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Blind Identification and Equalization Based on
Second-Order Statistics: A Time Domain Approach

Lang Tong, Member, IEEE, Guanghan Xu, Member, IEEE, and Thomas Kailath, Fellow, IEEE

Abstract— A new blind channel identification and equaliza-
tion method is proposed that exploits the cyclostationarity of
oversampled communication signals to achieve identification and
equalization of possibly nonminimum phase (multipath) channels
without using training signals. Unlike most adaptive blind equal-
ization methods for which the convergence properties are often
problematic, the channel estimation algorithm proposed here
is asymptotically exact. Moreover, since it is based on second-
order statistics, the new approach may achieve equalization with
fewer symbols than most techniques based only on higher-order
statistics. Simulations have demonstrated promising performance
of the proposed algorithm for the blind equalization of a three-ray
multipath channel.

Index Terms— Intersymbol interference, equalization, channel
identification, blind identification, cyclostationary processes.

I. INTRODUCTION

NTERSYMBOL interference (ISI) is a limiting factor in

many communication environments, Intersymbol interfer-
ence can arise from time-varying multipath fading, which
can be severe in, for example, a mobile communication
environment. Other channel impairments that contribute to
IST include symbol clock residual jitter, carrier phase jitter,
etc. To achieve high-speed reliable communication, channel
identification and equalization are necessary to overcome
the effects of ISI. Traditionally, channel identification and
equalization are achieved either by sending training sequences,
or by designing the equalizer based on a priori knowledge
of the channel. The latter approach is often not suitable for
a radio communication environment since little knowledge
about such a channel can be assumed a priori. The standard
adaptive approach, though attractive in handling time-variant
channels, has to waste a fraction of the transmission time
for a training sequence. Indeed even the so-called decision
feedback equalization (DFE), which does not explicitly use a
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Fig. 1. A schematic of blind equalization.
training sequence, requires sending known training sequences
periodically to avoid catastrophic error propagation [4].

In contrast to the standard adaptive equalization methods,
the so-called blind equalization methods do not require a
training sequence. Instead, the statistical properties of the
transmitted signals are exploited to carry out the equalization at
the receiver without access to the symbols being transmitted.
A blind equalization scheme is shown in Fig. I. Instead of
choosing the equalizer so that the equalized output sequence
{3k} is close to the source symbol sequence {s;}, as in the
standard equalization formulation, in blind equalization one
chooses the equalizer so that the statistics of the equalized
output sequence {5} are close to the statistics of the source
symbol sequence {sy}.

A. Existing Blind Channel Identification
and Equalization Methods

The innovative idea of self-recovering (blind) adaptive
equalizatior was first proposed by Sato [20], then further
developed by Godard [12], Treichler and Agee [24], Ben-
veniste and Goursat [1], Picci and Prati [19], Foschini [6] and
more recenlly Shalvi and Weinstein [21]. Although the blind
equalization schemes proposed so far are technically different,
they are all derived via some optimization criteria involving
certain higher-order statistics (cumulants) of the observa-
tion; various gradient-based algorithms are then employed to
achieve the optimization. The major problem with the adaptive
blind equal:zation techniques is their slow convergence and
many local extrema attractors, as shown in [3] and [15].
As specially pointed out in [15], the global convergence
may be jeopardized when the channel has finite impulse
response. However, it should be noted that the optimization
criterion proposed by Shalvi and Weinstein [21] ensures global
optimization whenever ideal equalizers exist.
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A different “blind” approach was proposed by Hatzinakos
and Nikias [14]. The received signal sampled at the baud
rate is modeled by a moving-average process. The multipath
channel is then identified from the trispectrum of the received
signals. The advantage of this method over the adaptive
blind equalization methods is that the algorithm will provide
exact identification of a possibly nonminimum phase channel,
whenever the higher order cumulants and the trispectrum of
the observation can be estimated accurately. However, the
proposed algorithm is computationally intensive and suffers
from the fact that the estimates of higher order statistics
usually converge slower than those for second-order statistics.
Moreover, since the received signal is sampled at the baud
rate, it may also be sensitive to uncertainties associated with
timing recovery, unknown phase jitter, and frequency offset.
Finally, most current techniques ignore the presence of noise,
or assume it to be Gaussian. The effect of non-Gaussian
noise may affect the convergence and the performance of the
cumulant-based approach.

