponding asymptotic expression 
of the mean square error. 

0 ,  I I I 1 

"I 1 I I I 

-10 

(c) 
Fig. 2. Plot of asymptotic mean square error (in dB) versus number of 

samples n (n: 2)-21). -. -. no noise case, - noise present simple 
coefficients, ~ noise present optimal coefficients, - - - noise present 
nonadjusted simple coefficients. (a) u i  = a, =1, u,?, = 0.1, u N  = 2. 
(b) o i = u i = a x = l ,  a,=lO.(c) u i = u i = u , = l ,  u N = 2 .  

B.01 u 0.1 I .O 10.0 

(a) (b) 

Fig. 1. Plot of 100(e:,,, - c&) /c& versus u N .  (a) u$ = u i  = a ,  =1, u N :  0.01-10. (b) u$ = u x  =1, u$ = l o ,  a N :  0.01-10 



BUCKLEW AND CAMBANIS: ESTIMATING RANDOM INTEGRALS FROM NOISY OBSERVATIONS 117 

a) No noise, uniform sampling, optimal or simple coeffi- 
cien t estimator: 

lOlog,, { ( ~ , / 6 ) n - ~ }  (with dash-dot line). (26) 

b) Noise present, uniform sampling, optimal or adjusted 
simple coefficient estimator (cf. (21) and (23)): 

(with solid line). (27) 

c) Noise present, optimal estimator with optimal regular 
sampling, or simpler coefficient estimator with opti- 
mal median sampling (cf. (21) and (23) with optimal 
h* proportional to 

(with solid line). 

d) Noise present, uniform sampling, nonadjusted simple 
coefficient estimator (cf. (20)): 

lOlog,, { + C n - 2 }  (with dotted line) 

where 

x 
6 c = - { A (  a, + a N )  - (1 - A)a i ( l -  e-=" ) 

As it turns out, the constant term M I  of Go is much 
larger than the M2 term for the values of the parameters 
we plotted. Hence (Po is nearly always flat and the optimal 
sampling density h* in (c )  is nearly uniform, i.e., ( /  1 + 0 1 2 / 3 ) 3  
nearly equals /+;, and in our plots cases b) and c) were 
apparently identical. Note also that the expressions we 
plotted in Fig. 2 for n = 2 to 21 are asymptotic values valid 
only for large n. 

In Fig. 3 we also plot one of the asymptotic curves-the 
(b) curve given by (27)-to compare the actual with the 
also indicate the level of the asymptotic mean square error 
€2 = .3173 or -4.985 dB, which is the mean square error 
of the optimal continuous-time estimator. The portion of 
the mean square error over the level corresponding to c i  
represents the mean square error due to sampling and thus 
the degradation of performance (due to sampling) over the 
performance of the optimal continuous-time estimator. If 
this performance degradation should not exceed 5 percent, 
then n = 5 samples suffice for all sampling schemes, and 
n = 6 samples suffice for 2.5 percent, and n = 12 samples 
suffice for 1 percent performance degradation. 

In Fig. 3 we also plot one of the asymptotic curves-the 
(b) curve given by (27)-to compare the actual with the 
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Fig. 3. Plots of mean square error (in dB) for the following schemes. @) 
Uniform sampling, optimal coefficients. @ Uniform sampling, ad- 
justed simple coefficients. @) Optimal regular sampling, optimal coef- 
ficients. @) Optimal median sampling, adjusted simple coefficients. @ 
Uniform sampling, simple coefficients. @ Asymptotic expression for 
uniform sampling optimal coefficients or uniform sampling adjusted 
simple coefficients. 

asymptotic values. It is seen that the mean square error 
due to sampling reaches its asymptotic performance very 
slowly. For instance, for uniform sampling with optimal 
coefficients, the mean square error due to sampling at 
n = 5 is about 2 times its asymptotic value and at n = 8 is 
about 2.44 times its asymptotic value! Even though the 
mean square error due to sampling reaches its asymptotic 
performance very slowly, because it is only a small fraction 
of the overall mean square error, the asymptotic values of 
the overall mean square error plotted in Fig. 2 are very 
close to the actual values for n 2 5. 

It is of interest to know how many samples are required 
asymptotically to attain a given performance, say for error 
(1 + /3)ck.  When no noise is present and uniform sampling 
is used with optimal or simpler coefficient estimator, ex- 
pression (26) gives 

a, 

n i N , U =  6(1+ b)ci 
With noise present and uniform sampling with optimal or 
adjusted simpler coefficient estimator, expression (27) gives 

a , + a ,  
n ; , U  = - /+;. 

