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The Optimal Buffer Allocation Problem

VENKAT ANANTHARAM, MEMBER, IEEE

Abstract —We have available a fixed number of buffer spaces to be
allocated among the nodes of an open network of exponential servers with
Bernoulli routing and Poisson arrivals. The goal is to optimize a perfor-
mance criterion associated with the time to buffer overflow, such as
maximizing its mean or maximizing the probability that it exceeds some
value. We argue that for any such criterion the assignment should be done
roughly in inverse proportion to the logarithms of the effective service
rates at the nodes. Here, by effective service rate we mean the ratio of the
service rate to the stationary arrival rate at the node in the network with
infinite buffers.

I. INTRODUCTION

ETWORKS of queues are commonly used as models
Nfor the queueing processes taking place in communi-
cation networks, computer networks, and manufacturing
systems; see [2] for an excellent overview connecting the-
ory with practice in the context of communication net-
works. An important problem in these applications is how
to allocate buffer spaces among the nodes of the network
to avoid frequent buffer overflows. Indeed, much is known
about the stationary behavior of networks of queues with
infinite buffer space at each node, see e.g. [6] and [11]. For
designs carried out on the basis of the stationary behavior,
one would like to maximize the time the network spends in
a regime where it is well approximated by its stationary
model.

It is generally accepted that this problem is analytically
intractable. In view of this, the problem of estimating the
time to buffer overflow by simulation is currently being
studied by several investigators. Simulation-based ap-
proaches to this problem include the large deviation theory
ideas for fast simulation of Cottrell et al., [3] and Parekh
and Walrand [8], [12], and the perturbation analysis tech-
nique of Ho et al., see [5]. For insight into the situation in
light traffic, see Reiman [9]. Sheshkin [10}, and Mitra and
Tsoucas [7] also consider the problem of buffer allocation
for tandem queues.

In this paper we use pathwise probabilistic arguments to
justify a simple rule of thumb by which buffer allocation
can be carried out. Our model for the underlying network
is the skeleton of an open Jackson network. That is, we
have J exponential servers with respective service rates
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fy,- * > iy, Bernoulli routing with J +1XJ +1 routing ma-
trix R, and exogenous Poisson arrivals of rate y, with the
usual independence assumptions. Recall that this means
that customers in queue at node i are served in the order
in which they arrive and require service for a time which is
exponentially distributed with mean p; !, all service times
being independent. The outside world is denoted by 0, and
the arrival process is independent of the service times. A
customer leaving node i, 0 <i < J is routed to j, 0 < j < J
with probability 7, ;, routing decisions being independent
and independent of the arrival process and the service
times. Further, R is an irreducible stochastic matrix.

By the optimal buffer allocation problem, we mean the
problem of how to distribute in the best possible way a
fixed number N of available buffer spaces among the
nodes of the network. The goal is to optimize some perfor-
mance criterion associated with the time to buffer over-
flow, such as its mean or the probability that it exceeds
some value. We argue that for any such performance
criterion the assignment should be done roughly in inverse
proportion to the logarithms of the effective service rates.

II. MAIN RESULT

We assume that the network is stable, namely, that the
solutions of the flow balance equations

J
A =vyr,+ lejrj,., 1<i<J
J =

satisfy

N <p;, 1<i<J.

This is a natural requirement if the network is to operate
for reasonably long periods of time without buffer over-
flow. Let m,2p,/X, denote the effective service rate at
node i.

We now introduce some notation. Throughout, ¢ de-
notes an infinite subset of the positive integers. We write
lim _,, for N going to oo along the subsequence o. Given
two functions f(N) and g(N) on the positive integers, we
write f(N)=o,(g(N)) if limy_, f(N)/g(N)=0 and
f(N) = 0,(g(N)) if limy_.,, f(N)/g(N)=co. Loga-
rithms are to base 2.

A buffer allocation scheme is a way to assign, for each
N, N, buffers to node i, such that N;>0, 1<i</J, and

J_N,=N, ie., it is a function on the positive integers
taking N to a positive J-tuple summing to N. Here in
counting buffer spaces we include the space in service. Let
T have the distribution of the time to buffer overflow
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when the network is started empty. This depends on N
and the associated buffer allocation, but the dependence
will be suppressed from the notation. In the next section
we prove the following theorem.