In contrast to the case when a channel is driven by a
stationary process, the second-order statistics of the channel
output do contain some phase information of the channel
when the input process is nonstationary. For applications in
communications, many types of signals exhibit a particular
type of nonstationarity called cyclostationarity [8], [9]. The
exploitation of cyclostationarity has shown promising results
in various applications such as detection and filtering of
communication signals, parameter estimation, direction find-
ing, identification of nonlinear systems, etc. (see the recent
review [8] and the references therein). In the context of
channel identification and equalization, Gardner was perhaps
the first to recognize that the phase information is available
in the periodically time-varying data correlation function [7];
however the proposed method still relies on a slow-data-rate
training period. In an earlier work by Cerrato and Eisenstein
[2], the problem of blind deconvolution of cyclostationary
signals was approached in the frequency domain with the
assumption that the energy of the channel impulse response
is confined to an interval of size 7T’; unfortunately, such an
assumption is too restrictive for a multipath communication
channel. Kormylo and Mendel [17] treated the case when the
channel input is nonstationary and Gaussian.

B. A New Blind Channel Identification
and Equalization Method

In this paper, we propose a new blind channel identification
and equalization method. The main features of our approach
can be summarized as follows.

1) The algorithm provides exact identification of possibly
nonminimum phase channels, if the correlation function
of the received signal is known exactly. More realis-
tically, when the estimated signal correlation is used,
asymptotic exactness can be established.

2) The algorithm is insensitive to the uncertainties associ-
ated with timing recovery. This is achieved by exploiting
the so-called signal subspace structure and by sampling
the received signal at a rate higher than the baud rate,
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as is done in fractionally spaced equalization [25]. It
was shown in [11] that the oversampling also provides
better immunity to noise, interference, and frequency
selective fading than that provided by symbol-spaced
equalization.

3) The algorithm can be used to initialize various adaptive
schemes and the equalized output can be used to facili-
tate decision feedback adaptation. The identified channel
can be used to implement maximum likelihood sequence
estimation [5] to further reduce ISI.

4) The algorithm relies only on the second-order statistics
of the rzceived signal. Therefore it usually requires fewer
symbols than most of the schemes suggested to date. In
our simulation at a signal-to-noise ratio (SNR) of 30 dB,
100 symbols were sufficient to give a good estimate of
the channel, a much smaller number of symbols than
that required by most alternatives. This fact also implies
that the: algorithm can be used to estimate channels with
relatively rapid channel variation.

5) Unlike other equalization methods, the new method
provides exact reconstruction of the source symbols
via a causal operation (FIR filter) when the channel
(possibly nonminimum phase) can be identified correctly
and when there is no noise. Such exact reconstruction
cannot be achieved by inverting a nonminimum phase
channel.

6) There is no restriction imposed on the probability dis-
tributicn of the source symbols. The random source
may be real or complex, continuous or discrete, or even
Gaussian, in contrast to the assumptions made in [21]
and most current techniques using higher-order statistics.

It may seem unexpected at first glance that a nonminimum

phase system can be identified using only the second-order
statistics of the system output. However, it is less surprising
when the system is driven by a nonstationary process. This is
indeed the case for most communication channels where the
input signals are cyclostationary (or periodically correlated)
rather than stationary.

C. Problem Statement

When the channel is time invariant, the received complex
baseband signal z(-) can be expressed as

r(t) =Y skh(t—kT), (1)
k=—o00
z(t) = r(t) + n(t) ¥))

where

si: an information symbol in a signal constellation S,

h(-): the discrete-time “composite” channel impulse re-
sponse that includes the pulse shaping filter, the channel, and
receiving filiers,

T the symbol interval,

n(-): the additive noise.

The objective of blind channel identification is to esti-
mate h(-) given only the received signal z(-). Once such
identification is achieved, the estimation of the information
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symbols s;’s becomes more or less a solved problem, and
various equalization and sequence estimation techniques can
be applied.

We assume the following throughout the sequel.

1) The symbol interval T is known and is an integer

multiple of the sampling period.

2) The impulse response h(-) has finite support.

3) {sk} is zero mean, and E(sis}) = §(k — [) where §(¢)

is the discrete-time impulse function.

4) n(-) is zero mean, uncorrelated with {s;}, and

E(n{t1)n*(t2)) = 026(t; — tq).

As a general notational convention, symbols for matrices
(in capital letters) and vectors are in boldface. The notations
()H, ()7, ()*, and (-)T stand for hermitian, transpose, com-
plex conjugate, and the Moore—Penrose generalized inverse,
respectively. The symbol I (0) stands for the identity (zero)
matrix of an appropriate dimension. E(-) denotes expectation.