6/3€2 
The ratio 

summarizes the effect of noise upon the necessary sam- 
pling rate. We have plotted this ratio in Fig. 4 for some 
representative values of the parameters. Again, as a N / a x  
approaches zero, the effect of noise becomes much more 
marked. 
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(4 

(b) 
Fig. 4. Plot of sampling ratio n N , O / n N N , U  versus u N .  (a) u: = u x  = 1, 

u;=10, B=.OS,  aN: 0.01-100. (b) u :=u~=u,=l ,  B=O.OS, u N :  
0.01-100 

Proportional Signal and Noise Correlations: We now 
consider the case where R ,  = y R ,  for some positive con- 
stant y. In this case R ,  = (1 + y ) R x  and g = s = R,f = (1 
+ y ) - l R r f  so that the integral equation always has a 
continuous solution q~ = (1 + y)-y. We also have = (1 
+ y ) a x , o  and 

so that 

and similarly for e;, R, provided f / h  is twice continuously 
differentiable. The asymptotically optimal sampling den- 
sity h* is proportional to f 2)1/3 and is therefore 
independent of the noise (ie., of y). For large sample size 
n,  both c:,“ and c:,~ are approximately equal to 

-(yu2+;). 1 

l + Y  
As in the previous case it is of interest to know how 

many samples are needed asymptotically to achieve a 
certain mean square error 2: y(1+ y)-’u2 < c 2  < u2. It 
follows from the asymptotic expression (28) of the mean 
square error that 

and with no noise present, 

A 2  
n 2 ( 0 )  = 7. 

The ratio 

increases with y from 1 to infinity as y approaches c2/(u2 
- c2). The first-order (linear) approximations in y are for 
the weak noise case, Le., y - 0, 

and for the comparable noise and signal case, i.e., y - 1, 

y - 1  U 2 - - E 2  -- 

B. Nonlinear Distortion Plus Noise 

Suppose that the signal X ( t )  has suffered some nonlin- 
ear distortion, in addition to being corrupted by noise, i.e., 
that the observation process Y ( t )  is of the form 

Y( t ) = A ( x( t )) + N (  t ) 
where X ( t )  is stationary and Gaussian with mean zero, 
A( e )  is a memoryless nonlinearity such that EA2( X(0))  < 
00, and N ( t )  is an independent, zero-mean, wide sense 
stationary noise. Then Y ( t )  is wide sense stationary and, 
assuming for simplicity that R x(0)  = 1, we can write 

where uk = E [ A ( X ( t ) ) H , ( X ( t ) ) ]  and {Hk(x)}k are the 
Hermite polynomials. Also, by the cross-covariance prop- 
erty, we have 

R Y X ( 4  = d R x ( 7 )  

where d = E [ A ( X ( t ) ) X ( t ) ]  (see [ l ] ) .  Therefore g = R Y X f  
= dRxf = ds and = u2 - d211sll$(,y,. 

It should be noted that if A is an even function, then 
d = 0 and R ,  = 0; Le., the observation process Y is 
orthogonal to the signal process X,  and thus no linear 
estimate based on Y is better than zero as an estimate of 
the integral of X .  We therefore assume throughout that A 
is such that d # 0 (e.g., an odd function). 

When optimal estimator coefficients and regular sam- 
pling are used, the asymptotics are determined by (7) with 
rate of convergence l / n 2 ,  provided the integral equation 
R y +  = d R x f  has a continuous solution +, and R y ( r )  has 
the needed differentiability properties, i.e., a finite positive 
jump - ( Y ~ , ~  in its derivative at zero. When the simple 
estimator coefficients and median sampling are used, then 
the rate of convergence is l /n2 ,  provided R y ( 7 )  has the 
needed differentiability properties, and the precise asymp- 
totics are determined by (13) when the integral equation 
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R ,+ = dR f has a twice continuously differentiable solu- 
tion + and the estimator (12) is used, and by (20) when the 
estimator (18) is used. 

Smooth Limiters: As an example, let us consider the 
so-called smooth limiters 

* r, 

A , ( x )  = - dz 

for whch 
2K 

d =  /- 
Ry(T)  = - s i n ~ l ~ - - - ) + R , ( T ) .  2 K 2  R A T )  

P 1 + u 2  

It is easily seen that if R, and R, have the needed 
differentiability properties to define ax,o and aN,o then so 
does R,, provided u > 0, and in fact 

&Y,O = 
2K 2%.o 

n / q z g  + f f N , o .  