Theorem I: For any buffer allocation scheme
(Ny,--+,Ny), Z_N,=N, let g(N)2 min,n™. For any
subsequence ¢ and any 7(N) such that 7(N) = 0,(g(N)),
we have

(2.1)

On the other hand, for any T(N) such that T(N)=
w,(Ng(N)) we have

lim P(T<T(N))=1.
N

lim P(T<r(N))=0.
N>

(22)

The theorem appears to justify the following heuristic
buffer allocation rule. a

Rule of Thumb: In allocating N buffers to “maximize
the time to buffer overflow,” one should allocate roughly a
fraction p, of the N buffers to node i, where p, is
inversely proportional to log7,.

Justification: Let c¢£ p,logn, (independent of i). For
any buffer allocation scheme (N,---,N,), £J_ N,=N,
denote Ng(N)/2 by h*(N). Suppose

liminf Ng(N ) /2¢¥ = 0.
N—> oo

Then there is a subsequence o such that Ng(N)/2¥=
0,(1). Then also A(N)=o0,(1). If T and T* have the
distribution of the time to buffer overflow for this buffer
allocation scheme and for the rule of thumb, respectively,
then we have

Ng(N)
H N - N —
J‘_"’.“wP(TSZ h(N))—Jgan(Ts ) )—
(2.3)
by (2.2), whereas
lim P(T*<2"h(N)) =0 (2.4)

N—-ooo
[

by (2.1). Clearly, the buffer allocation scheme is worse
than the rule of thumb along o. Modifying the scheme
along ¢ by replacing it with the rule of thumb is an
improvement in the following sense: if 7 has the distribu-
tion of the time to buffer overflow for the modified scheme,
t(N) is any function, and s any subsequence, then
limsup P(T'<t(N)) < limsup P(T < 1(N)). (2.5)
N — o0 N —> oo
Indeed, if o and s are eventually disjoint, i.e, o N5 is
finite, then (2.5) is obviously true with equality, whereas, if
o N s is infinite, it suffices to show that
limsup P(T* <1(N)) < limsup P(T<t(N)). (2.6)

N— oo N—> 00
ans ans

If #(N)=2"h(N) infinitely often along o N, the right
side of (2.6) is 1 by (2.3), while if t(N) < 2°“h(N) eventu-
ally along o N s, the left side is 0 by (2.4). From this, (2.6)
follows.
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This suggests that any reasonable buffer allocation
scheme must satisfy

Ng(N)

2¢-N

liminf > €
N — o0

for some € > 0. It is a straightforward calculation to see
that this implies that

IN,— p,N|< K log N (2.7)

for all sufficiently large N, for all i=1,---,J, where
K %%/ (logn,)”". In this sense the rule of thumb is
approximately optimal.

III. Proor

In this section we prove Theorem 1. Let N denote the
network with service, routing and arrivals as in the preced-
ing section but with infinite buffer space at each node. N
is an open Jackson network which can be described by a
Markov process x=(X(¢),t1>0) with state space X =
{(ny,---,n;):n,20,1<i<J} Given N and (N, -, N;)
with ¥/_ N, =N, let A= {(ny,---,n,)€X: n,> N, for
some i=1,---,J}. With T defined as in the preceding
section, it is easy to see that for any ¢ > 0,

P(T>1) = Py X(5) & 4,

where the subscript 0 in P, denotes the state (0,- - -,0) € X.
In this section we will, therefore, write T for inf{z > 0:
X(t) € A} and discuss the distribution (Py(T <¢), t = 0).

Given 7(N) as in the statement of the theorem, we first
prove (1.1) by estimating Py(T < 7(N)). Let a£ Py(X(t)
visits 4 before returning to 0). It turns out it is enough to
upper bound a.

We first lower bound ET using an ergodic argument.
Let #y(¢) and ¢,(¢) denote, respectively, the time spent by
x in state 0 and in 4 up to time . From the ergodic
theorem for Markov chains (see e.g. [4]) we have

t=o lo(t)  7(0)

where 7 denotes the stationary distribution of x.
It is well-known (see e.g. [6}, [11]) that = is given by

forall0 <s<t)

(3.1)

J Ai n; A’.
'n(nl,---,nl)-——n(—) (1———). (3.2)
i=1\M; Ky
From this a simple calculation gives that
J
m(A4)=1- 1—q,M*D) < (3.3)
) 1:[1 ( ) g(N)
where g(N) is as in the statement of the theorem and C is
a constant independent of N and (N,,---, N;). From
(3.1)-(3.3) we have
tt C
—'—‘Q < (3.4)

lim < ——
-0 1y(2)  g(N)
where C is a constant independent of N and (N, - -, N,).