II. EXPLOITATION OF CYCLOSTATIONARITY:
A VECTOR REPRESENTATION

We first examine the idea that the spectral redundancy in
a cyclostationary signal [8]-[10], a second-order statistical
property, can be used to identify a nonminimum phase channel.
A complete discussion of the issue of channel identifiability
in the frequency domain is developed in [22]. Nonetheless,
the following brief discussion provides some motivation for
our method of exploiting the cyclostationary nature of the
observation.

We shall assume that the received signal z(t) is wide-sense
cyclostationary, i.e.,

E(@(t)a* (1)) = E(z(t; + T)z*(t2 + T)).  (3)

The discrete-time sequence z(%) obtained by sampling z(-)
may or may not be cyclostationary, depending on the sampling
rate. In fact, if the received signal is sampled at the baud rate
1/T, then

2(iT) = Y skh((i — k)T) + n(iT) @

k=—0c

will be a wide sense stationary process. In this case, it is well
known that only minimum-phase channels can be identified
from the second-order statistics of such a wide sense stationary
sequence. In other words, the phase information of the channel
is lost in the second-order statistics when its output is sampled
at the baud rate. On the other hand, if the sampling rate is
higher than the baud rate, the resulting output sequence is
wide sense cyclostationary. The second-order statistics of the
over-sampled observation do contain the phase information of
the channel.

Consider the noiseless case and an oversampled discrete-
time signal z(3A), denoted as x(z),

o

> skh(i— kT), (5)

z(i) =
k=—o0

= u(z) * h(3), (6)

where x stands for convolution, and u(z) is a nonstationary
sequence given by

[eS]

w(@) = Y skb(i— k). Q)
k=—c0
Let
R (i1, i2) = E(z(i1)z* (i2)), ®)
Ry (i1, i2) = E(u(ir)u*(i2)). )

It can be shown (see, e.g., [18]) that, in the frequency domain,

Ie(w, v) =Ty(w, v)H(w)H*(—v) (10)
where T'z(cs, v), Ty(w, v), and H(w) are the Fourier trans-
forms of R, (i1, 42), Ru(i1, i2), and h(3), respectively. When
u(i) is stationary, so is z(z). Denoting

Ru(T) = Ru(tlv t2)7 T =1 — i, (11)
Su(w) =Y Ru(r)e T, (12)

we then have the familiar form
Sz (w) = Sy(w)H(w)H*(w) (13)

which shows that it is not possible to recover H (w) completely
from Sy(w) and S,(w) unless H(w) is a minimum phase
system. However, when u() is nonstationary, it is clear from
(10) that I'y(w, v) contains the phase information of the
channel. The question now is how to identify the channel
given R, (i, 72) using the fact that u(i) is cyclostationary.
While the problem can be solved in the frequency domain
[22], the approach presented here is based on a time-domain
vector representation of the cyclostationary process z(-).

A. Vector Representation

An important observation is that, under the first assumption,
the signal space of the observation restricted to any finite time
interval I (referred to as an observation interval) is a linear
space spanred by a basis comprised of time-shifted copies
of h(-). Specifically, the signal space Rs ny(I), or simply
R(I), is defined by

> skh(t—kT), sp €S, te 1}.

k=—o0

R(I) = {"'(t) | r(t) =

(14)
Moreover, when the observation interval I is finite and the
channel impulse response has only finite support, R(I) is
finite dimensional and its dimension can be computed directly
from knowledge of I and the duration of A(-). Consider, for
example, the received (noise free) signal r(-) in an observation
interval Iy == (o, ty + L) for some finite L. The signal space
R(lo) is spanned by h(t — KoT),---,h(t— (Ko + (d—1)T)
with the h(t —:T") being restricted to (g, to+ L), as illustrated
by Fig. 2.
The integer K and the dimension d depend on ¢y, L and the
duration Ly, of the impulse response h(-), and can be roughly
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Fig. 2. Basis functions in a sampling interval.

estimated as follows:

to— L
Ko:[o ﬂ,

7 (15)

i [to—(Ko—l)TqLLJ

16
T (16)
where [z] (|z]) stands for the smallest (greatest) integer that
is greater than or equal to (less than or equal to) .