Also = da,:,. Thus, provided u >  0, the rates of 
convergence remain l / n 2 ,  as in the absence of nonlinear 
distortion.Hurd Limiter: The case of a hard limiter 

A(x)  = Ksgn(x)  = A O ( x )  

requires special attention since, assuming R, and R, 
have the needed differentiability properties to define 
and ( Y ~ , ~ ,  it follows that aY,o = + 00 indicating a rate of 
convergence slower than l / n 2 .  This is because 

2K2 
R y ( ~ )  =-sin-’(Rx(7))+ RN(7)  

implies R$(O-) = + 00, R$(O+) = - co. While the first 
derivatives of R, at O +  are not finite, we notice that the 
“one-half derivatives” are. Indeed, we have 

77 

2 K 2  [l- R$( r)]1/2 
-- - lim 

7T 7 f 0  

2 K 2  2R’,(O-) 
-- - 

{ 2R’,(O-)}’/2 

1/2 
2 K 2  

= - {2R’,(O-)} 
P 

2 K 2  
- -&2 

X,O’ - 
7T 

Similarly, 

and thus, 

The expression (14) for the mean square error when the 
simpler coefficients are used becomes, in t h s  case, 

(1st term) - 2d(2nd term). (29) 
For the second term we have as in (15) (cf. Eq. (54)), 
n2(2nd term) 4 finite constant, provided c and f / h  are 
twice continuously differentiable. The rate of convergence 
of the first term can be found in a similar way. Instead of 
using, say for T > 0, RY(  T )  = R ,(O) + TR$(O + ) + o( T), we 
now use R y ( r )  = R,(0)+fiRff/2)(0+)+ o ( 6 )  (and sim- 
ilarly for T < 0). It is shown in Appendix 111 that, provided 
c and h are twice continuously differentiable, and R,, R, 
have finite one-sided second derivatives at 0, we have 

where 

and ((3/2) = Cr=)= lk -3 /2  = 2.612 is kemann’s zeta func- 
tion evaluated at 3/2. The first term in (29) is thus the 
dominant one, and in this case of signal and noise with no 
quadratic mean derivative we have 

Hard limiting thus reduces the rate of convergence by a 
one-half power to l / n 3 l 2  from the rate of l / n 2  of soft 
limiting or no nonlinear distortion. If ch is chosen propor- 
tional to f, then the sampling density h* which minimizes 
the asymptotic constant is proportional to lfI4I5. 

C. Quantization 

In applications one frequently has access only to quan- 
tized data. Here we assume that our observation process is 

Y ( t >  = Q ( x ( t > )  A Q x ( t >  
where Q is an L-level quantizer with Q ( x )  = y ,  when 
x i  < x I x i + ,  where - 00 = x1 < y, < x, < y, < . . . < x L  
< y L  < xL+l = +00  and xi = ( y I  + yi-,)/2 for I = 

2,. . . , L. The process X( t ) is stationary and Gaussian with 
mean zero and variance one. (More generally, X ( t )  can be 
taken to be any wide sense stationary process whose 
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bivariate densities have a diagonal expansion, so that the 
cross- covariance property holds-see [ l ] . )  

Optimal C o e f f i c i e n t s :  We first consider the case where 
the optimal coefficients estimate based on the quantized 
samples is used: 

'Q ,  T = ' h ,  T Q x T  g b ,  T R  pi. TQxT 

where gQ = R Q x + x f  = d Q R , f  = de!, g = R x f ,  d - 
E [ QX( t ) X (  t ) ] .  Denoting as usual by IT the op$mal coeffi- 
cients estimate based on the samples XT: IT = ?&XT = 

gkR,,',X,, we can write the mean square error as 

c;, T = E (  1 - 1Q, T I2  

Q T  

= E ( I - j T ) ' +  E (  i T  - iQ, T)' 

+ 2 E  [ (1 - f T ) (  a?, - ? Q , T ) ] .  