On the paths of the process we can construct indepen-
dent identically distributed (i.i.d.) random variables (T}, k
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>1) with the distribution of T and ii.d. random variables
(S, k =1) such that S, has the distribution of the time
taken to return to O starting from the hitting distribution
of A. Formally,

k-1 k-1
Tk=inf{t>0: X{t+ X T+ Y S,)EA}

1 1

k-1 k=2

S,(_1=inf{t>0: x|+

: T, + ;s,)=o}.

Since the state does not visit 0 on the intervals [LfT, +
Yk-15, TKT, +3kS)), k=1,2,---, a standard regenerative
argument shows that

Wi BT

. SET+ES, (3.5)

im

t— o0

Since the time spent in any state stochastically dominates

an exponential random variable of rate y +£/_p,, we also
have

J -1
Y+ Zl"i)

1t i
lim A1) > =l (3.6)
t»oo 1 ES,+ ET
From (3.4)-(3.6), it follows that
ET>Cg(N) (3.7)

for a constant C, independent of N and (N, -, N;).

We proceed to upper bound a. Let § have the distribu-
tion of the time taken to return to 0, starting from 0 and
conditioned on not visiting A. Let §,8,,--- be iid. with
the distribution of 8. Let A have the distribution of the
time to hit A starting from 0 and conditioned on not
returning to 0. Also, assume that A is independent of
(8,, n >1). Let » be a geometric random variable indepen-
dent of A and (8,, n > 0) with

P(v=k)=a(l-a)*, k=0,1,2,---. (3.8)
Then it is easy to see that
TZ Y §,+A (3.9)
k=1

d

where £ denotes equality in distribution. In particular,

1-« 1
ET=——ES8+EA=—[(1-a)ES + aEA].
[44 a

Observe that (1— «)E8 + aEA is the mean time taken to
either return to O or visit 4 starting from 0. This time is
stochastically dominated by the time to return to 0 starting
from 0. It follows that

C
ET<— (3.10)
44

for a constant C independent of N and (N, -, Nj).
From (3.7) and (3.10) we have

C
g(N)
for a constant C independent of N and (N,,- -+, Nj).

a< (3.11)
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Now observe that § stochastically dominates an expo-
nential random variable of mean y~!. Indeed, if the net-
work is empty, we have to wait at least that long for an
arrival. From (3.8) and (3.9), and since an independent
geometric sum of iid. exponential random variables 18
exponential, it follows that T stochastically dominates an
exponential random variable of mean 1— a/ay. Hence

ayr(N
(V) ) (3.12)
1 —
It is easy to see that for some € > 0 independent of N and
(N,,--+,N,) we have a<1—e. Hence from (3.11) and
(3.12) it follows that if 7(N) = 0,(g(N)), then
lim P(T<7(N))=0,

N o

P(T<7(N)) 51~exp(—

completing the proof of (2.1). a

Given T(N) as in the statement of the theorem, we
proceed to prove (2.2). From (3.2), a calculation gives

C

Z —er—

g(N)
for a constant C independent of N and (N,,- -+, N;). The
time spent by x in A on an interval [Zf ~'T; + £ 'S, X{ T,
+3%S,)), k=1,2,--- is stochastically dominated by S,.
Thus we have

7(4) (3.13)

ES,
< —
ET + ES,

(1)
lim

t—o0 I

(3.14)

(cf. (3.6)). From the ergodic theorem we also have

14(1)
t

lim
t =00

From (3.13)—(3.15) it follows that
ET<Cg(N)ES,

= n(4). (3.15)

(3.16)

for a constant C independent of N and (Ny,- -+, Ny
Applying the Markov inequality (see e.g. [1]) gives
g(N)

P(T>T(N))<C——<ES;

) (3.17)

for the same constant C.

It remains to estimate ES;. This is done via the follow-
ing lemma.

Lemma 1: Given (my,---,m;) and (m{,---, m}) such
that m,<m!, 1<i<J, let L=%/_m, and L+L'=
YJ_,mJ, so that L' >0.