If x(-) is sampled in (¢q, to + L) with a sampling period
A, we will have
d—1
ety +iA) = Y _sko4rh(to + il — (Ko + k)T)
k=0
+ n(to +14A),

i=1,---,m. (17)

A matrix formulation of the above will be convenient. We can
write

I(to) = H(to)s(to) + n(tu) (18)

where (see (20) below)
z(to) = [z(to + A), -+ x(to + mA)]", (19)
8(to) = [$k0." > $Kowd—1]" s @n

n(to) = [n(to + A), nlty + 2A), -, nto + mA)]T. (22)

Similarly, if the sampling is performed in any interval of the
form (tg +nT, to +nT + L), replacing to and K¢ by to +nT
and Ky + nT in (18) will yield

z(to + nT) = H(ty + nT)s(to + nT) + n(te +nT). (23)
Making a closer examination of the (i, j)th entry of H (¢, +
nT), we see that
h{to + nT + A — (Ko +n+j—1)T)

= h(to +iA = (Ko +j— DT). (24
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Hence, for all integers n,
H(ty) = H(ty + nT). (25)
We then have
z(to + nT) = H(to)s(to + nT) + n(to + nT),
n=201,---. (26)

When no confusion arises, we shall drop ¢, (or let to = 0) for
the sake of simplicity, with the understanding that a certain
to is fixed throughout. Then the vector representation of the
received signal is

z(iT) = Hs(iT) + n(iT), i=0,1,---, (27

where £(iT) and n(iT") are m-dimensional vectors formed
from the m samples of z(-) and n(-) inside the interval
(to +4T, to+ 4T + L), respectively, H = H(1o), independent
of 4, is given by (20), and s(:T) is a d-dimensional vector
consisting of symbols that have “contributions” to the received
signal inside the observation interval (to + 7, tg + i1 + L)
given by (2 ). The vector z(i7") can be obtained via time-
division demultiplexing [9].

B. Relations Between Scalar and Vector Representations

It is clear from the previous development that the vector
representation merely rearranges the data samples of the
(scalar) observation. Such a rearrangement should not result
in any loss of information. Nevertheless, it is important to
note the one-to-one correspondence between the matrix H (o)
and the sampled impulse response h(¢A). It is clear from
(20) that Hity) can be formed from the sampled A(-) once
to, L, and A are chosen, and L), and 7 are known. It is
less obvious that one can form the sampled A(-) from H(to)
when to, L, A, and T are known, but L, is not explicitly
known. Indeed, Lj, is unknown in practice, while ¢o, A, and
L can be chosen and the symbol interval T' is known a priori.
However, thare are no conceptual difficulties in reconstructing
h(iA) from H(tq) as suggested in Fig. 2. Keep in mind that
the columns of H(ty) are simply time-shifted copies of the
sampled A(-), truncated by the observation window, and time-
shifted exacily by integer multiples of 7. The simplest case is
when the observation interval is longer than the duration of the
impulse response, i.e., L > Ly. In such a case, the column of
H(ty) with the maximum 2-norm gives the sampled impulse
response. When L < L;, one can imagine that the columns
of H(ty) are sequences of “snapshots” of the shifted impulse
responses, cbserved through an observation window of size
L. The explicit construction is as follows. Given an m x d
matrix H(tc) with its (4, j)th entry denoted as H;j, suppose
that the sampling rate is 7 times faster than the baud rate,
ie., T =T,A. Then a sampled channel impulse response h;,

h,(t() + A — K(]T)
H(to) = :
h(to + mA — KoT)

h(to + A — (Ko +d — 1)T)
: ; (20)
h(f,() + md — (K(j +d— 1)’[’)
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written as a vector kb = [hy, -+, hig_1)r,], can be recovered
from a vector h constructed from H () as

h=[Hyy- - Hr,aHya_1)- -Hr,a-1y - Hiz- -

Hr,oHyy -+ Hp],  (28)

and

h=[0, h, 0. 29

In other words, h is an extension of h in the sense that zeros
are added to both sides of the actual sampled impulse response.
Despite the algebraic equivalence between the two rep-
resentations, there is an important difference between the
original scalar model representation (1) and the vector model
representation (26). It is easily shown that the received signal
() is cyclostationary with period T while the “vectorized”
process x(4) is stationary; this is not surprising because the
process of (over) sampling of the received signal is equivalent
to the so-called translation series representation or time series
representation of the cyclostationary process r(-) [9].

III. A NEW CHANNEL IDENTIFICATION
AND EQUALIZATION METHOD

A. Channel Identifiability

To simplify the presentation of the key ideas with respect
to channel identifiability, we ignore the noise for the moment.
Similar results can be obtained when the noise (second-order)
statistics are known.

Following the development in the previous section, the blind
channel identification problem can be restated as follows.

Consider a vector process z(z), ¢ = 1,---, obtained from
a linear model

z(i) = Hs(i), i=0,1,--. (30)

along with the following constraints.
1) H is an m x d complex matrix of full column rank.
2) (i) is a zero mean stationary process with autocorrela-
tion function

Rs(k) = E(s(i)s" (i — k)) @31
of the following form:
Rs(k)=J" k20, (32)
Rs(k)=(JMH, & <q, (33)
where J is a d x d “shifting” matrix
0 0--- 00O
1 0--- 0 O
J=1]10 1--- 0 O 34)

0 0--- 1 0
The objective of blind channel identification and equaliza-

tion is to identify H (channel identification) and estimate s(4)
from z(%) (channel equalization).