The third term vanishes as E [ ( ]  - f T ) f T ]  = 0, since f T  is 
the projection of I onto the linear span of XT,  and, by the 
cross-covariance property, 

E [ (I- f T ) j Q , 7 ' ]  = E [ ( J X f  - C^$xT)  ' & T Q x T ]  

Thus the mean square error decomposes into two compo- 
nents: 

A 2  
c ; , T =  ' ( I -  I ~ )  + .(iT - j Q , T ) 2  2 E+ + 

The first term is due to sampling and has been discussed in 
Section II; its expression is c $  = o 2  - IIPTgll&(R,). The 
second term is due to quantization of the samples used to 
estimate the integral, and is given by 

.A,T = E (  g g R i ' T X T  - d Q g ; R p i , T Q x T ) 2  

= g k R k t T g T  - d & g k R i k , T g T  

= ~ ~ P T g ~ ~ $ ( R x )  - dz l lPTg l l$ (Rp , )  

where the cross-covariance property has been used. Thus 
when using a regular sequence { T,} of sampling designs 
we have 

c & r , n = 0 2  - d ~ ~ I P T n g ~ ~ ~ ( R , , )  O 2  - d&l\g / l&R, , )  

(That g E %'(RQx)  follows from dQg = gQ E %'(RQx),  cf. 

statement preceding Eq. (3).) It follows that 

c & r , n  - c i , m  = d&IIg - PTgIIi(RQx)'  

and the conjecture here is that, as in the case of hard 
limiter, its rate of convergence to zero is n P 3 l 2 ,  when X 
has no quadratic mean derivative (k = 0) and the deriva- 
tive of R ,  has positive jump ax,o at the origin, and where 
RQx+ = R , f  has a continuous solution + (but no proof is 
currently available). 

Simple C o e f f i c i e n t s :  Next we consider the case where the 
simple coefficients are used along with a sequence of 
median sampling designs generated by the sampling den- 
sity h,. The resulting estimate is 

by [4, Lemma 21, The asymptotic error e:, ,  is minimized 
for some c, h ,  if and only if the projection of 1 = / X f  onto 
the span of Q X  is of the form / Q X .  C/I for some + E L,  (in 
which case then ch, = +), or equivalently if and only if 
there is an L,  solution + to the integral equation d,. R f 
= R p x + .  From (31) it is clear that as L + 00, e;= , ,  -+ 

E [  j X (  f - c h , ) I 2 .  Thus, asymptotically for large number L 
of levels of quantization, the best choice for c and h ,  is 

c ( t ) h , ( t ) =  f ( t ) ,  a i t i b .  (32) 

Throughout the rest of this subsection we assume this to 
be the case, so that 

~ ; , c c  = E [ /( X -  e x , / ] ,  = / / R x - ~ x f f .  

Under this assumption the mean square error is again, at 
least asymptotically as the number of samples n tends to 
infinity, the sum of a mean square error due only to 
sampling and of one due to the quantization of the sam- 
ples. Indeed, with 

we obtain 
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By the cross-covariance property, 

= 0,  

by (32). Thus the cross term in (33) tends to 0 with n .  
We now study the rate of convergence of ek,Q,n to e;,.. 

as n -+ 00, assuming that R ,  has finite one-sided denva- 
tives at 0 required for the definition of As in Section 
111-B, we have 

2 -  
e m . Q , n  '6 .m 

(1st term)-2dQ(2nd term). (34) 

Assuming that f ,  h, f/h are twice continuously differen- 
tiable, we have for the second term, as in (15) (cf. Eq. 
(54)h 

1 
n (2nd term) -+ - JA xf. (35) 24 

It is shown in Appendix IV that 

where 

and that as r -+ 0, 
1 

I r 1 3 / 2 R $ X ( 7 )  + iaQX,l/2. (37) 

This case generalizes the hard limiter case considered in 
Section 111-B. In fact, an inspection of the proof of (30) in 
Appendix I11 shows that the relationship between X and Y 
affects the asymptotics described by (30) only via ay,1/2 
and (57b), which is identical with (37) above. It then 
follows from Appendix 111, or (30), that provided R, has 
finite one-sided second derivatives at 0, we have 

(38) 
f '  

n3/2(ist term) + yaQx,,/,J- h 

with y given in (30b). We thus have 

Quantization therefore reduces the rate of convergence by 
a one-half power to nP3/ ' ,  independently of the number of 
quantization levels; and the optimal sampling density h:, 
which minimizes the right-hand side, is proportional to 

To study the interplay between the number L of quanti- 
zation levels of the quantizer Q L  and the number n of 
samples used, asymptotically as L and n tend to infinity 
we keep both terms in (34). From (34), (35), and (38) we 
have for large n ,  

If 1415. 