Let D= {(ny, -+, n,): Tn,< L’}. Let S have the distri-
bution of the time to empty when N is started with m;,
customers in queue at node i, 1<i<J. Let S, have the
distribution of the time to hit D when N is started with
m/ customers in queue at node i, 1 <i < J. Then

Sp< S
5
where < denotes stochastic domination.
5

Proof: We prove the claim by coupling the paths in
the two situations, using a coloring idea. The point behind



724

this idea is that when a virtual service occurs at a node
with a nonempty queue, we are free to decide which
customer in the queue departs without affecting the pro-
cess of the total number of customers at the nodes of the
network. At time 0, start with m/ customers in queue i.
Color the leading m, customers red and the remaining
m[ — m; customers blue. There is a total of L’ blue cus-
tomers initially. Arriving customers are colored red. Red
customers always have precedence over blue customers,
ie., when a virtual service takes place at node i, a blue
customer in queue at node i does not move unless there
are no red customers in queue at node i. Let (X,(¢),t > 0)
denote the number of red customers in queue at node i
and ( X/(t), t > 0) the total number of customers in queue
at node /.
Let

S=inf{1>0: (X,(1), --, X, (1)) =0}
and
Sp=inf{t>0:(X{(1), -, X;(1)) € D}.

Then S$£5S and §D4SD. At S, all customers in the
network are blue and their total number is at most L’.
Hence

Sp<S
from which the claim follows.

Remark 1: The coupling idea of Lemma 1 gives a joint
realization for the network started at (m{,- - -, m}) and the
network started at (m,,- - -, m,) such that the total number
of customers in the system for the first initial condition is
always at most L’ larger than the total number of cus-
tomers in the system for the second initial condition. This
result may be of independent interest.

Corollary 1: Let S, 1<i<J have the distribution of
the time to empty when N is started with all queues empty
except for a single customer in queue at node i. Let S*
have the smallest distribution which stochastically domi-
nates all the S/, 1<i< J.

Suppose N is started with n; customers in queue at
node i. Let

Let S have the distribution of the time to empty. Then

§ < sum of L independent copies of S*.
§

Proof: We prove the claim by induction on L. Clearly,
the claim is true for L =1. Suppose the claim is true for all
initial conditions where the total number of initial cus-
tomers is at most L —1, and let N be started with n ;
customers in queue at node i, 1 <i< J, where X)_,n,= L.
Let i

J
-,my): Zm,sL—l}.
i=1

D= {(ml,--
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Let ;j be any index such that n,>0. Let S, denote the
time of the first visit to D. By Lemma 1,

Sp< S/ <85>
5 5

where the second inequality is by the definition of S*.

At S, the network is in a state in D. While the hitting
distribution on D and S, may be dependent, we know
from the induction hypothesis that from any initial condi-
tion in D the time to empty is stochastically dominated by
the sum of L —1 independent copies of S*. The claim
follows easily. O

Corollary 1 tells us that S is stochastically dominated
by the sum of N independent copies of a random variable
with finite mean. Hence

ES,<CN (3.18)

for a constant C independent of N and (N, --, N,).
From (3.17) and (3.18), we see that if T(N) = w,(Ng(N)),
then

lim P(T<T(N)) =1
N
which proves (2.2). o

IV. CoONCLUDING REMARKS

The rule of thumb suggests that at least for large N one
could restrict attention to the buffer allocations satisfying
(2.7). The cardinality of this set of allocations grows like
(log N)’"', in comparison to N’~! for the set of all
possible allocations. For a specific performance criterion,
such as the mean time to buffer overflow, it may therefore
be feasible in practice to determine the optimal allocation
in the region determined by (2.7).

If the performance criterion is the mean time to buffer
overflow, it is not necessary to study asymptotics to justify
the rule of thumb. From (3.7), (3.16), and (3.18) we see
that there are constants ¢; and c, such that

c,8(N) <ET <c,Ng(N)

for every N. From this it follows easily that unless a buffer
allocation (N, - -, N;) of N buffers satisfies

N, — p,N| <K(10gN+logc2c(‘)

for every i =1,---, J, it has a smaller mean time to buffer
overflow than the rule of thumb. The reader can easily
write down explicit values for ¢; and ¢, from the proof in
Section III.
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