Remarks:

1) In most practical cases, the rank constraint on H can be
satisfied easily by oversampling. In fact, it can be shown
that the full rank condition is necessary for the channel
to be identifiable from the second-order statistics [23],
[22].

2) While the original received signal r(-) is a cyclosta-
tionary process, the vectorized process z(i) is a wide
sense stationary process whose correlation matrices can
be estimated conveniently by time averaging.

3) The constraint on the autocorrelation function is ob-
tained by observing from (21) that

s(to) = [SK09 SKo415"" " 3K0+d—1]T7 (35)

8(to +T) = [SKy+1, SKot2r" " s SKotd) - (36)

Equation (32) is a direct consequence of the above and the
iid. assumption on the transmitted symbols. Note also that
the assumption that E(sys;) = 1 can be achieved without
loss of generality by scaling h(-).

In establishing channel identifiability and developing chan-
nel identification and equalization algorithms, an algebraic
approach is used. To provide some intuition behind what
follows, we note the special “forward shift” structure of the
correlation raatrices of the source. Due to this special structure,
the rank of Rz(k) decreases as k increases. On the other
hand, the range space of R (k) is spanned by columns of
the channel parameter matrix H. It is the change in the rank
of Rg(k) that provides the information for the identification of
the column vectors of H, and consequently, the identification
of the channel.

Theorem 1: Suppose that H and s(i) satisfy the linear
model (30) and its constraints. Then H is uniquely determined
up to a constant by Rz (0) and R (1).

Proof: Suppose that there are two sets of channels and
sources satisfying the linear model and its constraints, i.e. both
H, s(i) and H, (i) satisfy (30) and its constraints. Then we
have

HAY = HH", 3D
b HIE® = gIR". (38)

Equation (3"7) implies that [27]
H=HQ 39

where @ is an orthogonal matrix. Substituting (39) into (38),
we have

QIQY = 1. (40)

Denote the ith column of @ as g;. Equation (40) gives,
not surprisingly, a Jordan chain of length d associated with
eigenvalue O of matrix J

Jg, = ¢,
Jg,_1 = q,,
Jg, = 0. “4n
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Since ||g,|l2 = 1, the last equation in the above implies
g, = [0,---,0, %7 for some real ¢, and consequently
Q = ¢*1. We finally have, from (39), H = He’¢. O

The following lemma provides an alternative constructive
proof of the above theorem. Its significance is that it offers
a computational method, in closed form, to identify H from

Lemma I: Let Rg(0) have the following singular value
decomposition,

U¥ Rz (0)U = diag (03,---,03,0,---,0). (42
Let u; denote the ¢th column of U, and let
Us = [u1,- -, ud], 43)
X = diag (o1, -+, 04), (44)
F=x"'04. (45)
Suppose
R = FRz(1)F¥ (46)
has a singular value decomposition of the form
b1, val " Rlzr, - 2] = diag (- 00). 4D
Then there exists a real phase ¢ such that
H =Us¥Qe’® (48)
where
Q = [ys Ryg,---, R Dy, (49)
or equivalently,
Q= [(RT)@‘l)zd, (RT)(d'2)zd,---,zd]. 50

Proof: H satisfies the constraint imposed by Rz (0)

HHY = R4(0). (51)
From (42), we have
H=UsxVv (52)
where V = [vy,---,vg4] is an orthogonal matrix. Thus,
FH =x"'Uivuszv =vV. (53)
Since Rg(1) = HJHY one obtains
R=FRy(1)F¥ = FHJHEF? =vJvH. (54)

Keeping in mind that V is an orthogonal matrix, the right side
of the above equation is a Jordan decomposition of R, and we
have the familiar Jordan chain

Rvkzvkﬂ, k:l,”-,d—l, (55)

Ruy = 0. (56)

Unfortunately, it is not computationally reliable to obtain
V from the Jordan decomposition of R. This difficulty is
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alleviated by the fact that vy is also a singular vector of R.
Compute R R and we have

RER =Vdiag(1,---,1,0)VH. (57)

It is clear from the above that i) the matrix R has one and
only one singular value equal to 0; ii) vq is a right singular
vector of R associated with the zero singular value. Now if R
has an SVD as in (47), i.e., if

b1, vl Rlz1, - za] = diag (4, ---,7d)  (58)
then there is a ¢ such that
vq = zqe’®. (59)