Suppose that a "regular" sequence of quantizers {eL}  
based on a continuous density h Q  is used, i.e., the levels 
yt,l < yL,2 < . . . < yL ,  of quantizer Q L  are, respectively, 
the 1/(2L), 3/(2L),. . -,(2L - 1)/(2L) quantiles of hQ.  
With p (x )  denoting the standard normal density of X ( t ) ,  
choosing h proportional to [ p (x )]i/3, i.e., 

h2;(x) = ( 6 ~ ) - ~ / ~ e x p ( - x ~ / 6 ) ,  - 0 0 < x < 0 0 ,  

we obtain an asymptotically optimal sequence of quan- 
tizers. As in [3], with 

for some yL,/-l < zL,/ < yL , [ ,  we obtain (assuming ph i '  is 
Riemann integrable over ( - 00, m)), 

When h$ is used the asymptotic constant becomes 

Thus for large L,  

The precise rate of convergence to zero of seems 
harder to determine. However, we have the following 
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bound, assuming /phi '  < w: 

h 

Again, when h $  is used we have 

Thus for large L,  

APPENDIX I 
PROOF OF (15) 

Here we find the rate of convergence and the corresponding 
asymptotic constants of the two terms on the right-hand side of 
(14). These results correct (and in fact the second also extends) 
the statements in [4] displayed between Eqs. (3.36) and (3.37); the 
final result in (4, Eq. (3.37)] remains correct. For simplicity of 
exposition throughout the following we do not display the terms 
of higher order and we use 1 to indicate equality up to higher 
order terms. 

Sampling Points and Subdivision Points 

The sampling points t , , , ,  are determined by /:..Ah = (k - 
1/2)/n, k = 1,. . . , n .  Introduce the interval subdivision points 
s , , + , . ~  by/:n+'.kh=(k-l)/n, k = l ; . . , n + l ,  sothat each t n , k  
is the median of ( s , ~ + ~ , , , s , ~ + ~ , ~ + ~ )  with respect to h .  For nota- 
tional simplicity we drop the subscript n from tn ,  and n + l 
from s,, + 1, k ' 

By the mean value theorem, 

n-co ,  Also del.= E [ X ( t ) Q , X ( t ) ]  -+ E [ X 2 ( t ) ] = 1 .  From (40), 
t k - S k  1 h ( W k )  1 

(45) 
(41), and (42) we see that for large L and n,  PEP___ +-  

s h + l - s k  h ( ' k )  

so that asymptotically as n + co, th is the midpoint of (sA+ s k ) .  
We will need the order of magnitude of the difference of the two 
pieces, 

1 P f 2  D k  = ( ' k +  I - r A >  -( tk  - sh 1. 
+ ~n 3 / 2  -[y(2'x'o'r)1'21~l~] Q 

1 1  
n 2  12 

Substituting h ( u )  = h ( t , ) + ( u  - t,)h'(int. pt.) under the integral 
in (44b) and (44c), using the mean value theorem, and subtract- 
ing the resulting expressions, we obtain 

----JAxf 

( 46) C D E  
(43) - _  ~2 +- ~ ~ 3 / 2  + 2' 

The First Term 
The bound (43) can be used to determine the allocation to 
quantization levels L and sample size n to achieve mean 
square error not exceeding a desirable value. Also, the 
more interesting problem of minimizing the total number 
of samples L +  n (or some other function of L and n 
reflecting quantization and sampling costs), subject to 
mean square error not exceeding a desirable value, can be 
solved (numerically- analytic expressions being hard to 
obtain) . 
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We first consider the first term on the right-hand side of (14), 
which can be written as follows with K(u, v )  = c ( u ) R , . ( u ,  v )  
. c( o), a symmetric function: 

1 
1st term A 7 c( i A )  R ~ (  t ,  , t,) c(  t , )  

k . j  

A c 4,,.  
h > /  

The integral over each diagonal square is split into the six 
regions shown in Fig. 5, and by symmetry it suffices to consider 
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t 

1,' I I ! 
I I r 

I 'k t k  'k+l 

Fig. 5 

ony regions 1, 2, and 3. We use the Taylor expansion of the 
integrand: 

K (  t k ,  t k )  - K (  u ?  u )  = K (  f k )  - K (  t k ,  0) 

- ( u  - fk)K'"( x k ,  u )  

= - ( u - t k ) K O " ( f k ,  yk )  

- (u - t , )K"O(x, ,  u )  

where xk is between u and t ,  , and yk is between u and t , .  Over 
each region both u - tk and u - tk have constant sign so the 
mean value theorem is applicable. For region 1 we have 

Over each nondiagonal rectangle k # j ,  K has continuous 
partial derivatives. Thus Taylor expanding K and retaining only 
the lowest degree terms, we obtain 

1 
I k . 1  c -K",4(  t k  9 t , )  

o < p + q 5 2  P ! 4 !  

~ ~ + ' / " " ( ~ - t ~ ) ~ ( v - f , ) ~ h ( u ) h ( u )  k ' J  dudu 

where in fact the term with p = 1 = q is of higher order. Using 
h ( u )  = h ( t k ) + ( u  - t,)h'(int. pt.) and (46) we find 

A ,  qsk+'( u -  f k ) h ( U )  du 
' k  

where s, < rk < s, + 1 ,  and likewise, 

+ K'.O( a ; ,  E ; )  h(  a ; )  h(  b ; )  // -( u - r k )  dudu It then follows (using (44a)) that 

1 1 h ' ( t , )  
+ O" ( t k  ( wk ( - 5) h2(t,) + -K'.O( a; , b;)  h(  a ; )  h (  E ; ) ) (  t ,  - s k y  

6 

1 where the points (a,, b k )  and ( a ; ,  E ; )  belong to 1,. Using (44a) 
and (45) we obtain 2 + - K  2 0  ' ( tk , t , ) -  

h(  a k )  h(  b k )  1 
h 2 ( W k )  2 

+ -KO.'( tk  , t , )  h(  w,) ~ 

.'e k // 1, =e( k f K o " ( a k j b k )  

+ -K1.O(a; ,b; )  1 h ( ' ; ) h ( b ' ) )  1 

; f (  z K O . l ( t , f - ) + - K ' . o ( t + , f )  48 

.'E// ; l b ( & K O . l ( t , t - ) - - K 1 ~ O ( ( f + , t )  1 

. ( ' k  + 1 - ' k  )('I+ 1 - '1) 2 6 h 2 ( W k )  

and thus, by the symmetry of K ,  

1 h ( t ) h ' ( s )  

h 2 ( 4  
I k , J  7 5 // ( K o " ( t ~ s )  

k + J  t z s  

- Ko,2(t,s)*) h ( s )  dtdr 

1 1 

A similar argument gives 

1 K O s 1 (  t ,  s )  =tlb d t h ( t )  ( / f + / b ) d r L [ -  ds 
h ( s )  

= - 12 f [  K ','( f ,  t - ) - KO,'( t ,  t + )] dt 
1 

16 
2 k  

1 b K o T 1 ( t ,  b )  K o 7 ' ( f , a ) ]  

1 
24 

Putting these together and using the symmetry of K ,  we have for 
the diagonal terms, - h ( t )  dt -El( h ( b )  h ( a )  1 

k 
Ik,k ; 6 lb{ KO*'( t ,  t -) - KO3'( t ,  t +)} dt 1 1 

= 6 (47) where A ,  is defined following (15). 

= - - 12 /a , , ,c2 - - 12 P , c h  (50)  1 
t )  c'( t )  dt. 
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Finally, adding (47) and (50) we obtain Likewise, 

1 
A8 

The Second Term - - [ Mo-'(  t ,  t -) - Mo*'(  t ,  t +)]I dt. 
We now consider the second term in (14): 

1 
2nd t e r m d - C C ( t k ) l b R y X ( t , . u ) f ( C ' )  du 

n k  a 

where M (  u,  u )  = c( u ) R Y X (  u ,  u)f( u)/h( u )  is a generally non- 
symmetric function. 

The integral J,, k over each diagonal square is split into the six 
regions 1, to 6,. Over region l k ,  using the Taylor expansion 

and the mean value theorem, we obtain 
M ( t k , U ) - M ( u , ~ ) = - ( u - t k ) M ' " ( X k , ~ ) ,  s k < u < x k  < t k ,  

where sk < b, < ak < t k ,  and thus by (44a) and (45), 

; 48 1 LbM'-'( t + , t )  dt. 