Now the problem is to solve (55)—(56) for v; given vy as in

(59). Consider the equation involving v4 and vg4_;
Rvd,l = vUq. (60)

Although R is singular (rank d — 1), two observations imply
that vwg_1 is uniquely determined from the above equation.
First,

IRz =1, (61)

which is evident from (57). Second, V is orthogonal, hence

lvallz = llva-1ll2 = 1. (62)

These two cbservations lead to
Vi1 = R—tvd (63)
= Riz4e9%. (64)

This leads to (50). The derivation of (49) is similar. Compute
RRY and we have

RRY = Vdiag(0, 1,--,1)VE. (65)

It follows that v, is a left singular vector of R associated with
the zero singular value and (49) is then evident. [l

B. Algorithm Implementation with Noisy Data

Lemma 1 provides the essential parts of the proposed blind
channel identification algorithm. The previous development
was based on a noise-free model. However it is not hard to
think of ways of handling additive white noise. In particular,
we follow ideas now widely used in sensor array processing,
see, e.g., [26]. Thus, we consider the vectorized process z(i)
satisfying

z(i) = Hs(i) + n(i). (66)
The correlation matrix Rg(k) satisfies
Rg(k) = HRs(k)H" + Ru(k). (67)

Under the assumption of white noise, the noise correlation
matrix Ry (k) has the form

Rn(k) = E(n(im® (i - k)

= g'QJkT"

(68)
69
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where o is the unknown noise variance, J is the forward shift
matrix given by (34), and T is an integer such that 7' = T, A.

Although neither the noise covariance, nor the signal space
dimension d is known a priori, they can be obtained from the
data covariance matrix Rz(0). It can be shown that the SVD
of Rz(0) must have the following form:

UH Rz (0)U = diag (A1 + 02, -+, Ag+ 02, 0%, -+, a2) (70)

where A} > A2 > -+ > Ay > 0. Therefore, both o2 and d
can in theory be obtained by determining the most significant
singular values of Rz(0). In practice, a threshold test can
be employed to determine d, and then to estimate o2 from
the singular values of the estimated data covariance matrix.
Readers are referred to [16] and [28] for suitable methods.
Once the noise covariance ¢? is determined, the identifica-
tion procedure suggested in Lemma 1 can be easily extended to
handle noisy data: subtract the corresponding noise correlation
matrices from the observation correlation matrices.
We first outline the algorithm and then address certain
technical points of the algorithm.
A Blind Channel Identification and Equalization Algorithm:
1) Select ¢y, A such that T = T,A, L = mA, and
form the vectorized observation z(¢) = [z(¢y + A +
i), z(to+mA+iT)T,i=0,1,---,
2) Estimate Rz(0) and R (1) from z(4) via, for example,
time averaging,

N
Rz (0) = %Zx(i)xH(i), an
A ) z;l

R:(1) = NZz(i)zH(i —1). (72)

3) From Rx(()), estimate the noise covariance ¢ and the
dimension d of the signal space.
4) Compute the SVD of Ry,

Ro = Rg(0) — 621 (73)
and form Ug which consists of the singular vectors
associated with the d largest singular values, X which
consists of the positive square-root of the d largest
singular values, and then F = X 1UZ,

5) Compute the SVD of R,

R=F(Rz(1) — Rn(1))F" 74)
where

Rn(1) = 6°J%, (75)

0 0.. 00

1 0.. 0 0
J=10 1... 0 0 (76)

v et

0O 0--- 1 0

Let y4 and 24 denote the left and right singular vectors
corresponding to the smallest singular value.

6)

7

Form an estimate of H (and consequently A(-) if nec-
essary) as

H=Us%Q )
where:
Q=[y,, Ryy,-- vR(d_l)yd] (78)
or
Q= (BN D2y, (RN 4224, 2] (79)
or a certain combination of the above.
Extract the information symbols
(i) = I?fo(z') (80)
= Q" Fx(i) (81)

or by implementing various types of equalizer or
maximum-likelihood estimation schemes based on the
estimated channel.