A similar argument gives 
1 

n2C /J + -- 16 l h M 1 ? " (  t + , t )  dt, 

n'C JJ -+ - z / ,~M'*O(  t -, t )  dt, 

k 2, " 
1 

k 4, " 

n'C I/ ; z l b M 1 * O (  1 t - , r) dt. 
5 k  

. -  

Finally, putting all six pieces together, we have for the diagonal 
terms 

1 
- [ Mo.'( t ,  t -) - Mo.'( t ,  t + ) I )  dt. (52) 24 

Over each nondiagonal rectangle k # j ,  M has continuous 
partial derivatives. Thus Taylor expanding M (  t , ,  u )  - M (  u ,  u )  
into 

plus third-order terms, and retaining only the lowest degree terms 
( M1.O and M2.0)  we obtain, using (48) and (49), 

Jk , /  - - - M'*'( t k J  , t ) / ' k + l / ' J + l (  u - t k )  h( u )  h(  u )  dudu 
'k *J 

and thus 

= - 24 1 lb[ M'*O( s - , s) - M'.O( s + , s ) ]  ds 

(53) 
The integrals over regions 3, and 6, are slightly more complex. 
For region 3, we use the Taylor expansion 

where the last equality is obtained integrating by parts as in (50). 
Finally, adding (52) and (53), we find 

n2[2ndterm] + n - ~ b { [ M ' * 0 ( t - , t ) - M 1 3 0 ( t + , t ) ]  24 a 

M (  t k ,  u ,  - M (  u ,  u ,  = M (  t k  9 t k )  +( - fk) 
' [ Mo"( t k  x k )  - Mo"( u ,  xk) ]  1 

= -( u -  tk)M'"( yk 3 t k )  +( u - t k )  

' [  Mo"( t , , x , ) -Mo" (u ,x , ) ]  - [ Mo*'( f ,  t -) - Mo.'( t ,  t +)] } dt 

where tk < x k ,  y,  < u < xk+ ' ,  and applying similarly the mean 
value theorem we obtain 

1 

48 
+ - [ ~ 0 . 1 (  t ,  t +) - @.I( t ,  t - ) I )  dt. where PYX and A,, are defined following (15). 

Now (15) follows from (14), (51), and (54). 
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APPENDIX I1 
EXPRESSIONS FOR THE CONSTANTS IN (24) AND (25) 

Using the method of solving the integral equation ( 5 )  described 
in [8, Ch. 111, Sect. 71 we find 

.;a, + a i a ,  . .  a L = a  a 
Na ia ,+u ia , ’  

o;a,uia,( u: + a i ) (  a: - a $ )  

(a:., + ( r iaN) (  

u;u;(u,  - a , ) a ( ~ - e - ~ )  
(.:a, + oia,) s 

M,  = + (ria,) s ’ 

M =  

where S = a ( 1 -  e-.)(u:a, + ai.,) + (1  + e-a)a,a,(ai + 
4 >. 

APPENDIX I11 
PROOF OF (30) 

With the notation introduced in Appendix I we have (writing 
R for R,) 

1 
1st term = - c( t k )  R ( t k  - t, ) c( t, ) 

n2 k , J  

- R(  u - u )  ch( u )  ch( u )  dudu 
U 

= / s k + ’ / s J + l [  R (  t ,  - t , )c( t , )c( t , )  
k , J  ’ k  ‘J 

- R (  u - u ) c (  U ) C (  u ) ]  h(  u ) h ( u )  dudu 

k7J  

We first concentrate on the diagonal terms I k , ,  and split each 
x (s, , sk + 1 )  into its upper and lower triangles. 

‘ k . 1 .  ( 5 5 )  

square ( sk , sk + 

Then 

/I [ R(0)  c2( t k )  - R(  u - u )  c( u )  c( u ) ]  h (  u )  h (  u )  dudu 
lower 

triangle 

= // [R(o>{  C 2 ( t k ) - C ( U ) C ( u ) }  
lower 

triangle 

- R“/~’(O+)Ju-Uc( u )  c( u )  + o ( 6 )  c (  u )  c( u ) ]  

. h ( u ) h ( u ) dU du 

- - - R‘1/2’ ( O + )  // =ch( u )  ch( u )  dudu 
lower 

triangle 

= - R ‘ ” ” ( o + ) C h ( U , ) C h ( U , )  // \ l u d U d U  
lower 

triangle 

4 
15 

= - -R(1’2)(o+) ch( uk)  ch ( u k ) (  + 1 - sk)”’ 

for some (u, ,  u k )  in the lower triangle, where = indicates 
equality up to higher order terms. Similarly, the integral over the 
upper triangle has main term 