Discussion of Implementation Issues:

)]

2)

Timing recovery and the selection of to and L: Un-
certainties associated with timing recovery may cause
significant transmission error in baud-rate equalizers.
One advantage of the proposed approach is that such un-
certainties do not affect the proposed estimation scheme.
As one can see from previous sections, the selection of
to and L is arbitrary as long as the resulting channel
parameter matrix is of full column rank. Different tg,
sampling period A, and L will result in a different
channel parameter matrix Hy, A . Nonetheless, once
to. A, and L are fixed and the resulting Hy, a1 is
of full column rank, the construction of observation
vector sequence I, r(n) is fixed and the source vector
St,,a,,.(n) is uniquely specified. Although we do not
know the timing, i.e., the exact time instant when a
symbcl is transmitted from the source, we can still obtain
the source vector s, A,z (n) from the observation vector
Z¢,, A, (n). It is important to note that the source vector
sequerce is constructed by adding one new symbol and
removing the oldest symbol in a first-in first-out (FIFO)
fashion. Consequently, by observing a fixed component
of s;, a,r.(n), one obtains the whole sequence of source
symbcls.

There are subtleties in choosing to and L as far as the
implernentation is concerned. The choice of ¢y, A, and
L affects the signal space dimension d, as shown in (16),
and also the condition number of the matrix H(#y). The
effects of these selections on the algorithm performance
require further investigation. In our simulation study, the
observation window length L is chosen as multiples of
T. Various to’s were chosen in the simulation study and
the ditferences seem to be negligible.

The selection of sampling period A: The sampling period
A needs to be an integer fraction of the symbol interval
T. In addition, to ensure the full rank of the channel
parameter matrix, the sampling rate has to be higher
than the baud rate. For any fixed to and L, the signal
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3)

4)

3)

space dimension d, independent of the sampling, is
determined. The vectorized observation z(i) needs to
have a dimension higher than d. (The dimension of
the vector z(i) needs to be at least d 4+ 1 if the
noise covariance is unknown.) In practice, the full rank
condition can be ensured if the sampling frequency f,
satisfies

d+1
L

For example, suppose that L = T, and there are do
symbols having contributions to the received signal in
the observation window. Then the sampling frequency
needs to be at least (do + 1)/7. If the length of the
observation window is increased to L = 27, then
there must be dg + 1 symbols having contributions to
the received signals in the observation window. The
sampling frequency can be decreased to (dg+2)/2T. In
general, if L = kT, the sampling frequency should be at
least (do + k)/k times faster than the baud rate. Hence
the burden of oversampling is not very significant.
Channel estimation: Theoretically, either (78) or (79)
can be used to obtain an estimate of H. Practically, it is
better to use a combination of the two estimates. Since
Rz (0) and Rz(1) can only be estimated, estimation
error is inevitable. This error is likely to be propagated
in forming the columns of H . The error propagation can
be somewhat limited if the first d/2 columns of H are
constructed from (78) and the last d/2 columns of H
are constructed from (79).

Channel equalization, least squares and minimum vari-
ance estimation: Various equalization techniques can
be employed once the channel estimation is available.
Difficulties arise when the channel has nonminimum
phase. In such a case, some channel inversion algorithms
may not be stable. Interestingly, this is not so for the
new algorithm presented here. The source symbols can
be extracted by using the causal FIR filter obtained
by taking the inverse of the matrix H. Moreover, the
source estimate (81) can be achieved by the least squares
method for computational simplicity (no additional ma-
trix inversion is necessary). In principle, the so-called
total least squares approach [13] is probably more jus-
tified because of the estimation error in H ; it can also
be implemented with some added computational burden.
Slightly different from the least squares solution is the
minimum-variance estimate given by

fs > (82)

36) = H (HH" + 5217 120). (83)
Fast signal subspace decomposition: The major compu-
tational cost in the proposed algorithm comes from the
eigendecomposition of the correlation matrices. The re-
cent development of fast signal subspace decomposition
(FSD) techniques can provide computationally efficient,
easily parallelizable methods for subspace determination
of correlation matrices [29]. In our case, if m samples
are used in an observation interval, and if the dimension
of the signal space is d, the computational cost is of
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Fig. 3. A three-ray multipath channel impulse response.

TABLE I
CHANNEL IMPULSE RESPONSE

n 1 2 3 4 5 6
h(n) | —0.02788 | —0.01356 | 0.009773 0.0343 0.04142 0.0216

n T X 9 10 11 12
Aem) T =0.014 539 | —0.06035 | —0.07025 | —0.0241 0.08427 0.2351

n 13 14 15 16 17 18
hen) 0.3374 0.4931 0.5167 0.4494 0.3132 0.152

n 19 20 21 22 23 24
h(n) | 0.01383 | —0.06754 | —0.08374 | —0.05137 | —0.001258 | 0.03679

the order O(m?2d) as opposed to O(m3) for standard
eigendecomposition techniques.