4 
ch ( dl ( b k )  ( sk + 1 - s k )  

- R(1/2) (0  - ) 
1 <  

for some ( a , ,  h,) in the upper triangle. Using (44a) we then 
obtain 

For the nondiagonal terms k # j ,  Taylor-expanding R and c 
we obtain, writing ck for c( t , ) ,  c; for c’(t,), etc., 

- R’(t, - r , ) ( c k c J (  -: - +) 
+ .icJ( 2 - A , A , )  + C,c;( A , A J  - :)} 

+ higher order terms 
where A , ,  Bk are given in (48), (49). All terms except for those 
retained below have rate n P 2 ,  so that the dominant term is 

and by (49) and (44a), 

1 1 
,(m+qq). 

The double sum above over all terms with It, - ?,I 2 E has rate 
n-,, in fact, 

n2 I , , , +  -- 
1 j- R”( f - s)c (  t ) c (  s) 

Jft - I,l> c 24 I l - - s I > c  

. ( + % ) dtds 

and the limiting constant is finite. On the other hand, the same 
argument shows that n 2 & - , , , < < Z k ,  tends to the same integral 
as above but over It - S I  < c,  which is not finite, as integration by 
parts and R‘(O&) = 00 show. Thus its rate is slower and it 
becomes the dominant term: 

for each E > 0. 

obtain 
Differentiating the expression of R in terms of R, and R ,  we 

2 K 2  R,( T)[ R$( T ) ] ~ +  R;( 7 )  
,”( .) = - . + R;( T ) .  

?r [ 1 - R2,( T ) ]  1/2 

Assuming that R$(Ok) and R;(O*)  exist and are finite, it 
follows from 

1 
(574 + -  171 

l - R ; ( T )  7 - 0  Crx.0 
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that 

Thus for very small E ( c  = 0), 
1 1 

R”(tk - 2,) = p . 1 / 2 -  ~ t ,  - t , p 2  . 

Also for c = 0 and, say, k > j ,  we have 
1 
- = l : + ’ h  = h(  t:) At,  = h ( 2,) A t ,  
n 

for i = j ,  . . . , k ,  and thus summing up, 
k -  j -- - h ( t , ) k t , L  

and 
1 h3l2 ( t,) n3/2  

( k -  j ) 3 / 2  ’ 
R ” G k  - t,> = 5a,,1/2 

R ” ( f k  - 1,) = p , 1 / 2  

Likewise, when j > k ,  

1 h3l2(  t k )  n 3 / 2  

( j - q3/* ’ 

APPENDIX IV 
PROOF OF (36) AND (37) 

We have (57b) 

R Q X ( T )  = E [  Q( X(O>>Q( X(7))I 

= // Q ( X ) Q ( Y ) P ( ~ , Y ;  R A T ) )  MY 
- m  

where p ( x ,  y ;  p )  is the bivariate normal density with zero means, 
variances one, and correlation coefficient p.  Thus, by Price’s 
theorem [7], we obtain 

Using also c( t k )  = c( t ,),  h(  t k )  2 h(  I,), we obtain that for E = 0, 

R > ( O + )  As the sum extends over 0 < k - j < nh( t , )c  and 0 < j - k < 
( y l  - y/-1)2e-xZ/2 - n h ( t k ) c ,  we obtain in the limit, in view of (44a), - 

7f{ -2R’,(0+)}’/2 / = 2  

1 
= - - {  -(1/2)Ri(0+)}1/2 

n 
L 

( Y /  - y / - 1 ) 2 e - ( Y / + Y / ~ , ’ 2 / 8  

/ = 2  
m = l  

A - { - R;(O+)/n}1/2BQ = - { ax ,o /27r}1~2BQ.  
(58) Similarly, 

1 

48 
= - -a , , l /~~(3 /2 ) j c2h’ /2 .  

R‘d/X”(O-) = { a,,o/2n}1/ZBQ 

aQx,I /2  = R‘d/”’(O-)- R‘d/”’(O+) = {2aX,0 /n}’ /2BQ.  

These arguments for E = 0 can be made precise by writing upper 
and lower bounds in terms of c and then letting c 40 as these 
hold for all c > 0. 

and thus 

This establishes (36). For (37), differentiating once the expres- Combining (56) with (58) gives (30). 
sion above for R ~ , ( T ) ,  we obtain 
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and using (57a) we have as T + 0, 

establishing (37) 
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