IV. A SIMULATION EXAMPLE

In this simulation, as an approximation of a two-ray mul-
tipath environment, the channel! was generated from two
delayed pulses and is given by Table I and shown in Fig. 3.
Among 23 zeros of the system, there are 21 nonminimum
phase zeros. The source symbols were drawn from a 16 QAM
signal constellation with a uniform distribution.

The signal-to-noise ratio (SNR) is defined as

Il ()l
ROl 4%
Fig. 4 is a plot of 1000 output symbols of the unequalized
channel (obtained by sampling the received signal at kT,
k =1, 2,-- ). The signal-to-noise ratio was 30 dB. Clearly,
the intersymbol interference is severe and a high error rate is
expected.

In the implementation of our algorithm, we chose {5 = 0,
and an observation interval of length L = 47. A simple
calculation according to (16) gave d = 10. The sampling
frequency was chosen to be 4 times faster than the baud
rate, i.e., T = 4A(T; = 4). The vector representation of
the received signal =(i) was a 20 x 1 complex vector. In

SNR = 20log (85)

!'The impulse response is obtained from delayed raised cosine pulses. A
single pulse is described by c(t, @) where « is the roll-off factor.
R(t) = (0.2¢(t, 0.11) + 0.4c(t — 2.5, 0:11))Wer(t) (84)

where W is a square window of duration 6 symbol intervals, i.e., Ly, = 67"
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Fig. 4. The output of the unequalized channel; SNR=30 dB.
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Fig. 5. The actual channel (solid) and the estimated channel (dashed). One
hundred symbols were used for estimation. SNR=30 dB.
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Fig. 6. The output of the equalized channel. 1000 symbols were plotted. One
hundred symbols were used for estimation. SNR=30 dB.

estimating the channel parameter matrix, 100 symbols were
used to estimate Rq(0) and Rg(1). Fig. 5 shows the actual
channel and its estimate based on a single realization. 1000
symbols were then transmitted and the equalized channel
output is shown in Fig. 6, which indicates that the channel
is well equalized.

A Monte Carlo simulation of 100 independent trials was
conducted under the same simulation scenario. Fig. 7 shows
the sample mean of 100 estimates of the channel, and also the
actual channel. Fig. 8 shows the 100 estimates of the channel.

To obtain a performance measure of the channel estima-
tion, the normalized root-mean-square error (NRMSE) of the

0.6

-0.1

0 5 10 15 20 25

Fig. 7. The actual channel (solid) and the sample mean of 100 estimates
(dashed). One hundred symbols were used for each estimate. SNR=30 dB.
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Fig. 8. 100 estimates of the channel. One hundred symbols were used for
each estimate. SNR=30 dB.
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Fig. 9. NRMSE versus SNR. 100 Monte Carlo runs and 100 symbols were

used in each run.

estimator is defined by

NRMSE = 1

86
A 86)

1 & .
MZHh(i) - hl|?
=1

where M is the number of Monte Carlo trials (100 in our
case), and il‘:i) is the estimate of the channel from the zth trial.
Fig. 9 shows the NRMSE versus SNR in a series of 100 Monte
Carlo runs for different SNR’s.

The bit error rate (BER) was also tested against the SNR.
In this case a BPSK source was used to estimate the channel.
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Fig. 10. Bit-error-rate versus SNR. 100 Monte Carlo runs. One hundred
symbols were used for the channel estimate.

At each Monte Carlo run, the channel was estimated and a
minimum-variance equalizer given by (83) was implemented
and the probability of error was evaluated. The BER is defined
here as the probability of error averaged over 100 Monte Carlo
runs. Fig. 10 shows the effect of noise on the BER. While the
performance is excellent at high SNR’s, the error rate is high
(above 10~3) when SNR is below 25 dB. The achieve better
performance, a larger sample size will be necessary.

V. CONCLUSION

Blind equalization is of significant value in many com-
munication problems. A new approach to blind identification
and equalization is developed in this paper. By exploiting
the cyclostationarity of the received signal via oversampling,
we are able to identify possibly nonminimum-phase channels
using only second-order statistics. This leads to more accurate
estimation with a smaller sample size than methods using
higher-order statistics. In addition, it can be easily incorporated
into various existing equalization methods.

Although the proposed method provides asymptotically ex-
act channel identification, the performance of the algorithm
when a small number of symbols is used needs to be further
examined from both theoretical and experimental points of
view. In our simulation, the proposed algorithm performs well
when SNR is high. However, there seems to be a “break-
down” point when the SNR is below a threshold. For the
proposed algorithm to be effective at low SNR, a larger
number of symbols is necessary, which limits the effectiveness
of the algorithm for rapidly varying channels.
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